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Equi-Statistical Extension of the Korovkin Type Approximation

Theorem

Sevda Karakuş, Kamil Demirci

Abstract

In this paper using equi-statistical convergence, which is stronger than the usual uniform convergence and

statistical uniform convergence, we obtain a general Korovkin type theorem. Then, we construct examples

such that our new approximation result works but its classical and statistical cases do not work.
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1. Introduction

Throughout this paper I := [0,∞). C (I) is the space of all real-valued continuous functions on I and
CB (I) := {f ∈ C (I) : f is bounded on I} . The sup norm on CB (I) is given by

‖f‖CB(I) := sup
x∈I

|f (x)| , (f ∈ CB (I)) .

Also, let Hw be the space of all real valued functions f defined on I and satisfying

|f (x) − f (y)| ≤ w

(
f ;

∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣
)

, (1.1)

where w is the modulus of continuity given by, for any δ > 0,

w (f ; δ) := sup
x,y∈I

|x−y|<δ

|f (x) − f (y)| .

The idea of statistical convergence of a sequence of real numbers has been introduced in [14]. Recently,
various kinds of statistical convergence for sequences of functions have been introduced in [1] (see also [7]). In
[1] a kind of convergence (equi-statistical convergence for sequences of functions) lying between uniform and
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pointwise statistical convergence was presented. Using this concept, Korovkin type approximation theory was
studied in [12]. First we recall the concept of equi-statistical convergence.

Let f and fk belong to Hw . Then we use the following notations:

Ψn (x, ε) : = |{k ≤ n : |fk (x) − f (x)| ≥ ε}| , x ∈ I

Φn (ε) : =
∣∣∣{k ≤ n : ‖fk − f‖CB(I) ≥ ε

}∣∣∣
where ε > 0, n ∈ N and the symbol |A| denotes the cardinality of the subset A .

Definition 1 [12](fn) is said to be statistically pointwise convergent to f on I if st − limn→∞ fn(x) = f(x)

for each x ∈ I, i.e., for every ε > 0 and for each x ∈ I, limn→∞
Ψn(x,ε)

n = 0. Then, it is denoted by fn → f

(stat) on I.

Definition 2 [12](fn) is said to be equi-statistically convergent to f on I if for every ε > 0, limn→∞
Ψn(x,ε)

n =

0 uniformly with respect to x ∈ I, which means that limn→∞
‖Ψn(.,ε)‖CB(I)

n
= 0 for every ε > 0. In this case,

we denote this limit by fn → f (equi − stat) on I.

Definition 3 [12](fn) is said to be statistically uniform convergent to f on I if st- limn→∞ ‖fn − f‖CB(I) = 0,

or lim n→∞
Φn(ε)

n = 0. This limit is denoted by fn ⇒ f (stat) on I.

Using the above definitions, we get the following result.

Lemma 1 [12]fn ⇒ f on I (in the ordinary sense) implies fn ⇒ f (stat) on I, which also implies fn → f

(equi − stat) on I. Furthermore, fn → f (equi − stat) on I implies fn → f (stat) on I ; and fn → f on I

(in the ordinary sense) implies fn → f (stat) on I.

However, one can construct an example which guarantees that the converses of Lemma 1 are not always
true. Such an example is in the following (see also [1]) example.

Example 1 Define gn ∈ Hw, n ∈ N by the formula

gn (x) :=

{
0, x = 1

n

1, x �= 1
n

. (1.2)

Then observe that gn → g = 1(equi − stat) on I , but (gn) does not usual uniform convergent and statistically
uniform convergent to the function g = 1 on I .

Now let {Ln} be a sequence of positive linear operators acting from C(X) into C(X), which is the space
of all continuous real valued functions on a compact subset X of the real numbers. In this case, Korovkin
[13] first noticed the necessary and sufficient conditions for the uniform convergence of Ln(f) to a function

f by using the test function ei defined by ei(x) = xi (i = 0, 1, 2). Many researchers have investigated these
conditions for various operators defined on different spaces. In recent years, some matrix summability methods
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have been used in the approximation theory. Although some operators, such as interpolation operators of
Hermite-Fejer [3], do not converge at points of simple discontinuity, the matrix summability method of Cesàro-
type are strong enough to correct the lack of convergence [4]. Furthermore, uniform statistical convergence in
Definition 3, which is a regular (non-matrix) summability transformation, has also been used in the Korovkin
type approximation theory [6], [8], [9], [10], [11]. Recently, a Korovkin type approximation theorem has been
studied in [12] via equi-statistical convergence which is stronger than the statistical uniform convergence. In
this paper, using the concept of equi-statistical convergence we study a Korovkin type approximation theorem
for positive linear operators which defined on Hw (In) . Also, we will construct sequences of positive linear
operators such that while our new results work, their classical and statistical cases do not work.

2. Equi-Statistical Convergence of Positive Linear Operators

Using usual uniform convergence, Çakar and Gadjiev [5] obtained Korovkin type approximation theorem
on the space Hw :

Theorem 1 [5]Let {Ln} be a sequence of positive linear operators from Hw into CB (I) . Then, for any
f ∈ Hw ,

Lnf ⇒ f (in the ordinary sense)

is satisfied if the following holds:

Lnfi ⇒ fi (in the ordinary sense) , (i = 0, 1, 2) ,

where

f0 (u) = 1, f1 (u) =
u

1 + u
, f2 (u) =

(
u

1 + u

)2

.

Now we have the following result.

Theorem 2 Let {Ln} be a sequence of positive linear operators from Hw into CB (I) . Then, for any f ∈ Hw ,

Lnf → f (equi − stat) (2.1)

is satisfied if the following holds:

Lnfi → fi (equi − stat), (i = 0, 1, 2) , (2.2)

where

f0 (u) = 1, f1 (u) =
u

1 + u
, f2 (u) =

(
u

1 + u

)2

Proof. Let f ∈ Hw and x ∈ I be fixed. Then, we immediately see from [5], [8] that, for every ε > 0, there
exists a δ > 0 such that

|Ln (f ; x) − f (x)| ≤ ε + K{|Ln (f0; x) − f0 (x)| + |Ln (f1; x)− f1 (x)| + |Ln (f2; x) − f2 (x)|}, (2.3)
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where K := ε + ‖f‖CB(I) +
4‖f‖CB(I)

δ2 . For a given r > 0, choose ε > 0 such that ε < r . Then, for each

i = 0, 1, 2, setting
Ψn (x, r) := |{k ≤ n : |Lk (f ; x) − f (x)| ≥ r}|

and

Ψi,n (x, r) :=
∣∣∣∣
{

k ≤ n : |Lk (fi; x) − fi (x)| ≥ r − ε

3K

}∣∣∣∣ (i = 0, 1, 2) ,

it follows from (2.3) that

Ψn (x, r) ≤
2∑

i=0

Ψi,n (x, r) ,

which gives

‖Ψn(., r)‖CB(I)

n
≤

2∑
i=0

‖Ψi,n (., r)‖CB(I)

n
. (2.4)

Then using the hypothesis (2.2) and considering Definition 2, the right-hand side of (2.4) tends to zero as
n → ∞ . Therefore, we have

lim
n→∞

‖Ψn(., r)‖CB(I)

n
= 0 for every r > 0,

whence the result. �

Now we give an example such that Theorem 2 works but the cases of classical and statistical do not work.

Remark 1 Suppose that I = [0,∞). We consider the following positive linear operators defined on Hw :

Tn (f ; x) =
gn (x)

(1 + x)n

n∑
k=0

f

(
k

n − k + 1

)(
n

k

)
xk,

where f ∈ Hw , x ∈ I , n ∈ N and gn (x) is given by (1.2). If gn (x) = 1 then Tn turn out to be the operators
of Bleimann, Butzer and Hahn [2]. If we use the definition of Tn and the fact that

(
n

k + 1

)
=

n

k + 1

(
n − 1

k

)
,

(
n

k + 2

)
=

n (n − 1)
(k + 1) (k + 2)

(
n − 2

k

)
,

we can see that

Tn (f0; x) = gn (x) ,

Tn (f1; x) =
n

n + 1
gn (x)

(
x

1 + x

)
,

Tn (f2; x) = gn (x)
x2

(1 + x)2

(
n (n − 1)
(n + 1)2

)
+ gn (x)

x

1 + x

n

(n + 1)2
.

We show that conditions (2.2) in the Theorem 2 hold.
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1. Since gn → 1(equi − stat) on I , it is clear that Tnf0 → f0(equi − stat) on I.

2. Since |Tn (f1; x)− f1 (x)| = f1 (x)
∣∣∣ n
n+1gn (x) − 1

∣∣∣ , we can write

|Tn (f1; x)− f1 (x)| <

∣∣∣∣ n

n + 1
gn (x) − 1

∣∣∣∣ .
Also, we know that lim

n→∞
n

n+1
= 1 and gn → 1(equi− stat) on I . Then we have n

n+1
gn (x) → 1(equi− stat) on

I. So we get
Tnf1 → f1(equi − stat) on I.

3. Finally, Tn (f2; x) − f2 (x) = f2 (x)
[

n(n−1)gn(x)

(n+1)2
− 1

]
+ f1 (x) ngn(x)

(n+1)2
then

|Tn (f2; x) − f2 (x)| <

∣∣∣∣∣n (n − 1) gn (x)

(n + 1)2
− 1

∣∣∣∣∣ +

∣∣∣∣∣ ngn (x)

(n + 1)2

∣∣∣∣∣ .

So we observe that

∣∣∣∣∣n (n − 1) gn (x)
(n + 1)2

− 1

∣∣∣∣∣ → 0(equi − stat) on I and

∣∣∣∣∣ ngn (x)
(n + 1)2

∣∣∣∣∣ → 0(equi − stat) on I. (2.5)

Now given ε > 0, set
Ψn (x, ε) := |{k ≤ n : |Tkf2 − f2| ≥ ε}|

and

Ψ1,n (x, ε) : =

∣∣∣∣∣
{

k ≤ n :

∣∣∣∣∣n (n − 1)gn (x)
(n + 1)2

− 1

∣∣∣∣∣ ≥ ε

2

}∣∣∣∣∣ ,

Ψ2,n (x, ε) : =

∣∣∣∣∣
{

k ≤ n :

∣∣∣∣∣ ngn (x)
(n + 1)2

∣∣∣∣∣ ≥ ε

2

}∣∣∣∣∣ .
By (2.5), it is obvious that Ψn (x, ε) ≤ Ψ1,n (x, ε) + Ψ2,n (x, ε). Then, we get

lim
n→∞

‖Ψn (., ε)‖CB(I)

n
= 0

for every ε > 0. So, we get
Tnf3 → f3(equi − stat) on I.

Therefore, using (1), (2) and (3) in Theorem 2, we obtain that, for all f ∈ Hw ,

Tnf → f(equi − stat).

Since gn is neither uniform nor statistically uniform convergent to g = 1 on I = [0,∞), the sequence {Tnf}
cannot uniformly converge to f on I in the ordinary sense or statistically sense.
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3. Equi-Statistical Extension of the Korovkin Type Approximation Theorem

In this section, considering a sequence of positive linear operators defined on the space of all real valued
continuous and bounded functions on a subset In of R

n , the real n-dimensional space where In := I×I×...×I ,
we give an extension of Theorem 2.

We first consider the case of m = 2.

Let I2 := [0,∞)× [0,∞). Then, the sup norm on CB

(
I2

)
is given by,

‖f‖CB(I2) := sup
(x,y)∈I2

|f (x, y)| ,
(
f ∈ CB

(
I2

))
.

Also, let Hw2 is the space of all real valued functions f defined on I2 and satisfying

|f (u, v) − f (x, y)| ≤ w2

(
f ;

∣∣∣∣ u

1 + u
− x

1 + x

∣∣∣∣ ,

∣∣∣∣ v

1 + v
− y

1 + y

∣∣∣∣
)

(3.1)

where w2 (f ; δ1, δ2) is the modulus of continuity (for the functions of two variables) given by, for any δ1 , δ2 > 0,

w2 (f ; δ1, δ2) := sup
{
|f (u, v) − f (x, y)| : (u, v) , (x, y) ∈ I2, and |u − x| ≤ δ1, |v − y| ≤ δ2

}
.

It is clear that a necessary and sufficient condition for a function f ∈ CB

(
I2

)
is

lim
δ1→0,δ2→0

w2 (f ; δ1, δ2) = 0.

Now let f and fn belong to Hw2 . Then we use the following notations:

Ψn (x, y, ε) : = |{k ≤ n : |fk (x, y) − f (x, y)| ≥ ε}| , (x, y) ∈ I2

Φn (ε) : =
∣∣∣{k ≤ n : ‖fk − f‖CB(I2) ≥ ε

}∣∣∣
where ε > 0 and n ∈ N .

Definition 4 (fn) is said to be statistically pointwise convergent to f on I if st − limn→∞ fn(x, y) = f(x, y)

for each (x, y) ∈ I2, i.e., for every ε > 0 and for each (x, y) ∈ I2, limn→∞
Ψn(x,y,ε)

n = 0. Then, it is denoted

by fn → f (stat) on I2.

Definition 5 (fn) is said to be equi-statistically convergent to f on I2 if for every ε > 0, limn→∞
Ψn(x,y,ε)

n = 0

uniformly with respect to (x, y) ∈ I2, which means that limn→∞
‖Ψn(.,.,ε)‖CB(I2)

n = 0 for every ε > 0. In this

case, we denote this limit by fn → f (equi − stat) on I2.

Definition 6 (fn) is said to be statistically uniform convergent to f on I2 if

st- limn→∞ ‖fn − f‖CB(I2) = 0, or lim n→∞
Φn(ε)

n = 0. This limit is denoted by fn ⇒ f (stat) on I2.
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Lemma 2 fn ⇒ f on I2 (in the ordinary sense) implies fn ⇒ f (stat) on I2, which also implies fn → f

(equi − stat) on I2. Furthermore, fn → f (equi − stat) on I implies fn → f (stat) on I2 ; and fn → f on

I2 (in the ordinary sense) implies fn → f (stat) on I2.

However, one can construct an example which guarantees that the converses of Lemma 2 are not always
true. Such an example is in the following:

Example 2 Define gn, n ∈ N by the formula

gn (x, y) :=

{
0, (x, y) =

(
1
n , 1

n

)
1, (x, y) �=

(
1
n
, 1

n

) . (3.2)

Since gn : [0,∞)× [0,∞) → R is continuous and

|gn (u, v) − gn (x, y)| =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, (x, y) = (u, v) =
(

1
n , 1

n

)
0, (x, y) �= (u, v) �=

(
1
n , 1

n

)
1, (x, y) =

(
1
n
, 1

n

)
, (u, v) �=

(
1
n
, 1

n

)
1, (x, y) �=

(
1
n , 1

n

)
, (u, v) =

(
1
n , 1

n

)
for all (x, y) , (u, v) ∈ [0,∞)× [0,∞). Then we have

|gn (u, v) − gn (x, y)| ≤ w2

(
gn;

∣∣∣∣ u

1 + u
− x

1 + x

∣∣∣∣ ,

∣∣∣∣ v

1 + v
− y

1 + y

∣∣∣∣
)

.

So gn ∈ Hw2 . Then observe that gn → g = 1(equi − stat) on I2 , but (gn) does not usual uniform convergent

and statistically uniform convergent to the function g = 1 on I2 .

Let L is a positive linear operator mapping Hw2 into CB

(
I2

)
. Also, we denote the value of Lf at a

point (x, y) ∈ I2 is denoted by L (f (u, v) ; x, y) or simply L (f ; x, y) .

Now we have the following result.

Theorem 3 Let {Ln} be a sequence of positive linear operators from Hw2 into CB

(
I2

)
. Then, for any

f ∈ Hw2 ,
Lnf → f (equi − stat) (3.3)

is satisfied if the following holds:

Lnfi → fi (equi − stat), (i = 0, 1, 2, 3) , (3.4)

where

f0 (u, v) = 1, f1 (u, v) =
u

1 + u
, f2 (u, v) =

v

1 + v
, f3 (u, v) =

(
u

1 + u

)2

+
(

v

1 + v

)2

.

Proof. Using the similar technique in proof of Theorem 2, we can obtain the proof. �

Now we give an example such that Theorem 3 works but the case of classical and statistical (Theorem
2.1 of [8]) do not work as Remark 1.
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Remark 2 Suppose that I = [0,∞) and I2 = [0,∞) × [0,∞). We consider the following positive linear
operators defined on Hw2 :

Tn (f ; x, y) =
gn (x, y)

(1 + x)n (1 + y)n

n∑
k=0

n∑
l=0

f

(
k

n − k + 1
,

l

n − l + 1

)(
n

k

)(
n

l

)
xkyl ,

where f ∈ Hw2 , (x, y) ∈ I2 , n ∈ N and gn (x, y) is given by (3.2). If gn (x, y) = 1 than Tn turn out to be the
operators of Bleimann, Butzer and Hahn [2] (of two variables). From [8], we can see that

Tn (f0; x, y) = gn (x, y) ,

Tn (f1; x, y) =
ngn (x, y)

n + 1

(
x

1 + x

)
,

Tn (f2; x, y) =
ngn (x, y)

n + 1

(
y

1 + y

)
,

Tn (f3; x, y) =
n (n − 1) gn (x, y)

(n + 1)2
x2

(1 + x)2
+

ngn (x, y)
(n + 1)2

x

1 + x

+
n (n − 1) gn (x, y)

(n + 1)2
y2

(1 + y)2
+

ngn (x, y)
(n + 1)2

y

1 + y
.

Then, as in the previous section, it is easy to check that the conditions in (3.4) hold. So, by Theorem 3, we
obtain that, for all f ∈ Hw2

Tnf → f(equi − stat) on I2.

Since the function sequence gn (x, y) is not usual uniform convergent and statistically uniform convergent to

the function g = 1 on I2 , {Tnf} is not usual uniform convergent and statistically uniform convergent to f .

Now replace I2 by In := [0,∞) × ... × [0,∞) and consider the modulus of continuity wn (f ; δ1, ..., δn)
(for the function f of n−variables) given by, for any δ1, ..., δn > 0,

wn (f ; δ1, ..., δn) := sup{|f (u1, ..., un) − f (x1, ..., xn)| : (u1, ..., un) , (x1, ..., xn) ∈ In

and |ui − xi| ≤ δi, (i = 0, 1, ..., n)}.

Then, let Hwn is the space of all real valued functions f defined on In and satisfying

|f (u1, ..., un) − f (x1, ..., xn)| ≤ wn

(
f ;

∣∣∣∣ u1

1 + u1
− x1

1 + x1

∣∣∣∣ , ...,
∣∣∣∣ un

1 + un
− xn

1 + xn

∣∣∣∣
)

.

Therefore, using the similar technique in proof of Theorem 3 and definition of equi-statistically conver-
gence on Hwn , we can get the following result immediately.

Theorem 4 Let {Ln} be a sequence of positive linear operators from Hwn into CB (In) . Then, for any
f ∈ Hwn ,

Lnf → f (equi − stat)
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is satisfied if the following holds:

Lnfi → fi (equi − stat), (i = 0, 1, ..., n+ 1) ,

where

f0 (u1, ..., un) = 1, fi (u1, ..., un) =
ui

1 + ui
, (i = 1, 2, ..., n)

fn+1 (u1, ..., un) =
n∑

k=1

(
uk

1 + uk

)2

.
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