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Abstract

In this paper we study constant angle surfaces in Euclidean 3–space. Even that the result is a consequence

of some classical results involving the Gauss map (of the surface), we give another approach to classify all

surfaces for which the unit normal makes a constant angle with a fixed direction.
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1. Introduction

Recently, constant angle surfaces were studied in product spaces S2×R in [2] or H2×R in [3, 4], where S2

and H2 represent the unit 2-sphere and the hyperbolic plane, respectively. The angle was considered between
the unit normal of the surface M and the tangent direction to R . The idea of studying surfaces with different
geometric properties in product spaces was initiated by H. Rosenberg and W. Meeks in [6] and [10], where they

have considered the general case of a surface M2 and they have looked for minimal surfaces properties in the
product space M2 × R .

In this article we study the problem of constant angle surfaces in Euclidean 3-space. So, we want to find
a classification of all surfaces in Euclidean 3-space for which the unit normal makes a constant angle with a
fixed vector direction being the tangent direction to R .

The applications of constant angle surfaces in the theory of liquid crystals and of layered fluids were
considered by P. Cermelli and A. J. Di Scala in [1], but they used for their study of surfaces another method
different from ours, the Hamilton-Jacobi equation, correlating the surface and the direction field. In [5], R.
Howard explains how shadow boundaries are formed when the light source is situated at an infinite distance
from the surface M using the geometric model of constant angle surfaces.
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2. Preliminaries

Let 〈 , 〉 be the standard flat metric in E3 and ∇̃ be its Levi Civita connection. We will consider an

orientation of E3 and denote by k the fixed direction. Let M be a surface isometrically immersed in E3 and

denote by N the unit normal of the surface. Denote by θ := (̂N, k) , where θ ∈ [0, π), the angle function
between the unit normal and the fixed direction. A vector is tangent to M if it is orthogonal to the normal N .

Recall the Gauss and Weingarten formulas

(G) ∇̃XY = ∇XY + h(X, Y )

(W) ∇̃XN = −AX ,

for every X and Y tangent to M . Here ∇ is the Levi Civita connection on M , h is a symmetric (1, 2)-tensor
field taking values in the normal bundle and called the second fundamental form of M and A is the shape
operator. We have

〈h(X, Y ), N〉 = g(X, AY )

for all X, Y tangent to M , where g is the restriction of the scalar product 〈 , 〉 to M .

Decompose k into the tangent and normal part respectively:

�k = �U + cos θ �N , where U is tangent to M. (1)

It follows ‖�k‖2 = ‖�U‖2 + cos2 θ‖ �N‖2 and hence ‖�U‖ = sin θ .

For θ �= 0, we can define a unit vector field on M , namely e1 := U
‖U‖ . Let e2 be an unitary vector field

on M and orthogonal to e1 . Thus we obtain an orthonormal basis {e1, e2} defined in every point of M . From
now on we suppose that θ is constant.

Proposition 1 In these hypothesis, we have: [e1, e2] ‖ e2 .

Proof. First we calculate [e1, e2] and we will notice that it can be written depending only on e2 .

We will use the following relation:

[e1, e2] = ∇̃e1e2 − ∇̃e2e1. (2)

From (1) (and the definition of e1 ) we have k = sin θe1 + cos θN and applying ∇̃e2 one gets:

0 = ∇̃e2k = sin θ∇̃e2e1 + cos θ∇̃e2N. (3)

Derivating 〈N, e1〉 = 0 with respect to e2 , we have the following relation:

〈∇̃e2N, e1〉 + 〈∇̃e2e1, N〉 = 0. (4)

Weingarten formula yields:

∇̃e2N = −ρe1 − λe2, with ρ, λ ∈ C∞(M). (5)
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From (3) and (5) it follows

∇̃e2e1 = cot θ (ρe1 + λe2). (6)

At this point we consider θ �= π
2 (i.e. cot θ �= 0). The particular case θ = π

2 will be treated separately.

Combining (4), (5) and (6) we find ρ = 0 and hence:

∇̃e2e1 = λ cot θe2. (7)

Again, by using the Weingarten formula we have

∇̃e1N = −αe1 − γe2 , with α, γ ∈ C∞(M). (8)

By the same method, applying ∇̃e1 to (1) and using (8) we obtain

∇̃e1e1 = cot θ (αe1 + γe2).

Since e1 is unitary it follows that α vanishes. Moreover, due to the symmetry of the shape operator, i.e.
〈Ae1, e2〉 = 〈e1, Ae2〉 , one immediately gets that γ vanishes too. Hence Ae1 = 0 and

∇̃e1e1 = 0. (9)

Derivating 〈e1, e2〉 = 0 with respect to e1 and using (9) we get

〈∇̃e1e2, e1〉 = 0. (10)

Using the Gauss formula one can write

0 = 〈Ae1, e2〉 = 〈h(e1, e2), N〉 = 〈∇̃e1e2, N〉.

It follows
∇̃e1e2 = 0. (11)

From (2), (7) and (11) we get the following relation for the Lie brackets:

[e1, e2] = −λ cot θe2 , equivalently, [e1, e2] ‖ e2. (12)

�

We conclude this section with the following proposition

Proposition 2 The Levi Civita connection ∇ of M is given by relations

∇e1e1 = 0, ∇e1e2 = 0, ∇e2e1 = λ cot θ e2, ∇e2e2 = −λ cot θ e1. (13)

Proof. The expressions can be obtained by straightforward computations. See also [2] and [3, 4]. �
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3. The Characterization of Constant Angle Surfaces

Due to Proposition 1 one can choose now a local coordinate system in each point of the surface M ,
namely a parametrization:

r = r(u, v) = (x(u, v), y(u, v), z(u, v))

such that the tangent vectors are: ru = e1 and rv‖e2 . Let rv := β(u, v)e2 , where β is a smooth function on
M . Hence, the metric on M can be written as

g = du2 + β2(u, v)dv2. (1)

Remark 3 The coefficients of the first fundamental form are E = 1 , F = 0 , G = β2(u, v) .

From Proposition 2 one can write now the Levi Civita connection of M in terms of the coordinates u

and v . It follows that the parametrization r satisfies the following PDE’s:

ruu = 0 (2)

ruv =
βu

β
rv (3)

where β satisfies the following PDE
βu − βλ cot θ = 0 (4)

and finally,

rvv =
βv

β
rv − β2λ cot θru + β2λN. (5)

Using the Schwartz identity ∇̃∂u∇̃∂vN = ∇̃∂v∇̃∂uN , and the expressions of the partial derivatives of the
unit normal of the surface M : Nu = 0 and Nv = −λrv , we have that λ satisfies the following PDE:

λu + λ2 cot θ = 0. (6)

Now we have to find the functions λ and β in order to write the parametrization r of the surface M .

Remark 4 Since Nu = 0 it follows that two coefficients of the second fundamental form: e = f = 0 . This fact
implies that the Gaussian curvature of M vanishes, K = 0 . So, the surface M is locally flat.

Remark 5 In terms of the Gauss map of the surface we can say that it makes a constant angle with a fixed
direction, which is equivalent to the fact that the Gauss map lies on a circle in the sphere S2 . Since it has no
interior points in S2 , it follows that the Gaussian curvature of the surfaces vanishes identically.

Proposition 6 The functions λ and β are given by the expressions

λ(u, v) =
tan θ

u + α(v)
(7)

β(u, v) = ϕ(v)(u + α(v)), (8)
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where α and ϕ are smooth functions on M or,

λ(u, v) = 0 (9)

β(u, v) = β(v). (10)

Proof. First we solve (6) and we find λ and then we substitute it in (4), obtaining β . �

Theorem 7 (of characterization) A surface M in E3 is a constant angle surface if and only if it is locally
isometric to one of the following surfaces:

(i) either a surface given by

r : M → E3, (u, v) 	→ (u cos θ(cos v, sin v) + γ(v), u sin θ) (11)

with

γ(v) = cos θ
(
−

v∫
0

α(τ ) sin τdτ,

v∫
0

α(τ ) cos τdτ
)

(12)

for α a smooth function on an interval I ,

(ii) or an open part of the plane x sin θ − z cos θ = 0 ,

(iii) or an open part of the cylinder γ × R , where γ is a smooth curve in R2 .

Here θ is a real constant.

Proof. First we prove that all these surfaces define indeed a constant angle surface in E3 . Item (ii) is
obvious and item (iii) corresponds to θ = π

2
. For item (i) we have the tangent vectors

ru =
(
cos θ cos v, cos θ sinv, sin θ

)
rv =

(
(u + α(v)) cos θ(− sin v, cos v), 0

)
.

Thus, the unit normal is N =
(
− sin θ(cos v, sin v), cos θ

)
and hence, the angle between N and and the fixed

direction k is the constant θ .

Conversely, we have to prove that a constant angle surface in E3 is as in the statement of the theorem.
Since e1 = ru , from (1) we get

k = sin θ ru + cos θ N.

Using Remark 3 and from the previous relation it easily follows that 〈ru, k〉 = sin θ and 〈rv, k〉 = 0. Hence the
third component of r(u, v) is z(u, v) = u sin θ .

At this point, the parametrization of M becomes

r(u, v) = (h(u, v), u sin θ), (13)

where h(u, v) = (x(u, v), y(u, v)) ∈ R2 .

173



MUNTEANU, NISTOR

We analyze the two cases for λ and β furnished by the Proposition 6.

Case I. Since ruu = 0 we have huu = 0. On the other hand, e1 = ru = (hu, sin θ) is a unit vector,

which means that |hu| = cos θ . Hence hu = cos θf(v), where f(v) ∈ R2 and |f(v)| = 1 for any v , i.e. f is a

parametrization of the circle S1 . By integration we obtain

h(u, v) = u cos θf(v) + γ(v)

where γ is a smooth curve in R2 .

It follows that rv = (u cos θf ′(v) + γ′(v), 0). Since ruv = βu

β
rv we get γ′(v) = cos θα(v)f ′(v).

Without loss of the generality we can suppose that f is the natural parametrization for S1 , i.e. f(v) =
(cos v, sin v) (this corresponds to a change of the parameter v ). Thus, the function ϕ which appears in (8) is
constnat, namely ϕ = cos θ .

One obtains the parametrization for M

r(u, v) =
(
u cos θ(cos v, sin v) + γ(v), u sin θ

)
,

where γ is given by (12).

Case II. Due to ruu = 0 and ruv = 0, it follows that huu = 0 and huv = 0, which imply that hu is a
constant vector in R2 of length cos θ , i.e. hu = cos θ(cos μ, sinμ), μ ∈ R . Hence

h(u, v) = u cos θ(cos μ, sinμ) + γ(v),

where γ is a smooth curve in R2 .

Recall that ru and rv are orthogonal. Consequently,

γ(v) = α(v)(− sin μ, cosμ), α ∈ C∞(I). (∗)

The parametrization of M can be written as

r(u, v) =
(
u cos θ(cos μ, sinμ) + γ(v), u sin θ

)
with γ given by (∗).

A rotation of angle μ in the (x, y)-plane yields the following parametrization for M :

r(u, v) = (u cos θ, α(v), u sin θ), (14)

which parameterizes the plane x sin θ − z cos θ = 0.

Particular cases for the constant angle θ :

• θ = 0: the normal N coincides with the direction k . Since ru and rv are tangent to M it follows
〈ru, k〉 = 0 and 〈rv, k〉 = 0 and thus 〈r, k〉 = constant. This is the equation of a plane parallel to (x, y)−plane.
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It can be parameterized as r(u, v) = (u, v, 0).

• θ = π
2 : k is tangent to the surface. In this case M is the product of a curve in R2 and R (cylindrical

surface), which can be parameterized as in (11) by: r(u, v) = (γ(v), u), where γ(v) ∈ R2 .

Now the theorem is completely proved. �

We give some examples of constant angle surfaces, parameterized by (11) for different functions α in
(12).

All pictures are realized by using Matlab.

Example 8 In all the following four examples we consider θ = π
4

.

1. α(v) = 1:

r(u, v) = 1√
2

(
(1 + u) cos v − 1, (1 + u) sin v, u

)
2. α(v) = v :

r(u, v) = 1√
2

(
(u + v) cos v − sin v, (u + v) sin v + cos v − 1, u

)
3. α(v) = cos v :

r(u, v) = 1√
2

(
u cos v − sin2 v

2
, u sinv + v+sin v cosv

2
, u

)
4. α(v) = 2 sinv :

r(u, v) = 1√
2

(
u cos v − v + cos v sin v, u sinv + sin2 v, u

)
.

Figure 1. Example 8: cases 1 and 2.

We give now the following result.
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Figure 2. Example 8: cases 3 and 4.

Proposition 9

1. The only minimal constant angle surfaces in Euclidean 3-space are the planes which make the angle θ with
the fixed direction k .

2. The constant angle surfaces in Euclidean 3-space with non-zero constant mean curvature are the cylindrical
surfaces.

Proof. Recall the formula H = 1
2

eG−2fF+gE
EG−F2 . Using Remark 3 and Remark 4 we get that

H =
1
2

g

β2(u, v)
. (15)

Looking for all minimal surfaces (i.e. H = 0) we should have g = 0. Now we refind here the case λ = 0
corresponding to the planes which make the angle θ with the fixed direction k .

For the second statement (M is CMC), (15) implies that λ = constant . But λ satisfies (6) so we must

have θ = π
2 . In this particular case we found the cylindrical surfaces γ × R , γ smooth curve in R2 . �

4. Conclusions

We can compare now all three results obtained for different ambient spaces, namely for S2 × R , H2 × R

and E3 , respectively. Thus we have: M is a constant angle surface if and only if it is given by an immersion
r of the following form:

1. r : M → S2 × R ,

(u, v) 	→ (cos(u cos θ)f(v) + sin(u cos θ)f(v) × f ′(v), u sin θ) where f : I → S2 is an unit speed curve in

S2 - the unit 2-sphere and “×” is the vector cross product in R3 ;

2. r : M → H× R ,

(u, v) 	→ (cosh(u cos θ)f(v) + sinh(u cos θ)f(v) � f ′(v), u sin θ) where f : I → H is an unit speed curve

on H - the hyperboloid model of H2 and “�” is the Lorentzian cross product in R3
1 , namely Lorentzian

3–space;
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3. r : M → E3 , (u, v) 	→ (u cos θf(v) + γ(v), u sin θ)

where f : I → R2 is a parametrization of the unit circle S1 , or f is a unit constant vector and γ′(v) ⊥ f(v).

Remark 10 The third component (along R) in all of these cases is the same: z(u, v) = u sin θ .

Remark 11 In S2 ×R the surface M has the constant Gaussian curvature K = cos2 θ > 0, in H×R one gets
K = − cos2 θ < 0 while in E3 it vanishes (K = 0).

5. Appendix

Applications to the theory of liquid crystals. In terms of differential geometry, we studied the
constant angle surfaces in E3 whose unit normal forms a constant angle with an assigned direction field. From
the point of view of physics, this geometric condition is equivalent to an Hamilton-Jacobi equation correlating
the surface and the direction field.

In the physics of interfaces in liquid crystals and of layered fluids, these surfaces are studied when the
direction field, in our case k , is singular along a line or a point. We can see in [1] how constant angle surfaces
may be used to describe interfaces occurring in special equilibrium configurations of nematic (an ordered fluid
whose constituents are macromolecules which tend to align parallel to each other) and smectic C liquid crystals
(ordered fluids characterized by a layered structure) and to determine the shape of disclination cores in nematics.
The last aspect, applications of constant angle surfaces in nematics was developed by E.G. Virga in [11], and
more recently, for example, by P. Prinsen and P. van der Schoot in [7], [8], [9].
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