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Abstract

Following J.S. Rose, a subgroup H of a group G is called contranormal if G = HG . In a certain

sense, contranormal subgroups are antipodes to subnormal subgroups. It is well known that a finite group is

nilpotent if and only if it has no proper contranormal subgroups. However, for infinite groups this criterion is

not valid. There are examples of non-nilpotent infinite groups whose subgroups are subnormal; in particular,

these groups have no contranormal subgroups. Nevertheless, for some classes of infinite groups, the absence

of contranormal subgroups implies nilpotency of the group. The present article is devoted to the search of

such classes. Some new criteria of nilpotency in certain classes of infinite groups have been established.
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groups.

There is a variety of well-known criteria of nilpotency in finite groups. One of them states that a finite
group is nilpotent if and only if every maximal subgroup is normal. Since each proper subgroup lies in some
maximal subgroup, this criterion can be reformulated: A finite group G is nilpotent if and only if for every
proper subgroup H its normal closure HG is a proper subgroup. Following J.S. Rose [10], a subgroup H of a

group G is called contranormal if HG = G . Taking this into account, we can reformulate this criterion in the
following way: A finite group G is nilpotent if and only if G does not include proper contranormal subgroups.

It follows from the definition that the contranormal subgroups are in some sense antipodes to subnormal
and descendant subgroups. On the other hand, the contranormal subgroups are in close connection with the
descendant subgroups.

Let G be a group, H be a subgroup of G and X be a subset of G . Put

HX =
〈
hx = x−1hx | h ∈ H, x ∈ X

〉
.

In particular, HG (the normal closure of H in G) is the smallest normal subgroup of G containing H .
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Starting from the normal closure of H, we can construct the normal closure series of H in G ,

HG = H0 ≥ H1 ≥ ...Hα ≥ Hα+1 ≥ ...Hγ,

by the following rule: Hα+1 = HHα for every α < γ, Hλ =
⋂

μ<γ
Hμ for a limit ordinal λ . The term Hα of this

series is called the αth normal closure of H in G and will be denoted further by HG,α . The last term Hγ of

this series is called the lower normal closure of H in G and will be denoted by HG,∞ .

In Finite Group Theory the subgroup HG,∞ is called the subnormal closure of H in G . The rationale
for this is the following. In a finite group G, the normal closure series of every subgroup H is finite, and
HG,∞ is the smallest subnormal subgroup of G containing H . The normal closure series play an important
role in certain problems of Group Theory. As we can see, every subgroup H is contranormal in its lower normal
closure. In particular, a subgroup H is contranormal in G if its lower normal closure HG,∞ coincides with G .
Conversely, a subgroup H is descendant in G if H coincides with its lower normal closure HG,∞ . Properties
of descendant subgroups and their influence on the structure of a group have been studied only superficially.
With the exception of subnormal subgroups (an important particular case of descendant subgroups), we have
no significant information regarding descending subgroups. A subnormal subgroup is exactly a descending
subgroup having finite normal closure series. The subnormal subgroups form one of the most important families
of subgroups in a group. These subgroups have been studied very successfully for a very long period of time.
Their investigation have brought about many interesting and meaningful results.

As we have seen above, the absence of contranormal subgroups in a finite group implies its nilpotency.
The question about an analog of this criterion for infinite groups is very natural. Some classes of infinite groups
without proper abnormal subgroups have been considered in a series of articles [5, 9, 7, and 8]. Abnormal
subgroups form an important subclass of the class of contranormal subgroups. Recall that a subgroup H is
abnormal in a group G if g ∈ 〈Hg, H〉 for every element g ∈ G. In the articles mentioned above, the authors
proved that in the considered classes of groups the absence of abnormal subgroups implies local nilpotency of
groups. However, it is worth mentioning that there are locally nilpotent groups having proper contranormal
subgroups. For example, let G = K � 〈d〉 , where K is a Prüfer 2-group, d be an element of order 2 and

xd = x−1 for each x ∈ K . The group G is non-nilpotent but hypercentral, and 〈d〉 is a proper contranormal
subgroup of G . This example shows that the absence of contranormal subgroups is a stronger condition than
the absence of abnormal subgroups. However, in general, this condition does not imply nilpotency. In fact, there
exist non-nilpotent groups all subgroups of which are subnormal. The first such example has been constructed by
H. Heineken and I.J. Mohamed [4]. Nevertheless, for some classes of infinite groups the absence of contranormal
subgroups does imply nilpotency of a group. The current article is dedicated to the search of such classes. In
passing, in certain classes of infinite groups some new criteria of nilpotency were established.

Here are our main results.

Theorem A Let G be group and H be a normal soluble-by-finite subgroup such that G/H is nilpotent.
Suppose that H satisfies Min−G. If G has no proper contranormal subgroups, then G is nilpotent.

Corollary A1 Let G be a soluble-by-finite group satisfying the minimal condition on normal subgroups. If G

has no proper contranormal subgroups, then G is nilpotent.
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Corollary A2 Let G be a group and H be a normal Chernikov subgroup of G . Suppose that G/H is
nilpotent. If G has no proper contranormal subgroups, then G is nilpotent.

In particular, a Chernikov group without proper contranormal subgroups is nilpotent.

Theorem B Let G be a group and C be a normal subgroup of G such that G/C is nilpotent. Suppose that
C has a finite series of G-invariant subgroups

〈1〉 = C0 ≤ C1 ≤ ... ≤ Cn = C,

whose factors Cj/Cj−1 , 1 ≤ j ≤ n , satisfy one of the following conditions:

(i) Cj/Cj−1 is finite;

(ii) Cj/Cj−1 is hyperabelian and minimax;

(iii) Cj/Cj−1 is hyperabelian and finitely generated;

(iv) Cj/Cj−1 is abelian and satisfies Min-G .

If G has no proper contranormal subgroups, then G is nilpotent.

Corollary B1 Let G be a group that has a finite series of G-invariant subgroups

〈1〉 = C0 ≤ C1 ≤ ... ≤ Cn = G

whose factors Cj/Cj−1 , 1 ≤ j ≤ n , satisfy one of the following conditions:

(i) Cj/Cj−1 is finite;

(ii) Cj/Cj−1 is hyperabelian and minimax;

(iii) Cj/Cj−1 is hyperabelian and finitely generated;

(iv) Cj/Cj−1 is abelian and satisfies Min-G .

If G has no proper contranormal subgroups, then G is nilpotent and minimax.

Corollary B2 Let G be a group and let C be a normal subgroup of G such that G/C is nilpotent. Suppose
that C is a hyperabelian minimax subgroup. If G has no proper contranormal subgroups, then G is nilpotent.
In particular, if G is a hyperabelian minimax group without proper contranormal subgroups, then G is nilpotent.

Corollary B3 Let G be a group and let C be a normal subgroup of G such that G/C is nilpotent. Suppose
that C is a hyperabelian finitely generated subgroup. If G has no proper contranormal subgroups, then G is
nilpotent. In particular, if G is hyperabelian finitely generated group without proper contranormal subgroups,
then G is nilpotent.

1. Groups having a normal subgroup satisfying min-G

Let G be a group. Given x, g ∈ G , we put

[x,1 g] = [x, g] and [x,n+1 g] = [[x,n g], g] for n ≥ 1.

We start with some auxiliary results.
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Lemma 1.1 Let G be a group, and let A be an abelian normal subgroup of G . If CG(A) �= gCG(A) ∈
ζ(G/CG(A)) , then for any x ∈ G , a ∈ A and n ∈ N we have

[xa,n g] = [x,n g][a,n g].

Proof. Since [x, g] ∈ CG(A), we have [xa, g] = [x, g]a[a, g] = [x, g][a, g] . The case n = 1 is proved. Suppose
that n > 1, and we have already proved that

[xa,n−1 g] = [x,n−1 g][a,n−1 g].

Applying a fundamental commutator identity, we obtain

[xa,n g] = [[x,n−1 g], g] = [[x,n−1 g][a,n−1 g], g] =

([a,n−1 g]−1[[x,n−1 g], g][a,n−1 g])[[a,n−1 g], g] = ([a,n−1 g]−1[x,n g][a,n−1 g])[a,n g].

Since A is normal in G , [a,n−1 g] ∈ A . Furthermore, the choice of the element g justifies the inclusion
[x, g] ∈ CG(A). It follows that [x,n g] ∈ CG(A), so that

([a,n−1 g]−1[x,n g][a,n−1 g]) = [x,n g],

and hence
[xa,n g] = [x,n g][a,n g].

�

Lemma 1.2 Let G be a group and A be a normal abelian subgroup of G . If g ∈ G, a ∈ A, n ∈ N , then

[a−1,n g] = [a,n g]−1.

Proof. We have
[a, g]−1 = g−1a−1ga = a−1ag−1a−1ga = a−1[a−1, g]a.

Since A is normal in G , [a−1, g] ∈ A . Then a−1[a−1, g]a = [a−1, g] , because A is abelian. Suppose that n > 1
and we have already proved the identity

[a−1,n−1 g] = [a,n−1 g]−1.

Since A is abelian, we have

[a−1,n g] = [[a−1,n−1 g], g] =

= [[a,n−1 g]−1, g] = [a−1,n−1 g]−1[[a,n−1 g], g]−1[a−1,n−1 g] = [a,n g]−1.

�
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Let G be a group and n a positive integer. Define the left n−Engelizer EG,n(g) of an element g ∈ G

by the rule

EG,n(g) = {x ∈ G | [x,n g] = 1}.

Observe, that in general the subset EG,n(g) is not a subgroup.

If G is a nilpotent group then we denote the nilpotency class of G by ncl(G).

Lemma 1.3 Let G be a group and let g be an element of G such that [G, g] is nilpotent and ncl([G, g]) = k .
Then for each n ∈ N there exists a number m = m(n, k) , depending only on k and n , such that 〈EG,n(g)〉 ⊆
EG,m(g) .

Proof. We will apply the arguments of the proof of Corollary 3* of [11]. We will provide some specific
concretization of the situation. Let x, y ∈ EG,n(g), so that [x,n g] = 1 = [y,n g] , and put L = 〈x, y, g〉 and
D = [L, g] . It follows that D is nilpotent of class at most k . If h ∈ L , then Lemma 4 of [11] implies

[h,n g] ∈ [D, D] . Therefore 〈g〉L/[D, D] is nilpotent of class at most n . Since D is nilpotent of class at most

k , Theorem 7 of [3] implies that 〈g〉L is nilpotent of class at most n
(
k+1
2

)
−

(
k
2

)
= t(n, k). Since [h, g] ∈ 〈g〉L ,

[h,m g] = 1, where m = m(n, k) = t(n, k) + 1. It follows that h ∈ EG,m(g). �

Proposition 1.4 Let G be a group and A be a normal abelian subgroup of G , B a G−invariant subgroup
of A and let g be an element of G such that CG(B) �= gCG(B) ∈ ζ(G/CG(B)) . Suppose that G satisfies the
following conditions:

(1) G/A is nilpotent;

(2) [G, g] is nilpotent;

(3) there is a positive integer k such that [A,k g] ≤ B ;

(4) there is a positive integer r such that D = [B,r g] = [B,r+1 g] �= 〈1〉 .
Then there exists a subgroup L of G such that G = LD and L∩B ⊆ EG,m(g) for some positive integer

m, and L ∩ D is a proper G−invariant subgroup of D .

Proof. We observe that condition (4) implies D = [D, g]. Since this is not possible for a nilpotent group,
we can conclude that G is not nilpotent. Let x be an arbitrary element of G . Then the choice of g implies
[x, g] ∈ CG(B). By condition (1) G/A is nilpotent, so there is a positive integer n such that [x,n g] ∈ A .
Condition (3) shows that [x,n+k g] ∈ B . Applying condition (4), we obtain that [x,n+k+r g] ∈ D . Put
t = n + k + r , then [x,t g] = a for a suitable element a ∈ D . The equation [D, g] = D implies that there is an
element a1 ∈ D such that a = [d1, g] . By the same reasons, d1 = [d2, g] for some element d2 ∈ D . Applying
ordinary induction we come to an element dt ∈ D such that a = [dt,t g] . Thus

[x,t g] = a = [dt,t g].

By Lemma 1.1 we obtain that

[xd−1
t ,t g] = [x,t g][d−1

t ,t g].
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Lemma 1.2 implies that [d−1
t ,t g] = [dt,t g]−1 , and therefore

[xd−1
t ,t g] = [x,t g][dt,t g]−1;

so we come to the equation

[xd−1
t ,t g] = 1.

This equation justifies that the element xd−1
t belongs to the left t−Engelizer EG,t(g) of the element g .

Put L = 〈EG,t(g)〉 . Then xd−1
t ∈ L and x ∈ DL . Since x is an arbitrary element of G , the equation G = DL

is valid.

By condition (2) [G, g] is nilpotent. Then by Lemma 1.3 there exists a positive integer m such that
L = 〈EG,t(g)〉 ⊆ EG,m(g). In particular, D ∩ L ⊆ EG,m(g). Suppose that D ∩ L = D . Then D has the finite
series

D = D0 ≥ D1 = [D, g] ≥ [[D, g], g] ≥ ... ≥ [D,m g] = 〈1〉 .

In particular, this shows that D �= [D, g] . This contradiction proves that D ∩ L is a proper subgroup of
D . Obviously, D ∩ L is a G− invariant subgroup. �

Corollary 1.5 Let G be a group and A be a normal abelian subgroup of G , B be a G−invariant subgroup
of G . Suppose that G satisfies the following conditions:

(1) G/A is nilpotent;

(2) A has the series of G-invariant subgroups

〈1〉 = B0 ≤ B1 ≤ ... ≤ Bn = A

such that the centralizers CG(Bj/Bj−1) ≥ CG(B1) , 2 ≤ j ≤ n , and CG(B1) is nilpotent;

(3) A satisfies Min−G .

Suppose that g is an element of G such that CG(B1) �= gCG(B1) ∈ ζ(G/CG(B1)) . If G has no proper
contranormal subgroups, then there is a positive integer t such that [A,t g] = 〈1〉 . In particular, the subgroup
〈A, g〉 is nilpotent.

Proof. Put U = Bn−1 . Since gCG(B1) ∈ ζ(G/CG(B1)) and CG(A/U) ≥ CG(B1), gCG(A/U) ∈
ζ(G/CG(A/U)). By the choice of element g the subgroups [A/U,n gU ] are G− invariant for all n ∈ N .
Since A satisfies Min−G , there is a positive integer k such that D/U = [A/U,k gU ] = [A/U,k+1 gU ]. Suppose
that D/U �= 〈1〉 . By the choice of element g, [G, g] is nilpotent, thus we may apply Proposition 1.4. By this
Proposition G/U includes a subgroup L/U such that G/U = (D/U)(L/U) and D/U ∩ L/U �= D/U . Hence
G = DL . In particular, L is a proper subgroup. Furthermore, as we can see from the proof of Proposition 1.4,
gU ∈ L/U . Since D = [D, g] , for each element a ∈ D there is an element b ∈ D such that a = b−1g−1bg .

It follows that b−1g−1b = ag−1 . This equation shows that D ≤ LG . Together with G = DL it justifies that
G = LG . In other words, L is a proper contranormal subgroup of G . This is impossible. The contradiction
proves that D = U . In other words, [A,k g] ≤ Bn−1 .
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Put V = Bn−2 . Since gCG(B1) ∈ ζ(G/CG(B1)) and CG(Bn−1/Bn−2) ≥ CG(B1), gCG(U/V ) ∈
ζ(G/CG(U/V )). By the choice of element g, the subgroups [U/V,n gV ] are G− invariant for all n ∈ N . Since
A satisfies Min−G , there is a positive integer s such that W/V = [U/V,s gV ] = [U/V,s+1 gV ] . Suppose that
W/V �= 〈1〉 . By the choice of element g , [G, g] is nilpotent and we may apply Proposition 1.4. Contradiction.
Therefore W = V . In other words, [A,k+s g] ≤ Bn−2 . Repeating similar arguments, after finitely many steps
we come to a positive integer t such that [A,t g] = 〈1〉 . �

Theorem 1.6 Let G be a group and A be a normal abelian subgroup of G . Suppose that A satisfies Min−G

and G/A is nilpotent. If G has no proper contranormal subgroups, then G is nilpotent.

Proof. Put C = CG(A). Since G/A is nilpotent, C is nilpotent too. If G = C , then all is proved. Therefore
we may suppose that G �= C . In the center ζ(G/C) we choose a non-identity element g1C . Corollary 1.5 shows
that the subgroup 〈A, g1〉 is nilpotent. Let

〈1〉 = Z0 ≤ Z1 ≤ ... ≤ Zn = A

be the upper 〈g1〉-central series of A , that is, Z1 = CA(g), Zj+1/Zj = CA/Zj
(g), 1 ≤ j ≤ n − 1.

The choice of element g1 and the fact that A is abelian imply that the mapping φ : a −→ [a, g1], a ∈ A ,
is an endomorphism of A . Moreover, it is a G−endomorphism of A . Indeed, for each x ∈ G, a ∈ A we have
φ(a)x = [a, g1]x = [ax, gx

1 ] . The inclusion g1C ∈ ζ(G/C) implies that gx
1 = g1c for some element c ∈ C . Since

the choice of c implies [ax, c] = 1 and [ax, g1]c = [ax, g1] we obtain

[ax, gx
1 ] = [ax, g1c] = [ax, c][ax, g1]c = [ax, g1] = φ(ax).

It follows that Z2/Z1 is G− isomorphic to some G -invariant subgroup of Z1 . In particular, if x ∈ CG(Z1), then
x ∈ CG(Z2/Z1). In other words, CG(Z1) ≤ CG(Z2/Z1). By the same reason, CG(Z2/Z1) ≤ CG(Z3/Z2), and
hence CG(Z1) ≤ CG(Z3/Z2). Using the same arguments we obtain that CG(Z1) ≤ CG(Zj+1/Zj), 1 ≤ j ≤ n−1.
If x∈ CG(Z1), then x acts trivially in all factors of series

〈1〉 = Z0 ≤ Z1 ≤ ... ≤ Zn = A.

In other words, the last series is a central series for the subgroup CG(Z1). Since CG(Z1)/A is nilpotent, it
follows that CG(Z1) is a nilpotent subgroup.

If G = CG(Z1), then all is proved. Therefore assume that G �= CG(Z1). In the center ζ(G/CG(Z1)) we
choose a non-identity element g2CG(Z1). Since the subgroup CG(Z1) is nilpotent, we may apply Corollary 1.5.
This Corollary shows that the subgroup 〈A, g2〉 is nilpotent, in particular, 〈Z1, g2〉 is nilpotent too. Let

〈1〉 = Z10 ≤ Z11 ≤ ... ≤ Z1m = Z1

be the upper 〈g2〉-central series of Z1 . We observe that the selection of g2 implies that Z1 �= Z11 . Since Zj+1/Zj

is G -isomorphic to some G− invariant subgroup of Z1 , we obtain that Zj+1/Zj has finite 〈g2〉−central series

Zj = Zj0 ≤ Zj1 ≤ ... ≤ Zjm = Zj+1, 1 ≤ j ≤ n − 1.
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Using the above arguments we obtain the inclusion CG(Z11) ≤ CG(Z1 j+1/Z1j), 1 ≤ j ≤ m − 1. In turn, it
follows that CG(Z11) ≤ CG(Zk j+1/Zkj),1 ≤ j ≤ m − 1, 2 ≤ k ≤ n − 1. In other words, if x ∈ CG(Z1), then
x acts trivially in all factors Zk j+1/Zk j, 1 ≤ j ≤ m − 1, 1 ≤ k ≤ n − 1. This means that A has a finite
CG(Z11)−central series. Since CG(Z11)/A is nilpotent, CG(Z11) is nilpotent.

If G = CG(Z11), then all is proved. Therefore assume that G �= CG(Z11). In the center ζ(G/CG(Z11))
we choose a non-identity element g3CG(Z11). Repeating the above arguments we obtain that Z11 has an
upper 〈g2〉−central series, so that Z11 �= Z11 ∩ CA(g3) = Z111 . Thus we obtain the strictly descending se-
ries Z1 > Z11 > Z111 . Observe that the subgroups of this series is G− invariant. If G = CG(Z111), then
all is proved. If G �= CG(Z111), we can continue the above process and obtain the strictly descending series
Z1 > Z11 > Z111 > Z1111 of G− invariant subgroups. Since A satisfies Min−G , this process is finite. Hence
after finitely many steps we obtain that G is nilpotent. �

Corollary 1.7 Let G be a group and H be a normal subgroup of G . Suppose that H has a finite series of
G−invariant subgroups

〈1〉 = A0 ≤ A1 ≤ ... ≤ An = H

such that Aj+1/Aj is abelian and satisfies Min−G for every j , 0 ≤ j ≤ n−1 . Assume that G/H is nilpotent.
If G has no proper contranormal subgroups, then G is nilpotent.

Corollary 1.8 Let G be a polynilpotent group satisfying minimal condition for normal subgroups. If G has
no proper contranormal subgroups, then G is nilpotent.

Corollary 1.9 Let G be a group and H be a normal subgroup of G such that G/H is nilpotent. Suppose
that H has a finite series of G−invariant subgroups

〈1〉 = A0 ≤ A1 ≤ ... ≤ An = H

such that Aj+1/Aj is abelian and G−simple for every j , 0 ≤ j ≤ n − 1 . If G has no proper contranormal
subgroups, then G is nilpotent.

Corollary 1.10 Let G be a Chernikov group and let D be a divisible part of G . If G has no proper
contranormal subgroups, then D ≤ ζ(G) and G/D is a finite nilpotent group.

Proof. A characteristic subgroup D is abelian and satisfies Min. Since G/D is a finite group without proper
contranormal subgroups, G/D is nilpotent. Theorem 1.6 implies that G is nilpotent. Now we recall that in a
nilpotent Chernikov group the center includes a divisible part (see, for example, [1, Corollary 1.7]). �

Proposition 1.11 Let G be a group and K be a finite normal subgroup of G . Suppose that G/K is nilpotent.
If G has no proper contranormal subgroups, then G is nilpotent.

Proof. Put C = CG(K). Then G/C is finite. Since the finite group G/C does not include proper con-
tranormal subgroups, G/C is nilpotent. By the isomorphism K/(K ∩ C) ∼= KC/C ≤ G/C and the inclusion
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K ∩C ≤ ζ(K), K is nilpotent. Being finite K has a finite series of G− invariant subgroups, whose factors are
abelian and G−simple. Applying Corollary 1.9 we obtain that G is nilpotent. �

Corollary 1.12 Let G be a group and H be a normal Chernikov subgroup of G . Suppose that G/H is
nilpotent. If G has no proper contranormal subgroups, then G is nilpotent.

Proof of Theorem A This Theorem is an immediate consequence of Corollary 1.7 and Proposition 1.11. �

We observe, that an analogy of Theorem 1.6 for the condition Max−G is not valid. The following example
justifies it.

Let R = Z2∞ be the ring of 2−adic numbers and A be its additive group, U = U(Z2∞). Then U is
isomorphic to Z/2Z × H , where H ∼= A (see, for example, [2, § 128]). Every element of R has a form 2nu

where u ∈ U . It follows that the ZH -submodule of R , generated by 1, coincides with A . Moreover, every ZH -
submodule of A coincides with some ideal of a ring R , that is, has a form 2nA for some positive integer n . Let
G be a natural semidirect product of A and H . Clearly, G is a non-nilpotent group and CG(A) = A . Choose
in A a non-identity G− invariant subgroup K . By the above arguments, A/K is a cyclic 2−group. Since
the automorphisms group of cyclic 2−group is a 2−group, it is worth nothing to see that G/K is nilpotent.

Suppose that G has a proper contranormal subgroup L . Since G/A is abelian, (LA/A)G/A = LGA/A = LA/A .

The equation LG = G shows that LA = G . If D = L ∩ A �= 〈1〉 , then clearly D is a G− invariant subgroup.

We proved above that A/D is nilpotent. On the other hand, the equation LG = G implies LG/D = G/D .
For a nilpotent group this means that L/D = G/D or L = G . Suppose now that L ∩ A = 〈1〉 . In particular,
L is abelian. Consider the factor-group G/B where B = 2A . It includes a normal subgroup A/B of order 2.
Then A/B ≤ ζ(G/B). It follows that G/B = A/B � (LB/B) = A/B × (LB/B), so G/B is abelian. It follows

that LGB/B = LB/B is a proper subgroup of G/B . Therefore LG is also a proper subgroup of G . Hence G

has no proper contranormal subgroups. As we see above, every a G− invariant subgroup of A has finite index
in A , in particular, A satisfies Max −G .

2. Groups having a normal subgroup similar to minimax

A group G is said to be minimax if G has a finite subnormal series whose factors satisfy the condition Min
(the minimal condition for all subgroups) or the condition Max (the maximal condition for all subgroups). If A

is an abelian minimax group, then A includes a finitely generated subgroup B such that A/B is a Chernikov
group. Therefore a soluble minimax group has a finite subnormal series whose factors are abelian and either
are finitely generated or Chernikov groups.

If G is a group then denote by Π(G) the set of all prime divisors of orders of all elements of G

Lemma 2.1 Let G be a group and A be a normal abelian minimax torsion-free subgroup of G . Suppose that
G/A is nilpotent. If G has no proper contranormal subgroups, then G is nilpotent.

Proof. Being minimax A includes a free abelian subgroup B such that A/B is Chernikov. In particular, the
set Π(A/B) is finite. Let p be a prime such that p ∈ Π(A/B). Then B/Bp is the Sylow p′−subgroup of A/Bp ,
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therefore A/Bp = B/Bp ×C/Bp where C/Bp is the Sylow p−subgroup of A/Bp . In particular, A/C is a non-
identity elementary abelian p−group. It follows that A �= Ap , moreover Ap ≤ C thus Ap ∩ B ≤ C ∩ B = Bp .
In turn, the following inclusion follows:

(
⋂

p/∈Π(A/B)

Ap) ∩ B =
⋂

p/∈Π(A/B)

(Ap ∩ B) ≤
⋂

p/∈Π(A/B)

Bp = 〈1〉 .

Since A/B is periodic and A is torsion-free, this means that
⋂

p/∈Π(A/B)

Ap = 〈1〉 . Consider the factor-

group G/Ap . Since A is minimax, then A has finite 0−rank. Let r0(A) = k . The factor group A/Ap is finite,

moreover |A/Ap| ≤ pk . By Proposition 1.11, G/Ap is nilpotent. Since A/Ap is a normal finite p−subgroup

of a nilpotent group G/Ap and |A/Ap| ≤ pk , [A,k G] ≤ Ap . Recall that this is valid for each p /∈ Π(A/B),
therefore

[A,k G] ≤
⋂

p/∈Π(A/B)

Ap = 〈1〉 .

This shows that the hypercenter of G having a natural number k includes A . Since G/A is nilpotent,
it follows that G is nilpotent. �

Corollary 2.2 Let G be a group and A be a normal soluble minimax subgroup of G . Suppose that G/A is
nilpotent. If G has no proper contranormal subgroups, then G is nilpotent.

Proof. Being soluble A has a series of G− invariant subgroup whose factors are abelian. Since every periodic
minimax abelian group is Chernikov, A has a series of G− invariant subgroup whose factors either are abelian
minimax torsion-free or abelian Chernikov group. Now we can apply Corollary 1.12 and Lemma 2.1. �

Corollary 2.3 Let G be a group and A be a normal hyperabelian minimax subgroup of G . Suppose that G/A

is nilpotent. If G has no proper contranormal subgroups, then G is nilpotent.

Since a hyperabelian group with Max clearly polycyclic, and hyperabelian group with Min is Chernikov
[1, Theorem 1.3], we can conclude that a hyperabelian minimax group is soluble.

Corollary 2.4 Let G be a group and K be a normal finitely generated hyperabelian subgroup of G . Suppose
that G/K is nilpotent. If G has no proper contranormal subgroups, then G is nilpotent.

Proof. Let H be a normal subgroup of K having finite index. Let |K/H | = t . Then Kt ≤ H . Clearly
the subgroup Kt is G− invariant. Since K is soluble and finitely generated and K/Kt is bounded, K/Kt is
finite. By Proposition 1.11 the factor-group G/Kt is nilpotent, in particular, K/Kt is nilpotent. Thus every
finite factor-group of K is nilpotent. By a result due to D. Robinson (see, for example, [6, Theorem 13.8]), K

is nilpotent. Being finitely generated K is minimax, so that we may apply Corollary 2.3. �

Proof of Theorem B This result follows directly from Corollary 1.7, Proposition 1.11 and Corollaries 2.3
and 2.4. �
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