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Abstract

The Golden Ratio is a fascinating topic that continually generates new ideas. The main purpose of the

present paper is to point out and find some applications of the Golden Ratio and of Fibonacci numbers

in Differential Geometry. We study a structure defined on a class of Riemannian manifolds, called by us

a Golden Structure. A Riemannian manifold endowed with a Golden Structure will be called a Golden

Riemannian manifold. Precisely, we say that an (1,1)-tensor field �P on a m-dimensional Riemannian

manifold (�M, �g ) is a Golden Structure if it satisfies the equation �P 2 = �P + I (which is similar to that

satisfied by the Golden Ratio φ) where I stands for the (1,1) identity tensor field. First, we establish

several properties of the Golden Structure. Then we show that a Golden Structure induces on every invariant

submanifold a Golden Structure, too. This fact is illustrated on a product of spheres in an Euclidean space.

Key Words: Riemannian manifold, Golden Structure, induced structures on submanifolds, Golden Ratio.

1. Introduction

The Golden Ratio (which sometimes is called “Golden Number”, “Golden Section”, “Golden Proportion”

or “Golden Mean”) has occupied an important place since antiquity in many parts of geometry, architecture,

music, art and philosophies, being a symbol of great fascination to ancient and modern geometry. The Great

Pyramid of Giza, built around 2560 BC, is one of the earliest examples of the use of this ratio([5]).

The Greeks usually attributed the discovery of the Golden Ratio to Pythagoras or his followers ([18]). In

the Elements, Euclid of Alexandria (around 300 BC), provides the first known written definition of the Golden

Ratio like a proportion derived from a division of a line into what he calls its “extreme and mean ratio”. Euclid’s

definition states: “A straight line is said to have been cut in extreme and mean ratio when, as the whole line is

to the greater segment, so is the greater to the lesser” ([16]).

The Fibonacci sequence (generated by the rule fn+1 = fn + fn−1 for every integer n ≥ 1, with

f0 = 0, f1 = 1 ) is well known in many different areas of mathematics and it is closely related to the Golden

Ratio (in the sense that the ratio of successive pairs of the Fibonacci numbers tends to the Golden Ratio)([4]).
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Fibonacci (1170 − 1250) mentioned this numerical sequence, now named after him, in his Liber Abaci. Fra

Luca Pacioli (1445 − 1517) published Divina Proportione (in Venice in 1509) and a detailed summary of the

properties of the Golden Ratio is contained in the first of the three volume text. Golden Ratio was described by

Johannes Kepler (1571− 1630) as “one of the two great treasures of geometry” (the other one is the Theorem

of Pythagoras)([18]).

The Golden Ratio arises as a result of the solution regarding the division problem of the line segment

AB with a point C (which belongs to the segment AB) in the ratio AC
CB = AB

AC . If we denote AC
CB = x , then the

problem is reduced to the solution of the algebraic equation: x2 = x + 1 ([6], [17]). The positive root of this

equation is equal to the value of the Golden Ratio, denoted by φ , the first Greek letter in the name of Phidias,

the Greek sculptor who lived around 450 BC ([18]).

The existence of the Golden Ratio in any place where life and beauty are present, has made us wonder

how it can be used to approach new objects in Riemannian Geometry and what kinds of structures on manifolds

can be obtained in this way. The idea to constructing a structure on a Riemannian manifold, called by us a

Golden Structure, is based on several results from geometrical structures constructed on Riemannian manifolds

([1],[7],[8],[11],[13],[14]). Kentaro Yano introduced the notion of an f-structure ([15]). Extending this structure,

Goldberg and Yano ([7]) introduced the notion of the polynomial structure on a manifold, as a C∞ tensor field

f of type (1,1) defined on a differentiable manifold N, such that the algebraic equation is satisfied:

Q(x) = xn + anxn−1 + ... + a2x + a1I = 0, (1.1)

where I is the identity mapping and (for x = f ) fn−1(p), fn−2(p), ..., f(p), I are linearly independent in every

point p ∈ N . The polynomial Q(x) is called the structure polynomial.

For Q(x) = x2 + I (or Q(x) = x2 − I ) we obtain an almost complex structure (respectively, an almost

product structure).

An almost product structure on a differentiable manifold N is determined by a system of differentiable

distributions T1, T2, ..., Tk so that the tangent space of N has the form ([8])

T (p) = T1(p) + T2(p) + ... + Tk(p), Ti(p)
⋂

Tj(p) = 0, i �= j (1.2)

in every point p ∈ N . This structure is defined by a system of C∞ tensor fields of type (1, 1) on M, called

projectors, given by the relation

πi(p) : T (p) −→ Ti(p),
k∑

i=1

πi = I, πiπj = δi
jπi, (1.3)

for every i ∈ {1, ..., k} , where δi
j are the Kronecker symbols. The distributions Ti (for i ∈ {1, ..., k}) are the

basic distributions of the structure.

In this paper, we define a Golden Structure as a polynomial structure with the structure polynomial

Q(x) = x2 − x − I . In Section 2 we establish several properties of the Golden Structure (also, we studied some

properties of this structure in [3] and [10]). In Section 3, we give some properties of the induced structure on
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a submanifold in a Golden Riemannian manifold and we find a necessary and sufficient condition for this kind

of submanifold to be a Golden Riemannian manifold. In Section 4 we give an example of Golden Structure on

Euclidean manifold and we construct the induced structure on a product of spheres in Euclidean space.

2. Golden Riemannian Structure

In this section we define a polynomial structure on a m-dimensional Riemannian manifold (M̃, g̃ ), called

by us a Golden Structure ([3], [10]), determined by an (1,1)-tensor field P̃ which satisfies the equation:

P̃ 2 = P̃ + I, (2.1)

where I is the identity operator on the Lie algebra χ(M̃) of vector fields on M̃ . We say that the metric g̃ is

P̃ -compatible if the equality

g̃(P̃ (U), V ) = g̃(U, P̃ (V )) (2.2)

is satisfied for every tangent vector fields U, V ∈ χ(M̃).

Remark 2.1 For a Golden Structure P̃ , defined on a Riemannian manifold (M̃, g̃), the condition (2.2) is

equivalent with

g̃(P̃ (U), P̃ (V )) = g̃(P̃ (U), V ) + g̃(U, V ), (2.3)

for every tangent vector fields U, V ∈ χ(M̃).

Definition 2.1 ([10]) A Riemannian manifold (M̃, g̃) , endowed with a Golden Structure P̃ so that the Rie-

mannian metric g̃ is P̃ -compatible is named a Golden Riemannian manifold and (g̃, P̃) is named a Golden

Riemannian structure on M̃ .

Proposition 2.1 ([3]) A Golden Riemannian manifold (M̃, g̃, P̃ ) has the property

P̃ n = fnP̃ + fn−1I (2.4)

for every integer number n > 0 , where (fn)n is the Fibonacci sequence.

Proof. From (2.2) we obtain P̃ 3 = 2P̃ + I . Generally, if we suppose that P̃ k = fkP̃ + fk−1I (k > 0),

then we have

P̃ k+1 = fkP̃ 2 + fk−1P̃ = (fk + fk−1)P̃ + fkI,

thus we obtain (2.4). �

Remark 2.2 Using an explicit expression for the Fibonacci sequence (Binet’s formula [12]):

fn =
φn − (1 − φ)n

√
5

, (2.5)
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we obtain a new form for the equality (2.4) the relation

P̃ n =
φn − (1 − φ)n

√
5

P̃ +
φn−1 − (1 − φ)n−1

√
5

I, (2.6)

for every natural number n > 1.

Proposition 2.2 The Golden Structure P̃ , defined on a m-dimensional Riemannian manifold (M̃, g̃) , is an

isomorphism on the tangent space of the manifold M̃ , TxM̃ , for every x ∈ M̃ .

Proof. Denoting by kerP̃ = {V ∈ TxM̃ : P̃ V = 0, (∀)x ∈ M̃} we obtain P̃ 2V = P̃V + V , thus kerP̃ = {0}
and from this we remark that P̃ is an isomorphism on TxM̃ , for every x ∈ M̃ . �

Proposition 2.3 The eigenvalues of the Golden Structure P̃ defined on a m-dimensional Riemannian mani-

fold (M̃, g̃) are the Golden Ratio φ and (1 − φ) .

Proof. If λ is an eigenvalue of the Golden Structure P̃ on TxM (for every x ∈ M̃ ) then we have P̃ V = λV

for every tangent vector fields V ∈ TxM̃ and every point x ∈ M̃ . From this we obtain λ2 = λ+1 and it follows

that the eigenvalues of P̃ are the Golden Ratio λ1 = φ and λ2 = 1 − φ . �

Proposition 2.4 The Trace of the Golden Structure P̃ defined on a m-dimensional Riemannian manifold

(M̃, g̃) has the property

trace(P̃ 2) = trace(P̃ ) + m. (2.7)

Proof. Denoting by {E1, E2, ..., Em} a local orthonormal basis of the tangent space TxM̃ in a point x ∈ M̃ ,

from (2.1) we obtain

g̃(P̃ 2Ei, Ei) = g̃(P̃Ei, Ei) + g̃(Ei, Ei).

and summing by i we obtain (2.7). �

Definition 2.2 ([15]) If a m-dimensional Riemannian manifold M̃ , endowed with a positive definite Rieman-

nian metric g̃ , admits a non-trivial tensor field F of type (1, 1) such that F 2 = I and g̃(FX, FY ) = g̃(X, Y )

for every vector fields X, Y ∈ χ(M̃) , then F is called an almost product structure and (M̃, g̃, F ) is called an

almost product Riemannian manifold.

It is well known ([8]) that a polynomial structure on a differentiable manifold M, defined by a C∞

tensor field of type (1,1), induces an almost product structure on M. The number of distributions of the almost

product structure is equal to the number of distinct irreducible factors over R of the structure polynomial and

the projectors are expressed as polynomials in f.
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Theorem 2.1 ([3]) Every almost product structure F on a m-dimensional Riemannian manifold (M̃, g̃) in-

duces two Golden Structures on (M̃, g̃) , given as follows:

P̃1 =
I +

√
5F

2
, P̃2 =

I −
√

5F

2
(2.8)

Conversely, every Golden Structure P̃ defined on a Riemannian manifold (M̃, g̃) induces an almost product

structure on this manifold.

Proof. We try to write the almost product structure F defined on a m-dimensional Riemannian manifold

(M̃, g̃), using a Golden Structure P̃ , in the form F = aP̃ + bI , where a, b ∈ R
∗ . Thus F 2 = a2P̃ 2 +2abP̃ + b2I

and using that F 2 = I and P̃ 2 = P̃ + I we obtain the formulae (2.8). Moreover, we have

g̃(P̃i(U), V ) = g̃(U, P̃i(V )) ⇐⇒ g̃(P̃ (X), Y ) = g̃(X, P̃ (Y ))

for every i ∈ {1, 2} and for every tangent vector fields U, V ∈ χ(M̃). �

On a Golden Riemannian manifold (M̃, g̃, P̃ ), we can define two projection operators as

l =
1√
5
(φI − P̃ ), m =

1√
5
((φ − 1)I + P̃ ). (2.9)

We can find immediately that

Proposition 2.5 ([3]) On a Golden Riemannian manifold (M̃, g̃, P̃) , projector operators l and m defined in

(2.9) verify that:

l + m = I, l2 = l, m2 = m, (2.10)

and

P̃ ◦ l = l ◦ P̃ = (1 − φ)l, P̃ ◦ m = m ◦ P̃ = φm. (2.11)

Remark 2.3 From (2.10) we obtain that there are two complementary distributions Dl and Dm , corresponding

to the projection operators l and m , respectively, on a Golden Riemannian manifold (M̃, g̃, P̃ ).

3. Submanifolds in Golden Riemannian Manifolds

Let M be a n-dimensional submanifold of codimension r , isometrically immersed in a m-dimensional

Golden Riemannian manifold (M̃, g̃, P̃ ) (where m, n, r ∈ N , n+r = m ≥ 2). We denote by Tx(M) the tangent

space of M in a point x ∈ M and by Tx(M)⊥ the normal space of M in x , for every x ∈ M . Let i∗ the

differential of the immersion i : M → M̃ . The induced Riemannian metric g of M is given by

g(X, Y ) = g̃(i∗X, i∗Y ), (3.1)
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for every X, Y ∈ χ(M). We consider a local orthonormal basis {N1, ..., Nr} of the normal space Tx(M)⊥ in a

point x ∈ M . We suppose that the indices verify that: α, β, γ... ∈ {1, ..., r} and i, j, k... ∈ {1, ..., n} .

For every X ∈ Tx(M), P̃ (i∗X) and P̃ (Nα) can be decomposed in tangential and normal components at

M as

P̃ (i∗X) = i∗(P (X)) +
r∑

α=1

uα(X)Nα, (∀)X ∈ χ(M) (3.2)

and

P̃ (Nα) = εi∗(ξα) +
r∑

β=1

aαβNβ , (ε = ±1), (3.3)

where P is an (1,1)-tensor field on M, ξα are tangent vector fields on M , uα are 1-forms on M and (aαβ)r is

a r × r matrix of real functions on M .

Theorem 3.1 ([10]) If M is a n-dimensional submanifold of codimension r, isometrically immersed in a Golden

Riemannian manifold (M̃, g̃, P̃ ) , then the structure (P, g, uα, εξα, (aαβ)r) , induced on M by the Golden Structure

P̃ , verifies these equalities: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) P 2(X) = P (X) + X − ε
∑

α uα(X)ξα,

(ii) uα(P (X)) = (1 − aαα)uα(X),

(iii) aαβ = aβα,

(iv) uβ(ξα) = ε(δαβ + aαβ − ∑
γ aαγaγβ),

(v) P (ξα) = ξα − ∑
β aαβξβ

(3.4)

and ⎧⎪⎪⎪⎨⎪⎪⎪⎩
(i) uα(X) = εg(X, ξα),

(ii) g(P (X), Y ) = g(X, P (Y )),

(iii)g(P (X), P (Y )) = g(P (X), Y ) + g(X, Y ) − ∑
α uα(X)uα(Y )

(3.5)

for every X, Y ∈ χ(M) .

Proof. Applying P̃ in (3.2) we have

P̃ 2(i∗X) = P̃ (i∗P (X)) +
r∑

α=1

uα(X)P̃ (Nα),

for every X ∈ χ(M). Thus, we obtain

i∗(P (X)) +
∑
α

uα(X)Nα + i∗X = i∗P
2(X) +

∑
α

uα(P (X))Nα +
∑
α

uα(X)(εi∗(ξα) +
∑

β

aαβNβ),
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for every X ∈ χ(M). Equalizing the tangential and normal parts, respectively, from the last equality, we obtain

the relations (i) and (ii) from (3.4). The equality (i) has the equivalent form P 2 = P+I−ε
∑

α uα⊗ξα . Applying

the compatibility relation (2.2) for the normal vector fields Nα and Nβ we have g̃(εi∗(ξα)+
∑

γ=1 aαγNγ , Nβ) =

g̃(Nα, εi∗(ξβ)+
∑

γ=1 aβγNγ), and from this we obtain the relation (iii) from (3.4). Applying (2.1) to the normal

vector field Nα we have P̃ 2(Nα) = P̃ (Nα) + Nα and from (3.3), it follows that

P̃ (εi∗(ξα) +
∑

γ

aαγNγ) = εi∗(ξα) +
∑

β

aαβNβ + Nα.

So, we have

ε(i∗P (ξα) +
∑

β

uβ(ξα)Nβ) +
∑

γ

aαγ(εi∗(ξγ) +
∑

β

aγβNβ) = εi∗(ξα) +
∑

β

aαβNβ + Nα.

Equalizing the tangential and normal parts respectively from the last equality we obtain the relations (v) and

(iv) from (3.4). From (2.2) we have g̃(P̃ (X), Nα) = g̃(X, P̃ (Nα)) which follows that

g̃(i∗P (X) +
∑

β

uβ(X)Nβ , Nα) = g̃(X, εi∗ξα +
∑
β

aαβNβ)

for every X ∈ χ(M) and Nα ∈ Tx(M)⊥ (in every x ∈ M ) and from the last equality we obtain the relation (i)

from (3.5). From (3.1) and (3.2) we have

g(P (X), Y ) − g(X, P (Y )) = g̃(i∗P (X), i∗Y ) − g̃(i∗X, i∗P (Y )) =

= g̃(P̃ (i∗X) −
∑
α

uα(X)Nα, i∗Y ) − g̃(i∗X, P̃ (i∗Y ) −
∑
β

uβ(Y )Nβ) =

= g̃(P̃ (i∗X), i∗Y ) − g̃(i∗X, P̃ (i∗Y )) = 0,

and from this we obtain (ii) from (3.5). Applying (3.1) to the vector fields X, P (Y ) ∈ χ(M), we have

g(P (X), P (Y )) = g(P 2(X), Y ) = g(P (X), Y ) + g(X, Y ) − ε
∑
α

uα(X)g(ξα, Y )

and from the equality (3.5)(i) we obtain (iii) from (3.5). �

Remark 3.1 If M is a n-dimensional invariant submanifold of codimension r (i.e. P̃ (Tx(M)) ⊆ Tx(M)),

isometrically immersed in a Golden Riemannian manifold (M̃, g̃, P̃ ), then ξα (α ∈ {1, 2, ..., r}) are zero vector

fields and the 1-forms uα vanishes identically on M (uα(X) = g(X, ξα) = 0). Consequently, (3.2) and (3.3) are

respectively written as

P̃ (i∗X) = i∗(P (X)), P̃ (Nα) =
∑

β

aαβNβ , (3.6)
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for every X ∈ χ(M) and α ∈ {1, 2, ..., r}. In this situation the properties of the structure elements

P, g, uα, εξα, (aαβ)r , verifies that ([10]):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) P 2(X) = P (X) + X,

(ii) aαβ = aβα,

(iii)
∑

γ aαγaγβ = aαβ + δαβ,

(iv) g(P (X), Y ) = g(X, P (Y )),

(v) g(P (X), P (Y )) = g(P (X), Y ) + g(X, Y ),

(3.7)

for every X, Y ∈ χ(M) and α, β ∈ {1, 2, ..., r} .

In the following considerations we suppose that the tangent vector fields ξ1, ξ2, ..., ξr are linearly inde-

pendent. In this situation, the 1-forms u1, ..., ur are also, linearly independent.

In Tx(M), we denote by V (ξα) a r -dimensional vector space spanned by ξα . When r < n , let ηA be

the eigenvectors of P, which are perpendicular on V (ξα) and mutually orthogonal, for every A ∈ {r + 1, ..., n} .

The eigenvalues of P corresponding to the eigenvalues ηA are λA ∈ {φ; 1− φ} , for every A ∈ {r + 1, ..., n} .

Next, if we take an eigenvector ξ of P in the vector space V (ξα), with the corresponding eigenvalue σ ,

then P (ξ) = σξ . Since ξ =
∑

α cαξα then P (ξ) = σ
∑

α cαξα . From (3.4)(v) we have

P (ξ) =
∑

β

cβP (ξβ) =
∑
α,β

cβ(δαβ − aαβ)ξα,

and from this we obtain σcα =
∑

β cβ(δαβ −aαβ). Therefore, if σ is an eigenvalue of P then it is an eigenvalue

of the matrix (δαβ − aαβ)r , too.

If {N1, ..., Nr} and {N ′
1, ..., N

′
r} are two local orthonormal basis on a normal space T⊥

x M , then the

decomposition of N ′
α in the basis {N1, ..., Nr} is given by N ′

α =
∑r

γ=1 kγ
αNγ , for every α ∈ {1, ..., r} ,

where (kγ
α) is an r × r orthogonal matrix, and we have (from [2]): u′

α =
∑

γ kγ
αuγ , ξ′α =

∑
γ kγ

αξγ and

a′
αβ =

∑
γ kγ

αaγδk
δ
β . Thus, if ξ1, ..., ξr are linearly independent vector fields, then ξ′1, ..., ξ

′
r are also linearly

independent. Furthermore, because aαβ is symmetric in α and β , under a suitable transformation, we can find

that aαβ can be reduced to a′
αβ = λαδαβ , where λα (α ∈ {1, 2, ..., r}) are eigenvalues of the matrix (aαβ)r .

In this case we have u′
β(ξα) = εδαβ(1 + λα − λαλβ) and from this we obtain u′

α(ξα) = ε(1 + λα − λ2
α).

We denoted by A := (aαβ)r . In the same manner like in [2], we obtain the following property:

Proposition 3.1 Let M be a non-invariant n-dimensional submanifold of codimension r, immersed in a golden

Riemannian manifold (M̃, g̃, P̃ ) so that the tangent vector fields ξ1, ξ2, ..., ξr are linearly independent. Then,

trace(P ) =

⎧⎨⎩r − trace(A) +
∑n

A=r+1 λA, r < n

r − trace(A), r = n
(3.8)
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with λA ∈ {φ; (1− φ)} for every A, B ∈ {r + 1, ..., n} .

Proof. From (3.4)(v) we have that the matrices (P ) (of P ), U := (ξ1 ξ2 ... ξr) and A := (aαβ)r verify

that (P )U = U(Ir −A), where Ir = (δαβ) is the identity matrix of order r.

For r = n , from detU �= 0 we obtain (P ) = U(Ir −A)U−1 , and from this we have

P β
α =

∑
μ,ν

uβ
μ(δμ

ν − aμ
ν )vν

α

for α, β, μ, ν ∈ {1, 2, ..., r} , where P β
α , uβ

μ , and vν
α are components of the matrices (P ), U and respectively U−1 .

Thus, we have trace(P ) = r − trace(A).

For r < n , we define matrices U and L by: U = (ξ1 ξ2 ...ξr ηr+1...ηn) and L =

(
δαβ − aαβ 0

0 λAδAB

)
,

where α, β ∈ {1, 2, ..., r} , A, B ∈ {r +1, ..., n} , δαα = 1,δαβ = 0 for α �= β and λA ∈ {φ; (1−φ)} are solutions

of the equation λ2 = λ + 1 (for A ∈ {r + 1, ..., n}).

Since det(U) �= 0, we have (P ) = ULU
−1

and from this we obtain P β
α =

∑
μ,ν uβ

μlμν vν
α (α, β, μ, ν ∈

{1, 2, ..., r}), where P β
α , uβ

μ , lμν and vν
α are components of matrices (P ), U, L and respectively U

−1
. Thus, we

obtain trace(P ) = r − trace(A) +
∑n

A=r+1 λA . �

Theorem 3.2 ([10]) Let M be a n-dimensional submanifold of codimension r, isometrically immersed in a

Golden Riemannian manifold (M̃, g̃, P̃ ) and let (P, g, uα, ξα, (aαβ)r) be the induced structure on M by struc-

ture (g̃, P̃ ) . A necessary and sufficient condition for M to be invariant is that the induced structure (P, g) on

M is a Golden Riemannian Structure, whenever P is non-trivial.

Proof. From (3.7)(i) and (iv) it is obvious that, if M is an invariant submanifold in a Golden Rieman-

nian manifold (M̃, g̃, P̃ ), then (P, g) is a golden Riemannian structure.

Conversely, if we suppose that (M, g, P ) is a golden Riemannian manifold, then
∑

α uα(X)ξα = 0 and we

obtain ∑
α

uα(X)g(X, ξα) =
∑
α

(uα(X))2 = 0

from which uα(X) = 0 for α ∈ {1, 2, ..., r}. Therefore M is invariant. �

4. An Example of Golden Structure

We consider that the ambient space is a (p + q)-dimensional Euclidean space Ep+q (p, q ∈ N
∗ ). Let

P̃ : Ep+q → Ep+q be an (1,1) tensor field defined by

P̃ (x1, ..., xp, y1, ..., yq) = (φx1, ..., φxp, (1 − φ)y1, ..., (1− φ)yq) (4.1)
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for every point (x1, ..., xp, y1, ..., yq) ∈ Ep+q , where φ = 1+
√

5
2

and 1 − φ = 1−
√

5
2

are the roots of the equation

x2 = x + 1.

On the other hand, for (x1, ..., xp, y1, ..., yq), (z1, ..., zp, t1, ..., tq) ∈ Ep+q , we have

P̃ 2(x1, ..., xp, y1, ..., yq) = (φ2x1, ..., φ2xp, (1 − φ)2y1, ..., (1− φ)2yq) =

= (φx1, ..., φxp, (1 − φ)y1 , ..., (1− φ)yq) + (x1, ..., xp, y1, ..., yq).

Thus, we obtain P̃ 2 = P̃ + I and we have

< P̃ (x1, ..., xp, y1, ..., yq), (z1, ..., zp, t1, ..., tq) >=< (x1, ..., xp, y1, ..., yq), P̃ (z1, ..., zp, t1, ..., tq) >

for every (x1, ..., xp, y1, ..., yq), (z1, ..., zp, t1, ..., tq) ∈ Ep+q so, the scalar product <> on Ep+q is P̃ -compatible.

Therefore, P̃ is a Golden Structure defined on (Ep+q , <>) and (Ep+q , <>, P̃ ) is a Golden Riemannian manifold.

In the following issue, we identify i∗X with X (where X ∈ χ(Ep+q)). It is obvious that Ep+q = Ep×Eq

and in each of spaces Ep and Eq respectively, we can get a hypersphere

Sp−1(r1) = {(x1, ..., xp),
p∑

i=1

(xi)2 = r2
1}

and

Sq−1(r2) = {(y1, ..., yq),
q∑

j=1

(yj )2 = r2
2}

respectively, where r2
1 + r2

2 = r2 .

We construct the product manifold Sp−1(r1) × Sq−1(r2) in the same manner like in [9]. Every point of

Sp−1(r1)×Sq−1(r2) has the coordinates (x1, ..., xp, y1, ..., yq) := (xi, yj) (i ∈ {1, ..., p}, j ∈ {1, ..., q}) such that:

p∑
i=1

(xi)2 +
q∑

j=1

(yj)2 = r2. (4.2)

Thus, Sp−1(r1)×Sq−1(r2) is a submanifold of codimension 2 in Ep+q and Sp−1(r1)×Sq−1(r2) is a submanifold

of codimension 1 in Sp+q−1(r). Therefore, we have:

Sp−1(r1) × Sq−1(r2) ↪→ Sp+q−1(r) ↪→ Ep+q . (4.3)

The tangent space in a point (x1, ..., xp, y1, ..., yq) := (xi, yj) at the product of spheres Sp−1(r1) × Sq−1(r2) is

T(x1,...,xp,o, ..., o︸ ︷︷ ︸
q

)S
p−1(r1) ⊕ T(o, ..., o︸ ︷︷ ︸

p

,y1,...,yq)S
q−1(r2).

A vector (X1, ..., Xp) from T(x1,...,xp)E
p is tangent to Sp−1(r1) if and only if we have:

p∑
i=1

xiXi = 0 (4.4)
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and it can be identified by (X1, ..., Xp, 0, ..., 0︸ ︷︷ ︸
q

) from Ep+q .

A vector (Y 1, ..., Y q) from T(y1,...,yq)E
q is tangent to Sq−1(r2) if and only if we have:

q∑
j=1

yjY j = 0 (4.5)

and it can be identified by (0, ..., 0︸ ︷︷ ︸
p

, Y 1, ..., Y q) from Ep+q .

Consequently, for every point (xi, yj) ∈ Sp−1(r1) × Sq−1(r2) we have

(X1, ..., Xp, Y 1, ..., Y q) := (Xi, Y j) ∈ T(x1,...,xp,y1,...,yq)(Sp−1(r1) × Sq−1(r2))

if the relations (4.4) and (4.5) are satisfied. Furthermore, we remark that (Xi, Y j) is a tangent vector field at

Sp+q−1(r) and from this it follows that

T(xi,yj)(Sp−1(r1) × Sq−1(r2)) ⊂ T(xi,yj)S
p+q−1(r),

for every point (xi, yj) ∈ Sp−1(r1) × Sq−1(r2).

We consider a local othonormal basis (N1, N2) of T⊥
(xi,yj)S

p−1(r1) × Sq−1(r2) in every point (xi, yj) ∈
Sp−1(r1) × Sq−1(r2) given by

N1 =
1
r
(xi, yj); N2 =

1
r
(
r2

r1
xi,−r1

r2
yj). (4.6)

From the decomposition of P̃ (Nα) (α ∈ {1, 2}) in tangential and normal components at Sp−1(r1) × Sq−1(r2),

we obtain

P̃ (Nα) = ξα + aα1N1 + aα2N2, α ∈ {1, 2}. (4.7)

From aαβ =< P̃ (Nα), Nβ > (α, β ∈ {1, 2}), we obtain

a11 =
φr2

1 + (1 − φ)r2
2

r2
, a12 = a21 =

r1r2(2φ − 1)
r2

, a22 =
φr2

2 + (1 − φ)r2
1

r2
.

Thus, the matrix A := (aαβ)2 is given by

A =

(
φr2

1+(1−φ)r2
2

r2
r1r2(2φ−1)

r2

r1r2(2φ−1)
r2

φr2
2+(1−φ)r2

1
r2

)
. (4.8)

From (4.7) we obtain

ξ1 = ξ2 = 0p+q . (4.9)

From (4.8) and (4.9) we have

P̃ (Nα) = aα1N1 + aα2N2, (∀)α ∈ {1, 2}. (4.10)
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Therefore,

P̃ (T⊥
(xi,yj)(S

p−1(r1) × Sq−1(r2))) ⊆ T⊥
(xi,yj)(S

p−1(r1) × Sq−1(r2)). (4.11)

From the decomposition of P̃ (Xi, Y j) in tangential and normal components at Sp−1(r1) × Sq−1(r2)

(where (X1 , ..., Xp, Y 1, ..., Y q) := (Xi, Y j) is a tangent vector field on Sp−1(r1) × Sq−1(r2)), we obtain

P̃ (Xi, Y j) = P (Xi, Y j) + u1(Xi, Y j)N1 + u2(Xi, Y j)N2. (4.12)

From uα(Xi, Y j) =< (Xi, Y j), ξα > (with α ∈ {1, 2}) and (4.9) we obtain

u1(Xi, Y j) = u2(Xi, Y j) = 0 (4.13)

for every tangent vector (Xi, Y j) on the product of spheres Sp−1(r1)×Sq−1(r2) in a point (xi, yj) ∈ Sp−1(r1)×
Sq−1(r2). From (4.12) and (4.13), we obtain

P (Xi, Y j) = P̃ (Xi, Y j). (4.14)

Thus, we have P̃ (T(xi,yj)(Sp−1(r1) × Sq−1(r2))) ⊆ T(xi,yj)(Sp−1(r1) × Sq−1(r2)) and P 2 = P + I . From (4.8),

(4.9), (4.13) and (4.14) we obtain the induced structure (P, <>, ξα = 0p+q , uα = 0,A) on the product of spheres

Sp−1(r1)×Sq−1(r2) by the Golden Structure (P̃ , <>) on Ep+q , which is also, a Golden Riemannian Structure

(P, <>) on Sp−1(r1) × Sq−1(r2). Therefore, we find a Golden Structure P induced on the product of spheres

Sp−1(r1) × Sq−1(r2) by the Golden Structure P̃ , defined in (4.1).
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