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Abstract

In this paper we characterize Q-modules and almost Q-modules. Next we estblish some equivalent

conditions for an almost Q-module to be a Q-module. Using these results, some characterizations are given

for Noetherian Q-modules.
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1. Introduction

Throughout this paper R denotes a commutative ring with identity and all modules are unital R -modules.
L(R) denotes the lattice of all ideals of R . Throughout this paper M denotes a unital R -module. In this
paper we introduce and study the concepts of Q -modules and almost Q -modules which are generalizations of
Q -rings [4] and almost Q -rings [14]. We prove that a faithful R -module M is a Q -module if and only if R

is a Q -ring and M is a multiplication module (see Theorem 1). It is shown that a faithful R -module M is a
Q -module if and only if M is a Laskerian multiplication module in which every non maximal prime submodule
is a finitely generated multiplication submodule (see Theorem 2). Next we establish several characterizations

for almost Q -modules (see Theorem 3, Theorem 4, Theorem 5, Theorem 6 and Theorem 7). Using these results,

some equivalent conditions are established for an almost Q -module to be a Q -module (see Theorem 8). Finally

Noetherian Q -modules are characterized (see Theorem 9).

2. Basic notions

For any x ∈ R , the principal ideal generated by x is denoted by (x). For any ideal I of R ,
√

I denotes
the radical of I . Recall that an ideal I of R is called a multiplication ideal if for every ideal J ⊆ I , there
exists an ideal K with J = KI . Multiplication ideals have been extensively studied; for example, see [1], [2]

and [11]. If I is a multiplication ideal, then I is locally principal [1, Theorem 1 and Page 761]. An ideal I of

R is called a quasi-principal ideal [15, Exercise 10, Page 147] (or a principal element of L(R) [19]) if it satisfies

the identities (i) (A ∩ (B : I))I = AI ∩B and (ii) (A + BI) : I = (A : I) + B, for all A, B ∈ L(R). Obviously,
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every quasi-principal ideal is a multiplication ideal. It should be mentioned that every quasi-principal ideal is
finitely generated and also a finite product of quasi-principal ideals of R is again a quasi-principal ideal [15,

Exercise 10, Page 147]. In fact, an ideal I of R is quasi-principal if and only if it is finitely generated and locally

principal (see [7, Theorem 4]) or [19, Theorem 2]). R is a π -ring if every principal ideal is a finite product of

prime ideals of R . π -rings have been extensively studied; for example, see [16]. R is said to be a Q-ring [4] if
every ideal is a finite product of primary ideals. R is said to be an almost Q-ring if RM is a Q -ring for every
maximal ideal M of R . For more informations on Q -rings and almost Q -rings, the reader is referred to [4],

[5], [13] and [14]. R is said to be a Laskerian ring [10] if every proper ideal is a finite intersection of primary
ideals. We say that R has Noetherian spectrum if R satisfies the ascending chain condition for radical ideals
[20]. It is well known that R has Noetherian spectrum if and only if every prime ideal is the radical of a finitely

generated ideal [20, Corollary 2.4]. Also it is well known that if R has Noetherian spectrum, then every ideal
has only finitely many minimal primes.

A submodule N of M is proper if N �= M . For any two submodules N and K of M , the ideal
{a ∈ R | aK ⊆ N} will be denoted by (N : K). Thus (O : M) is the annihilator of M . M is said to be a

faithful module if (O : M) is the zero ideal of R . M is said to be a multiplication module [6] if every submodule
of M is of the form IM , for some ideal I of R . A submodule N of M is said to be a multiplication submodule
if for every submodule N1 ⊆ N , there exists an ideal J of R such that N1 = JN . An R -module M is said to
be locally cyclic if MP is a cyclic RP -module for all maximal ideals P of R .

A proper submodule N of M is said to be a maximal submodule, if it is not properly contained in
any other proper submodule of M . A proper submodule N of M is a prime submodule, if for any r ∈ R

and m ∈ M , rm ∈ N implies either m ∈ N or r ∈ (N : M). A proper submodule N of M is a primary

submodule if for any r ∈ R and m ∈ M , rm ∈ N implies either m ∈ N or rn ∈ (N : M) for some positive

integer n . By a minimal prime submodule over a submodule N of M (or a prime submodule minimal over

N ), we mean a prime submodule which is minimal in the collection of all prime submodules containing N .
Minimal prime submodules over the zero submodule are simply called the minimal prime submodules. Let N

be a proper submodule of M . Then M -radical of N , denoted by
√

N , is defined as the intersection of all
prime submodules of M containg N . It is well known that maximal submodules and prime submodules exist
in multiplication modules (for details, see [9]). Also if M is a multiplication module, then for every proper

submodule N of M ,
√

N =
√

(N : M)M (see [9, Theorem 2.12]).

For general background and terminology, the reader is referred to [15].

3. Q-modules and almost Q-modules

In this section we obtain several characterizations for Q -modules and almost Q -modules. Using these
results, Noetherian Q -modules are characterized.

We shall begin with the following definitions.

Definition 1 An R -module M is said to be a Q-module if every proper submodule N of M is of the form
IM , where I is a finite product of primary ideals of R .
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Definition 2 An R -module M is said to be an almost Q-module if for any maximal ideal P of R , the RP -
module MP is a Q-module.

Note that by definition, every Q -module is a multiplication module. Also a faithful R -module M is
a Q -module if and only if M is a multiplication module and M is a Q -module in the sense of [21]. Again
note that every Q -module is an almost Q -module, but the converse need not be true. Observe that Q -rings
are Q -modules and almost Q -rings are almost Q -modules. Also cyclic modules over Dedekind domains are
examples of Q -modules.

We now prove some useful lemmas.

Lemma 1 Suppose M is a faithful multiplication R -module. If R contains only a finite number of minimal
prime ideals, then M is finitely generated.

Proof. First observe from Corollary 2.11 of [9], that the minimal prime submodules of M will be of the form
PM where P is a minimal prime ideal of R and hence the set of minimal prime submodules of M is finite.
Now the proof of Lemma 1 follows on applying Theorem 3.7 of [9]. �

Lemma 2 Suppose M is a faithful multiplication R -module. If R is a Q-ring or M is a Q-module, then M

is finitely generated.

Proof. If R is a Q -ring, then R contains only a finite number of minimal prime ideals. Suppose M is a
Q -module. Then the zero submodule is of the form (0) = IM , where I is a finite product of primary ideals
of R . As M is faithful, it follows that I is the zero ideal of R and hence R contains only a finite number of
minimal prime ideals, so by Lemma 1, M is finitely generated. �

The following theorem gives a characterization for Q -modules.

Theorem 1 Suppose M is a faithful R -module. Then R is a Q-ring and M is a multiplication R -module if
and only if M is a Q-module.

Proof. The proof of the theorem follows from Lemma 2 and [21, Theorem 3 and Theorem 4]. It should be

mentioned that the proof of Theorem 1 also follows from Lemma 2 and Theorem 3.1 of [9]. �

An R -module M is said to be a Laskerian module [10], if every proper submodule is a finite intersection
of primary submodules.

Lemma 3 Suppose M is a faithful multiplication R -module. If R is a Laskerian ring or M is a Laskerian
module, then M is finitely generated.

Proof. If R is a Laskerian ring or M is a Laskerian module, then the zero ideal of R is a finite intersection
of primary ideals and hence R contains only a finite number of minimal prime ideals. So by Lemma 1, M is
finitely generated. �
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Lemma 4 Suppose M is a faithful multiplication R -module. Then R is a Laskerian ring if and only if M is
a Laskerian module.

Proof. Assume R is Laskerian and M is a faithful multiplication module. Now by Lemma 3, M is finitely
generated. It is well known that any finitely generated module over a Laskerian ring is Laskerian. Hence we
obtain M is Laskerian. Conversely, assume that M is a faithful multiplication module and is Laskerian. Again
by Lemma 3, M is finitely generated. Thus the ring R admits a finitely generated, faithful Laskerian module
and hence R is isomorphic to a submodule of a Laskerian module and so R is Laskerian as an R -module. Thus
R is a Laskerian ring. �

It is well known that R is a Q -ring if and only if R is a Laskerian ring in which every non maximal
prime ideal is a finitely generated multiplication ideal [4, Theorem 10 and Theorem 13]. We extend this result
to multiplication modules.

Theorem 2 Suppose M is a faithful R -module. Then M is a Q-module if and only if M is a multiplication
module and M is a Laskerian module in which every non maximal prime submodule is a finitely generated
multiplication submodule.

Proof. Suppose M is a Q -module. Then by Theorem 1, R is a Q -ring, so R is a Laskerian ring in which
every non maximal prime ideal is a finitely generated multiplication ideal. By Lemma 4, M is a Laskerian
module. Note that by Lemma 3, M is finitely generated. Let N be a non maximal prime submodule. Then
(N : M) is a non maximal prime ideal, so (N : M) is a finitely generated multiplication ideal. Again by

[17, Lemma 1.4] (or [9, Corollary 1.4]), N is a finitely generated multiplication submodule. The converse part

follows from Theorem 1, Lemma 4 and [17, Lemma 1.4]. We also remark that the converse part can be easily

verified with the help of Theorem 1, Lemma 4, [9, Corollary 2.11] and [9, Theorem 3.1]. �

Lemma 5 Suppose M is a faithful and finitely generated multiplication R -module. Then R is an almost
Q-ring if and only if M is an almost Q-module.

Proof. Let P be a maximal ideal of R . Consider the RP -module MP . As M is a finitely generated
faithful multiplication R -module, it follows that MP is a faithful cyclic RP -module. So by Theorem 1, MP

is a Q -module if and only if RP is a Q -ring. Therefore R is an almost Q -ring if and only if M is an almost
Q -module. �

Lemma 6 Suppose M is a cyclic R -module. Then a submodule N of M is cyclic if and only if N = rM for
some r ∈ R .

Proof. Let M = Rx for some x ∈ M . Suppose N = rM for some r ∈ R . Let m = rx . Then Rm ⊆ N .
If m′ ∈ N , then m′ = ry for some y ∈ M . But y = r′x for some r′ ∈ R . So m′ = ry = rr′x = r′m ∈ Rm .
Therefore N = Rm .

Conversely, assume that N = Rm for some m ∈ M . Then m = rx for some r ∈ R . So N = Rm =
R(rx) = r(Rx) = rM . This completes the proof of the lemma. �
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Lemma 7 Let M be an R -module. Suppose every cyclic submodule of M is a finite intersection of primary
submodules. Then for any submodule N of M , the following statements are equivalent:

(i) N is finitely generated and locally cyclic.

(ii) N is a multiplication module.

(iii) N is locally cyclic.

Proof. It should be mentioned that Lemma 7 is Theorem 12 of [4] stated for modules. The proof of Lemma

7 is similar to the proof of [4, Theorem 12] except that (i)⇒(ii) follows from [9, Corollary 1.5] and (ii)⇒(iii)

follows from [9, Theorem 1.2]. It is useful to remark that (i)⇒(ii) and (ii)⇒(iii) are true without the assump-
tion that proper cyclic submodules of M admit primary decomposition. �

Lemma 8 Let R be an almost Q-ring. Let P be a non maximal prime ideal and let Q ⊆ P be a primary ideal
of R . Then Q is a multiple of P .

Proof. Note that P (Q :R P ) ⊆ Q . We prove Q = P (Q :R P ), by proving that for each maximal ideal

M of R , (P (Q :R P ))M = QM . First observe by [4, Lemma 11], that for any multiplicatively closed subset

S of R , (S−1Q :S−1R S−1P ) = S−1(Q :R P ). Let M be a maximal ideal of R . If P is not a subset of M ,

then (P (Q :R P ))M = PM (QM :RM PM ) = QM , since PM = RM . Let P ⊂ M . We have RM is a Q -ring

and PM is a non-maximal prime ideal of RM . Hence by [4, Lemma 5], PM is a principal ideal of RM . So

QM = PM (QM :RM PM) = (P (Q :R P ))M . �

We now establish several characterizations for almost Q -modules.

Theorem 3 Suppose M is a faithful and finitely generated multiplication R -module. Then M is an almost
Q-module if and only if every non maximal prime submodule is locally cyclic.

Proof. Let M be an almost Q -module. Then by Lemma 5, R is an almost Q -ring. So by [4, Lemma 5],
every non maximal prime ideal is locally principal. Let N be a non maximal prime submodule. As M is a
faithful and finitely generated multiplication R -module, it follows that (N : M) is a non maximal prime ideal,

so (N : M) is locally principal. Let P be a maximal ideal of R . Then NP = ((N : M)M)P = (N : M)P MP ,

so by Lemma 6, NP is a cyclic submodule of MP . Therefore N is locally cyclic.

Conversely, assume that every non maximal prime submodule is locally cyclic. Let Q be a non maximal
prime ideal of R . Then QM is a non maximal prime submodule of M . Let P be a maximal ideal of R .
Suppose Q ⊆ P . Then by Lemma 6, (QM)P = QP MP = IP MP for some principal ideal IP of RP . As MP

is a faithful cyclic RP -module, by [9, Theorem 3.1], QP = IP , so Q is locally principal and hence by [14,

Theorem 1], R is an almost Q -ring. Consequently, M is an almost Q -module. �

Theorem 4 Suppose M is a faithful multiplication R -module in which every cyclic submodule of M is a finite
intersection of primary submodules. Then M is an almost Q-module if and only if every non maximal prime
submodule is a finitely generated multiplication submodule.
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Proof. Note that by hypothesis, the zero submodule is a finite intersection of primary submodules. So M

contains only a finite number of minimal prime submodules and so by [9, Theorem 3.7], M is finitely generated.
Now the result follows from Lemma 7 and Theorem 3. �

Theorem 5 Suppose M is a faithful multiplication R -module. Suppose every principal ideal of R is a finite
intersection of primary ideals. Then M is an almost Q-module if and only if every non maximal prime
submodule is a finitely generated multiplication submodule.

Proof. (⇒) We have by hypothesis and Lemma 1, M is finitely generated. Now by Lemma 5, R is an almost

Q -ring. Let N be a non-maximal prime submodule of M . Then by [9, Corollary 2.11] and [9, Theorem 3.1],

N = PM for some non-maximal prime ideal P of R . It now follows from [4, Lemma 5] and [4, Theorem 12],

that P is a finitely generated multiplication ideal and hence from [9, Corollary 1.4], we obtain that N = PM

is a multiplication submodule. It is clear that PM is finitely generated.

Let us prove the converse. As it is well known that any multiplication module is locally cyclic [9, Theorem

1.2], it follows from Theorem 3 that M is an almost Q -module. �

Theorem 6 Suppose M is a faithful multiplication R -module. Suppose every principal ideal of R is a finite
product of primary ideals. Then M is an almost Q-module if and only if every non maximal prime submodule
is a multiplication submodule.

Proof. Note that by hypothesis, M is finitely generated. Therefore every non maximal prime submodule
is a multiplication submodule if and only if every non maximal prime ideal is a multiplication ideal. Now the
result follows from [14, Corollary 1]. �

Theorem 7 Suppose M is a faithful R -module in which every cyclic submodule is of the form IM , where I

is a finite product of primary ideals. Then M is an almost Q-module if and only if every non maximal prime
submodule is a multiplication submodule.

Proof. Note that by hypothesis and by [9, Proposition 1.1], M is a finitely generated multiplication module.
Suppose M is an almost Q -module. Then R is an almost Q -ring. Let N be a non maximal prime submodule.
Then N = PM for some non maximal prime ideal P of R . Let x ∈ N . By hypothesis, Rx = IM , where
I = Q1Q2 · · ·Qn for some primary ideals Q1, Q2, · · · , Qn of R . As Rx = IM ⊆ N = PM , it follows that
I ⊆ P , so Qi ⊆ P for some primary ideal Qi of R . Then by Lemma 8, Qi is a multiple of P , so I is a multiple
of P and hence Rx = JxN for some ideal Jx of R . Consequently, every submodule contained in N is of the
form JN for some ideal J of R and hence N is a multiplication submodule. The converse part follows from
Theorem 3. �

Lemma 9 Suppose M is a faithful multiplication R -module. Suppose dim M ≤ 2 and every submodule
generated by two elements has only finitely many minimal primes. Then R has Noetherian spectrum.
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Proof. First we show that every minimal prime submodule is the radical of a finitely generated submodule.
By hypothesis, M has only finitely many minimal primes. Let N1, N2, ..., Nn be the distinct minimal prime
submodules. If n = 1, then N1 is the radical of the zero submodule. Suppose n > 1. Then by [8, Theorem

10], N1 �⊆ n∪
i=2

Ni . Choose any x ∈ N1 such that x �∈ n∪
i=2

Ni . Let L1, L2, ..., Lm be the distinct primes minimal

over Rx . Then N1 = Lj for some j , say N1 = L1 . If m = 1, then N1 is the radical of Rx . Suppose m > 1.

Then N1 �⊆ m∪
i=2

Li . Choose any y ∈ N1 such that y �∈ m∪
i=2

Li . By hypothesis, Rx + Ry has only finitely many

minimal primes. Let L′
1, L

′
2, ..., L

′
k be the distinct primes minimal over Rx + Ry . Note that N1 = L′

j for some

j , say N1 = L′
1 . If k = 1, then N1 is the radical of Rx + Ry . Suppose k > 1. Observe that any L′

j different

from N1 contains Li properly, for some i �= 1, and each Li different from N1 , is non-minimal. So each L′
j is

maximal, for j = 2, 3, ..., k . Choose any element z ∈ N1 such that z �∈ k∪
i=2

L′
i . Now it can be easily shown that

N1 is the radical of Rx + Ry + Rz . Thus we have shown that every minimal prime submodule is the radical of
a finitely generated submodule.

Next we show that every non-minimal prime submodule is the radical of a finitely generated submodule.

Let N be a non-minimal prime submodule. Then N �⊆ n∪
i=1

Ni . Choose any x ∈ N such that x �∈ n∪
i=1

Ni . Let

L1, L2, ..., Lm be the distinct primes minimal over Rx . Then N ⊇ Lj for some j , say N ⊇ L1 . If m = 1 and

N = L1 , then N is the radical of Rx and so we are through. Suppose m ≥ 1 and L1 ⊂ N . Then N �⊆ m∪
i=1

Li .

Choose any y ∈ N such that y �∈ m∪
i=1

Li . Then Rx+Ry has only finitely many minimal primes and every prime

minimal over Rx +Ry is a maximal submodule. Therefore there exists a finitely generated submodule K such

that N is the radical of K . Finally assume that m > 1 and N = L1 . Then N �⊆ m∪
i=2

Li . Choose any y ∈ N

such that y �∈ m∪
i=2

Li . Let L′
1, L

′
2, ..., L

′
k be the distinct primes minimal over Rx + Ry . Note that N ⊇ L′

j for

some j , say N ⊇ L′
1 . Since x ∈ L′

1 and L1 = N ⊇ L′
1 , it follows that N = L1 = L′

1 . If k = 1, then N is the

radical of Rx + Ry . Suppose k > 1. Then N �⊆ k∪
i=2

L′
i and each L′

i different from N , is maximal. Choose any

element z ∈ N such that z �∈ k∪
i=2

L′
i . Then N is the radical of Rx + Ry + Rz . Thus every prime submodule is

the radical of a finitely generated submodule.

Now we show that R has Noetherian spectrum. Since M has only finitely many minimal prime sub-
modules, it follows that M is finitely generated. Let P be a prime ideal of R . Then by [9, Corollary 2.11 and

Theorem 3.1], PM is a proper prime submodule of M . So PM =
√

N for some finitely generated submodule

N of M . As M is a multiplication module, by [9, Theorem 2.12], it follows that PM =
√

N =
√

(N : M)M ,

so by [9, Theorem 3.1], P =
√

(N : M). Also by [17, Lemma 1.4], (N : M) is a finitely generated ideal and

hence R has Noetherian spectrum. �

The following theorem gives some equivalent conditions for an almost Q -module to be a Q -module.
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Theorem 8 Let M be a faithful R -module. Then the following statements are equivalent:

(i) M is a Q-module.

(ii) M is a finitely generated almost Q-module in which every submodule generated by two elements is a
finite intersection of primary submodules.

(iii) M is an almost Q-module in which every submodule generated by two elements is of the form IM ,
where I is a finite product of primary ideals of R .

(iv) M is a multiplication module in which every submodule generated by two elements has only finitely
many minimal primes and every non maximal prime submodule is a multiplication submodule.

Proof. (i)⇒(ii). Suppose (i) holds. By Lemma 2 and Theorem 1, M is a finitely generated multiplication

module. Clearly, M is an almost Q -module. By Theorem 2, M is a Laskerian module. Therefore (ii) holds.

(ii)⇒(iii). Suppose (ii) holds. As M is an almost Q -module and every Q -module is a multiplication

module, it follows that M is locally cyclic. As M is finitely generated, by [6, Lemma 2], M is a multiplication
module. Let x, y ∈ M . Then Rx +Ry = N1 ∩N2 ∩ · · ·∩Nk , where each Ni is a primary submodule of M . As
M is a multiplication module, it follows that Rx + Ry = (N1 : M)M ∩ (N2 : M)M ∩ · · · ∩ (Nk : M)M = [(N1 :

M) ∩ (N2 : M) ∩ · · · ∩ (Nk : M)]M . Let I = (N1 : M) ∩ (N2 : M) ∩ · · · ∩ (Nk : M). Note that each (Ni : M)

is a primary ideal, so (N1 : M) ∩ (N2 : M) ∩ · · · ∩ (Nk : M) is a primary decomposition of I . Without loss of

generality, assume that (N1 : M) ∩ (N2 : M) ∩ · · · ∩ (Nk : M) is a normal primary decomposition of I . As M

is a faithful finitely generated multiplication module, by Theorem 4, every non maximal prime ideal is a finitely
generated multiplication ideal. So by [3, Lemma 2], I is a finite product of primary ideals. So Rx+ Ry = IM ,

where I is a finite product of primary ideals and hence (iii) holds.

(iii)⇒(iv). By (iii) and [9, Proposition 1.1], M is a multiplication module. By (iii) and Theorem 7,

every non maximal prime submodule is a multiplication submodule. Note that by (iii), M contains only finitely
many minimal prime submodules, so M is finitely generated. Let x, y ∈ M . Then Rx + Ry = Q1Q2 · · ·QnM ,
where each Qi is a primary ideal of R . Let N be a prime submodule minimal over Rx + Ry . Then N = PM

for some prime ideal P of R . As Q1Q2 · · ·QnM ⊆ PM , by [9, Theorm 3.1], Qi ⊆ P for some i . So

Rx+Ry ⊆ √
QiM ⊆ PM . Therefore

√
QiM = PM and hence Rx+Ry has only finitely many minimal prime

submodules. Hence (iv) holds.

(iv)⇒(i). Suppose (iv) holds. By (iv), M is a finitely generated multiplication module. Also by Lemma
5 and Theorem 3, R is an almost Q -ring. So dimR ≤ 2 and so dimM ≤ 2. Again by Lemma 9, R has
Noetherian spectrum and hence every ideal has only finitely many minimal primes. Therefore by [14, Theorem

2(v)], R is a Q -ring and hence M is a Q -module. This completes the proof of the theorem. �

For any I ∈ L(R) and for any prime ideal P minimal over I , we denote PI = ∩{Q ∈ L(R) | Q is a

P -primary ideal containing I} . It can be easily seen that PI is the smallest P -primary ideal containing I . For

any I ∈ L(R), we denote I∗ = ∩{PI | P is a prime ideal minimal over I } .

Lemma 10 Suppose every non-maximal prime ideal of R is a multiplication ideal and the maximal ideals of
R are finitely generated. Let I be a quasi-principal ideal which has only finitely many minimal primes. Then I

is a finite intersection of primary ideals.
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Proof. Observe that by hypothesis, [9, Theorem 1.2] and by Cohen’s theorem, R is a locally Noetherian ring.

Note that by hypothesis and by [14, Theorem 1], R is an almost Q -ring. So by [4, Corollary 6], dimR ≤ 2.
By hypothesis, I∗ is a finite intersection of primary ideals. Suppose I is not contained in any minimal prime.
We show that I = I∗ . Let M be a maximal ideal. If I is not contained in M , then IM = I∗M . Suppose
I ⊆ M . If M is minimal over I , then IM = I∗M . Suppose M is not minimal over I . Then rank M = 2,
so by [4, Corollary 6], RM is a π -domain. As I is locally principal and RM is a π -domain, it follows that

IM = I∗M (see the proof of [16, Theorem 1.2] or [5, Theorem 3]). This shows that IM = I∗M for all maximal
ideals containing I and hence I = I∗ .

Now assume that P1, P2, ..., Pm be the primes minimal over I . Let P1, P2, ..., Pt be the non-maximal
minimal primes and let Pt+1, Pt+2, ..., Pm be the primes which are either maximal or rank one non-maximal
primes. We show that, for each i ∈ {1, 2, ..., t}, the ideal ((I +Pi(Pi)I) : (Pi)I) has only finitely many minimal

primes. Let i ∈ {1, 2, ..., t} . Since Pi is a multiplication ideal, by Lemma 9(i) of [14], Pi is properly contained in

the ideal ((I+Pi(Pi)I ) : (Pi)I). Since dimR ≤ 2, it follows that every prime minimal over ((I+Pi(Pi)I) : (Pi)I)

is either a non-minimal maximal ideal or a rank one non-maximal prime. As every non-maximal prime is a
multiplication ideal, by [2, Theorem 3], the rank one non-maximal primes are quasi-principal ideals. By hy-

pothesis, the minimal primes over ((I + Pi(Pi)I) : (Pi)I) are finitely generated and so by [14, Lemma 5], the

ideal ((I + Pi(Pi)I) : (Pi)I) has only finitely many minimal primes. Thus the ideals ((I + Pi(Pi)I) : (Pi)I)

for i = 1, 2, ..., t have only finitely many minimal primes, say M1, M2, ..., Mn . Again note that these are either
non-minimal maximal ideals or rank one non-maximal prime ideals. Without loss of generality, assume that
M1, M2, ..., Mk are rank one maximal prime ideals and Mk+1, Mk+2, ..., Mn are either rank two maximal ideals
or rank one non-maximal prime ideals. Let M be any maximal ideal different from M1, M2, ..., Mk . We claim
that IM = I∗M . Obviously, if I is not contained in M , then IM = I∗M . Suppose I ⊆ M . If either M is
minimal over I or rank M = 2, then IM = I∗M . Suppose M is not minimal over I and rank M = 1. Then
M is different from M1, M2, ..., Mn , so ((I + Pi(Pi)I) : (Pi)I) �⊆ M for i = 1, 2, ..., t and hence by Nakayama’s

lemma ((Pi)I)M = IM for all Pi ⊆ M (see also the proof of [14, Lemma 10(i)]). Therefore ((Pi)I)M = IM or

((Pi)I)M = RM for i = 1, 2, ..., t . Consequently, IM = I∗M . If IMi = I∗Mi for i = 1, 2, ..., k , then IM = I∗M

for all maximal ideals, so I = I∗ . Suppose IMi �= I∗Mi for i = 1, 2, ..., l (1 ≤ l ≤ k ). As RMi is a Laskerian

ring, it follows that there exist Mi -primary Qi such that IMi = (I∗)Mi ∩ (Qi)Mi for i = 1, 2, ..., l . Then

IM = (I∗ ∩ Q1 ∩ Q2 ∩ ... ∩ Ql)M for all maximal ideals M of R . Therefore I = I∗ ∩ Q1 ∩ Q2 ∩ ... ∩ Ql and
hence I is a finite intersection of primary ideals. This completes the proof of the lemma. �

Lemma 11 Suppose M is a faithful cyclic R -module. Let I be an ideal of R and N = IM be a submodule of
M . Then N = Rx + Ry for some x, y ∈ M if and only if I = (a) + (b) for some a, b ∈ R.

Proof. The proof of the lemma follows from Lemma 6 and [9, Theorem 3.1]. �

We now establish some equivalent conditions for Noetherian Q -modules.

Theorem 9 Let M be a faithful R -module. Then the following statements are equivalent:

(i) M is a Noetherian Q-module.
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(ii) M is a locally Noetherian Q-module.

(iii) The maximal submodules are locally finitely generated and every submodule generated by two elements
is of the form IM , where I is a finite product of primary ideals of R .

(iv) M is an almost Q-module in which the maximal submodules are finitely generated and every cyclic
submodule is of the form IM , where I is a finite product of primary ideals of R .

Proof. (i)⇒(ii)⇒(iii) is obvious.

(iii)⇒(iv). Suppose (iii) holds. By (iii), M is a finitely generated multiplication module. Let P be a

maximal ideal of R . Consider the RP -module MP . Then PM is a maximal submodule of M . By (iii), (PM)P

is finitely generated in MP , so by [17, Lemma 1.4], ((PM)P : MP ) = (PM : M)P = PP is finitely generated in

RP . Therefore P is a locally finitely generated ideal of R . Let I′ be an ideal of RP generated by two elements
of RP . Then I′ is of the form (x)P +(y)P for some x, y ∈ R . Let I = (x)+(y). Then by Lemma 11, (IM)P is

of the form NP , where N is a submodule generated by two elements of M . So by hypothesis, N = JM , where
J is a finite product of primary ideals of R . Therefore (IM)P = (JM)P = JP MP , so IP = JP and hence

IP is a finite product of primary ideals of RP . So by [14, Lemma 13], RP is a Noetherian Q -ring and hence
by Theorem 8, M is a Q -module and so R is a Q -ring. As the maximal ideals are locally finitely generated,
by [14, Lemma 14], the maximal ideals are finitely generated and hence the maximal submodules are finitely

generated. Therefore (iv) holds.

(iv)⇒(i). Suppose (iv) holds. By (iv), M is a finitely generated multiplication module. Also by hy-
pothesis, the maximal ideals are finitely generated. Again by Theorem 7, non maximal prime submodules are
multiplication submodules, so non maximal prime ideals are multiplication ideals. Let x ∈ M . Then by (iv)

and [9, Theorem 3.1], (Rx : M) is a finite product of primary ideals, so (Rx : M) has only finitely many

minimal primes. Note that it follows from [9, Theorem 3.1] that the ideal (Rx : M) is finitely generated.

As M is a faithful locally cyclic module, we have from Lemma 6 and [9, Theorem 3.1], that (Rx : M) is

locally cyclic. Thus (Rx : M) is a quasi-principal ideal. So by Lemma 10, (Rx : M) is a finite intersec-

tion of primary ideals and hence Rx = (Rx : M)M is a finite intersection of primary submodules. Now
by Theorem 4, non maximal prime submodules are finitely generated and so every non-maximal prime ideal
of R is finitely generated. Therefore every prime ideal is finitely generated and hence by Cohen’s Theorem,
R is Noetherian. As any finitely generated module over any Noetherian ring is Noetherian, it follows that M

is Noetherian. Hence by Theorem 8, M is a Noetherian Q -module. This completes the proof of the theorem. �

The authors wish to thank the referee for his helpful comments and suggestions.
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