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Some inequalities concerning the rate of growth of polynomials

Abdullah Mir, K. K. Dewan and Naresh Singh

Abstract
n
In this paper we consider a class of polynomials p(z) = ao + >_ av2”, t > 1, not vanishing in |z| < k,
v=t

k > 1 and investigate the dependence of ‘m‘ax |[p(Rz) — p(2)| on ‘m‘ax |p(2)|. Our result not only generalizes
z|=1 z|=1

some polynomial inequalities, but also a variety of interesting results can be deduced from it by a fairly

uniform procedure.
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1. Introduction and statement of results

Let p(z) be a polynomial of degree atmost 7, then according to a famous result known as Bernstein’s
inequality (for reference, see [12, p. 531] or [14]),
max [p'(2)| < nmax |p(z)], (1)
|z]=1 |z]=1
whereas concerning the maximum modulus of p(z) on a large circle |z| = R > 1, we have (for reference, see
[12, p. 442])
max |p(z)| < R" max [p(z)| . (2)
|z|=R |z|=1
If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then inequalities (1) and

(2) can be sharpened. In fact, if p(z) # 0 in |z| < 1, then (1) and (2) can respectively be replaced by

max [p/(2)] < 2 max |p(z 3
s/ (2)| < 5 max (=) 3)
and
R™+1
Inllgyp(zns( - >1|fn|21>§|p(2)|, R>1. (1)
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Inequality (3) was conjectured by Erdos and later verified by Lax [10], whereas Ankeny and Rivlin [1] used (3)
to prove (4).
As an extension of (3) Malik [11] verified that if p(z) does not vanish in |z| <k, k > 1, then

, n
max < —— max . 5

n

Chan and Malik [7] generalized (5) in a different direction and proved that if p(z) = ag+ > a,z”, t > 1,

v=t
is a polynomial of degree n which does not vanish in |z| < k, where k > 1, then
max [p/(2)| < = max|p(2)| (6)
X ——— max .
|z|=1 p 1+ k2=t p

Inequality (6) was independently proved by Qazi [13, Lemma 1], who also under the same hypothesis
proved that

|4 L] At g
n | a
max [pf(2)] < n o max [p(z)] (7)
l=1= 14kt D28 (gt 4 g2t l21=
n|ap

The following result which is due to Gardner, Govil and Weems [8] is of independent interest, because it

provides generalizations and refinements of inequalities (3), (5), (6) and (7).

n
Theorem A If p(z) = ag+ > ayz?, t > 1, is a polynomial of degree n having no zeros in |z| < k, where

v=t
k> 1, then
()
max]p/(2) < o (maxlp@) - m). ®)
o 14 Kkt 4 <—> (Rt 4 2 ==
n/) lag) —m
where

Clearly for m = 0, inequality (8) reduces to inequality (7).
Recently, Aziz and Shah [6] investigated the dependence of Imla)lc Ip(Rz) — p(2)| on ]Imla)i |p(2)|, where

R > 1 and proved the following theorem.

3
Theorem B Let p(z) = ap+ Y ayz¥, t > 1, be a polynomial of degree n which does not vanish in |z| < k,
v=t

where k > 1, then for every R>1 and |z| =1,

1+{]§t_11} at Ett1
n— a
p(R2) ~ p(z)| < (R" ~ 1) 1 T max p(z)). (9)
1 4 kt+1 22 (et 4 g2t -
+ + { T 1} a0 (kt+1 + k2)
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If we divide both sides of (9) by R —1 and make R — 1, we get (7).

In this paper we shall prove the following more general result which includes not only Theorem A and
Theorem B as special cases but also leads to a standard development of interesting generalizations of some

well-known results.

3
Theorem. Let p(z) = ap+ > ay2”, t > 1, be a polynomial of degree n which does not vanish in |z| < k,

v=t

where k > 1, and m = Ilfrllilf}C lp(2)], then for every R >1 and |z| =1,

1+ Rt—l |at| t+1
" R*—1) lag] —m
Ip(Rz) — p(2)| < (R" — 1) T ] X lp(z)] —m . (10)
t+1 t+1 2t 1=
1+k +<R"—l>|a0|—m(k + k2t)

Remark 1 If we divide the two sides of (10) by R—1 and make R — 1, we immediately get (8). For m =0,

the above theorem reduces to Theorem B.

If we use the fact that |p(Rz)| < |p(Rz) — p(2)| + |p(2)|, then the following corollary is an immediate

consequence of the above theorem.

n
Corollary. Let p(z) = ap+ Y. ayz¥, t > 1, be a polynomial of degree n which does not vanish in |z| < k,

v=t

where k > 1, and m = Ilfrllilf}C |p(2)|, then for every R > 1,

' 1+<Rt_1> ad _per) ]
R™ + Ll R" -1 |a0| -m
Rt—l |at|
t+ (71)
n— apgl —m
max [p(z)| < o iy max |p(2)]
|z|=R - (R 1) |at| -1 |z|=1
1+ kit R —1) Jao| —m
Rt—l |at|
1+ et +1
i (R"—1> |ao| —m |
(R —1)m
- R—1\ la ' (11)
1+ C gt
1+ kt+1 Rr—1) Jaol —m
Rt—l |at|
1+ et +1
L (R"—1>|a0|—m i

It can be easily verified that for every n and R > 1, the function

R" R"—-1
te max |p(z)| — m, is a non-increasing function of x. If we combine this fact with Lemma
14+x ) |z=1 14z
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6 (stated in Section 2), according to which

P (B ed e
1 R?—1) |ag|—m

Rt—l |at| -
1 Lt+1
+ (R" — 1) lap| —m

we get

R + Kt R —1
< | — _
ﬁfﬂ’é'p(z)'—( 14kt >f§lfi’f|p(z)| <1+kt>m’

(12)

which is a generalization of a result due to Aziz [3, Theorem 4]. Also for k =t =1, inequality (12) reduces to

a result of Aziz and Dawood [4].

2. Lemmas

We need the following lemmas.

3

Lemma 1 If p(z) =ao+ > ayz¥, t > 1, is a polynomial of degree n having no zeros in |z| <k, k > 1, then

v=t

for |z|=1 and R>1,

(Rt_1> 2t k=141
R*—1) |a
la(R2) = q(2)] = K" 4 2o ao Ip(R2) —p(2)],
S gt 41
R —1 ag

where q(z) = 2"p <l> .
z

The above lemma is due to Aziz and Shah [6].

The following lemma is due to Aziz and Rather [5].

Lemma 2 If p(z) is a polynomial of degree n having all its zero in |z| <t, where t < 1, then

Ip(Rz) — p(2)| > (Rn_1>min|p(2)|, for |z|=1 and R>1.

Ak |z|=t

Rt—l |at| 1
() ()

Tz
latl k1 41
x

Lemma 3 The function

is a non-decreasing function of x.
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Proof of Lemma 3. The proof follows by considering the first derivative test for S(z).

Lemma 4 If p(z) = > ay2" is a polynomial of degree n, p(z) # 0 in |z| < k, then |p(z)] > m for |z| < k,
v=0

and in particular |ag| > m, where m = IJfrlliJfllC Ip(2)].
pors

The above lemma is due to Gardner, Govil and Musukula [9].

n
Lemma 5 If p(z) =ao+ > apz¥, t > 1, is a polynomial of degree n having no zeros in |z| <k, k > 1 and

v=t

I

q(2) Zz"p< >, then for |z] =1 and R> 1,

Rt 1 |at| W11
1 R*—1) lag) —m

Rt —1 |at|
Et+l 4
(R"—1>|a0|—m +

[p(R2) — p(2)] < |q(Rz) —q(2)| — (R" = 1)m, (14)

where m = min |p(z)].
|z|=F

Proof of Lemma 5. Since p(z) has all its zeros in |z] > k > 1 and m = IJfrlliJfllC |p(2)]|, therefore

m < |p(z)] for |z|=k.

Hence, it follows by Rouche’s Theorem that for m > 0 and for every complex number o« with |a| < 1, the
polynomial h(z) = p(z) — am does not vanish in |z| < k, k > 1.

Applying Lemma 1 to the polynomial h(z) = p(z) —am, we get for every complex number « with |a| <1

Rt —1 |at| W11
1 R™—1) |ag —m|

7 Ip(Rz) —p(2)| <lq(Rz) —q(z) —ma(R" —1)z"], (15)
R-1 |at| kt+1 41
R*—1) lag —m|
for |z2/=1and R > 1.
Since for every «, |a| <1 we have
a0 — am| = Jao| — |alm > |ao| —m (16)

and |ag| > m by Lemma 4, we get on combining (15), (16) and Lemma 3 that for every a where |a <1,

Rt —1 |at| W11
Jeas R —1) |ag|—m

Rt—l |at|
Et+l 4
(R"—1>|a0|—m +

Ip(Rz) —p(2)| <lq(Rz) —q(z) —ma(R" —1)z"], (17)

243



MIR, DEWAN, SINGH

for |[z2/=1 and R > 1.

1
Also all the zeros of ¢(z) lie in |z| < Z < 1, it follows by Lemma 2 (with p(z) replaced by ¢(z) and ¢
b 1) that
y A a
lg(Rz) — q(2)| = (R" — )K" Irrllir} lq(2)]-
z|l=%
But

. .
min |¢(z)| = — min |p(2)],
min [g(2)] = - min ()

therefore, we have

lg(Rz) — q(2)] > (R" = 1)m, for |z|=1and R>1. (18)
Now choosing the argument of « with |a| =1 on the right hand side of (17) such that for |z| =1 and R > 1,
g(Rz) —q(2) —ma(R" —1)2"| = [¢(Rz) —¢(2)| — (R" — 1)m,

which is possible by (18), we conclude that

Rt —1 |a| Bl 1
Jeas R*—1) lag] —m

Rt—l |at|
Et+l 4
(R"—1>|a0|—m +

Ip(Rz) —p(2)| < lq(Rz) —q(2)] = (R" = 1)m, for |z[ =1

and R > 1, which is inequality (14) and that proves Lemma 5 completely. O

n
Lemma 6 If p(z) =ao+ > ayz¥, t > 1, is a polynomial of degree n having no zeros in |z| <k, k > 1 and
v=t

m = min |p(2)|, then
|z|=Fk

Rt —1 |a| W11
Jeas R —1) |ag|—m

Rt—l |at|
Et+l 4
(R"—1>|a0|—m +

Proof of Lemma 6. We will first show that

Rt —1
R —1

IN
S|+

holdsforall R>1 and 1 <t <n.
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To establish (19), it suffices to consider the case 1 <t<n—1and R>1. For R>1land 1 <t<n-1,

we have
tR" —nR'+(n—t) = tRY(R"'—1)—(n—t)(R" -1)
= R-D{RR""'+R"" 2+ . . +1)— (n—-t)(R"'"+ R +...+ R+ 1)}
> (R—1){t(n —t)R" — (n — t)tR'"'}
= tin—t)(R—-1)2?R"!
> 0.

This implies ¢(R™ —1) > n(R* — 1), for all R > 1 and 1 <t <n — 1, which is equivalent to (19).

Also, we have by an inequality (see [8, Proof of Lemma 3]),

|ay|k*

L (20)
lag| —m — ¢t

Combining (19) and (20), we get
|at|kt R™ -1
< .
lap| —m — Rt —1

The above inequality is clearly equivalent to

Rt —1 |at|kt
1< (b —
(3=) e < -,

which implies

Rt —1 |at|kt+1 Rt —1 |at|kt
+1< +k,
R*—1) lag] —m R —1) |ag|—m

from which Lemma 6 follows. O

Lemma 7 If p(z) is a polynomial of degree n, then for every R > 1,

[p(R2) = p(2)] +[a(Rz) — g(2)] < (R" — 1) max |p(2)|

The above lemma is due to Aziz [2].

3. Proof of the theorem

3

Since p(z) =ag+ > ayz¥, t > 1, does not vanish in |z| < k, k > 1, by Lemma 5, we have

v=t
(Rt _1> |a:] -1
R -1/ |lagl —m "
g § S [p(R2) — p(=)| < la(R=) — q(2)] — (R" = 1)m. (21)
t+1
(R"—l) |ao|—ml€ +1
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Inequality, (21) when combined with Lemma 7, gives

1+I€t+1 (Rn_l

Rt_1> |at| W14 1

agl —m "
o p(R2) ~p(3)] < [p(R2) — p(2)| + la(R2) — a(2)] — (R" — Dm
Et+l 4]
(R"—l) lag] —m +
< (= 1) {maxlp(a) -},
from which the theorem follows. a
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