tübítak

Some inequalities concerning the rate of growth of polynomials

Abdullah Mir, K. K. Dewan and Naresh Singh

Abstract

In this paper we consider a class of polynomials $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, not vanishing in $|z|<k$, $k \geq 1$ and investigate the dependence of $\max _{|z|=1}|p(R z)-p(z)|$ on $\max _{|z|=1}|p(z)|$. Our result not only generalizes some polynomial inequalities, but also a variety of interesting results can be deduced from it by a fairly uniform procedure.

Key word and phrases: Polynomial, Zeros, Inequalities.

1. Introduction and statement of results

Let $p(z)$ be a polynomial of degree atmost n, then according to a famous result known as Bernstein's inequality (for reference, see [12, p. 531] or [14]),

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n \max _{|z|=1}|p(z)|, \tag{1}
\end{equation*}
$$

whereas concerning the maximum modulus of $p(z)$ on a large circle $|z|=R>1$, we have (for reference, see [12, p. 442])

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq R^{n} \max _{|z|=1}|p(z)| . \tag{2}
\end{equation*}
$$

If we restrict ourselves to the class of polynomials having no zeros in $|z|<1$, then inequalities (1) and (2) can be sharpened. In fact, if $p(z) \neq 0$ in $|z|<1$, then (1) and (2) can respectively be replaced by

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{2} \max _{|z|=1}|p(z)| \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq\left(\frac{R^{n}+1}{2}\right) \max _{|z|=1}|p(z)|, \quad R>1 \tag{4}
\end{equation*}
$$

[^0]Inequality (3) was conjectured by Erdös and later verified by Lax [10], whereas Ankeny and Rivlin [1] used (3) to prove (4).

As an extension of (3) Malik [11] verified that if $p(z)$ does not vanish in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k} \max _{|z|=1}|p(z)| \tag{5}
\end{equation*}
$$

Chan and Malik [7] generalized (5) in a different direction and proved that if $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, is a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq \frac{n}{1+k^{t}} \max _{|z|=1}|p(z)| \tag{6}
\end{equation*}
$$

Inequality (6) was independently proved by Qazi [13, Lemma 1], who also under the same hypothesis proved that

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n\left\{\frac{1+\frac{t}{n}\left|\frac{a_{t}}{a_{0}}\right| k^{t+1}}{1+k^{t+1}+\frac{t}{n}\left|\frac{a_{t}}{a_{0}}\right|\left(k^{t+1}+k^{2 t}\right)}\right\} \max _{|z|=1}|p(z)| \tag{7}
\end{equation*}
$$

The following result which is due to Gardner, Govil and Weems [8] is of independent interest, because it provides generalizations and refinements of inequalities (3), (5), (6) and (7).

Theorem A If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, is a polynomial of degree n having no zeros in $|z|<k$, where $k \geq 1$, then

$$
\begin{equation*}
\max _{|z|=1}\left|p^{\prime}(z)\right| \leq n\left\{\frac{1+\left(\frac{t}{n}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}}{1+k^{t+1}+\left(\frac{t}{n}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m}\left(k^{t+1}+k^{2 t}\right)}\right\}\left(\max _{|z|=1}|p(z)|-m\right) \tag{8}
\end{equation*}
$$

where

$$
m=\min _{|z|=k}|p(z)|
$$

Clearly for $m=0$, inequality (8) reduces to inequality (7).
Recently, Aziz and Shah [6] investigated the dependence of $\max _{|z|=1}|p(R z)-p(z)|$ on $\max _{|z|=1}|p(z)|$, where $R>1$ and proved the following theorem.

Theorem B Let $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, be a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, then for every $R>1$ and $|z|=1$,

$$
\begin{equation*}
|p(R z)-p(z)| \leq\left(R^{n}-1\right)\left\{\frac{1+\left\{\frac{R^{t}-1}{R^{n}-1}\right\}\left|\frac{a_{t}}{a_{0}}\right| k^{t+1}}{1+k^{t+1}+\left\{\frac{R^{t}-1}{R^{n}-1}\right\}\left|\frac{a_{t}}{a_{0}}\right|\left(k^{t+1}+k^{2 t}\right)}\right\} \max _{|z|=1}|p(z)| \tag{9}
\end{equation*}
$$

If we divide both sides of (9) by $R-1$ and make $R \rightarrow 1$, we get (7).
In this paper we shall prove the following more general result which includes not only Theorem A and Theorem B as special cases but also leads to a standard development of interesting generalizations of some well-known results.

Theorem. Let $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, be a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, and $m=\min _{|z|=k}|p(z)|$, then for every $R>1$ and $|z|=1$,

$$
\begin{equation*}
|p(R z)-p(z)| \leq\left(R^{n}-1\right)\left\{\frac{1+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}}{1+k^{t+1}+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m}\left(k^{t+1}+k^{2 t}\right)}\right\} \times\left\{\max _{|z|=1}|p(z)|-m\right\} \tag{10}
\end{equation*}
$$

Remark 1 If we divide the two sides of (10) by $R-1$ and make $R \rightarrow 1$, we immediately get (8). For $m=0$, the above theorem reduces to Theorem B.

If we use the fact that $|p(R z)| \leq|p(R z)-p(z)|+|p(z)|$, then the following corollary is an immediate consequence of the above theorem.

Corollary. Let $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, be a polynomial of degree n which does not vanish in $|z|<k$, where $k \geq 1$, and $m=\min _{|z|=k}|p(z)|$, then for every $R>1$,

$$
\begin{align*}
& \max _{|z|=R}|p(z)| \leq {\left[\frac{R^{n}+k^{t+1}\left\{\frac{1+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}}{1+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}}\right\}}{1+k^{t+1}\left\{\frac{1+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}}{1+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}}\right\}}\right] } \\
& \max _{|z|=1}|p(z)| \tag{11}\\
&-\left[\frac{\left(R^{n}-1\right) m}{1+k^{t+1}\left\{\frac{1+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}}{1+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}}\right\}}\right]
\end{align*}
$$

It can be easily verified that for every n and $R>1$, the function $\left(\frac{R^{n}+x}{1+x}\right) \max _{|z|=1}|p(z)|-\left(\frac{R^{n}-1}{1+x}\right) m$, is a non-increasing function of x. If we combine this fact with Lemma

6 (stated in Section 2), according to which

$$
k^{t+1}\left\{\frac{1+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}}{1+\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}}\right\} \geq k^{t}, \quad t \geq 1
$$

we get

$$
\begin{equation*}
\max _{|z|=R}|p(z)| \leq\left(\frac{R^{n}+k^{t}}{1+k^{t}}\right) \max _{|z|=1}|p(z)|-\left(\frac{R^{n}-1}{1+k^{t}}\right) m \tag{12}
\end{equation*}
$$

which is a generalization of a result due to Aziz [3, Theorem 4]. Also for $k=t=1$, inequality (12) reduces to a result of Aziz and Dawood [4].

2. Lemmas

We need the following lemmas.

Lemma 1 If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, is a polynomial of degree n having no zeros in $|z|<k, k \geq 1$, then for $|z|=1$ and $R>1$,

$$
\begin{equation*}
|q(R z)-q(z)| \geq k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left|\frac{a_{t}}{a_{0}}\right| k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left|\frac{a_{t}}{a_{0}}\right| k^{t+1}+1}\right\}|p(R z)-p(z)| \tag{13}
\end{equation*}
$$

where $q(z)=z^{n} \overline{p\left(\frac{1}{\bar{z}}\right)}$.
The above lemma is due to Aziz and Shah [6].
The following lemma is due to Aziz and Rather [5].
Lemma 2 If $p(z)$ is a polynomial of degree n having all its zero in $|z| \leq t$, where $t \leq 1$, then

$$
|p(R z)-p(z)| \geq\left(\frac{R^{n}-1}{t^{n}}\right) \min _{|z|=t}|p(z)|, \text { for }|z|=1 \quad \text { and } \quad R \geq 1
$$

Lemma 3 The function

$$
S(x)=k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left(\frac{\left|a_{t}\right|}{x}\right) k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right)\left(\frac{\left|a_{t}\right|}{x}\right) k^{t+1}+1}\right\}
$$

is a non-decreasing function of x.

MIR, DEWAN, SINGH

Proof of Lemma 3. The proof follows by considering the first derivative test for $S(x)$.

Lemma 4 If $p(z)=\sum_{v=0}^{n} a_{v} z^{v}$ is a polynomial of degree $n, p(z) \neq 0$ in $|z|<k$, then $|p(z)|>m$ for $|z|<k$, and in particular $\left|a_{0}\right|>m$, where $m=\min _{|z|=k}|p(z)|$.

The above lemma is due to Gardner, Govil and Musukula [9].

Lemma 5 If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, is a polynomial of degree n having no zeros in $|z|<k, k \geq 1$ and $q(z)=z^{n} \overline{\left(\frac{1}{\bar{z}}\right)}$, then for $|z|=1$ and $R>1$,

$$
\begin{equation*}
k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\}|p(R z)-p(z)| \leq|q(R z)-q(z)|-\left(R^{n}-1\right) m \tag{14}
\end{equation*}
$$

where $m=\min _{|z|=k}|p(z)|$.

Proof of Lemma 5. Since $p(z)$ has all its zeros in $|z| \geq k \geq 1$ and $m=\min _{|z|=k}|p(z)|$, therefore

$$
m \leq|p(z)| \quad \text { for } \quad|z|=k
$$

Hence, it follows by Rouche's Theorem that for $m>0$ and for every complex number α with $|\alpha| \leq 1$, the polynomial $h(z)=p(z)-\alpha m$ does not vanish in $|z|<k, k \geq 1$.

Applying Lemma 1 to the polynomial $h(z)=p(z)-\alpha m$, we get for every complex number α with $|\alpha| \leq 1$

$$
\begin{equation*}
k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}-m\right|} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}-m\right|} k^{t+1}+1}\right\}|p(R z)-p(z)| \leq\left|q(R z)-q(z)-m \bar{\alpha}\left(R^{n}-1\right) z^{n}\right|, \tag{15}
\end{equation*}
$$

for $|z|=1$ and $R>1$.
Since for every $\alpha,|\alpha| \leq 1$ we have

$$
\begin{equation*}
\left|a_{0}-\alpha m\right| \geq\left|a_{0}\right|-|\alpha| m \geq\left|a_{0}\right|-m \tag{16}
\end{equation*}
$$

and $\left|a_{0}\right|>m$ by Lemma 4, we get on combining (15), (16) and Lemma 3 that for every α where $|\alpha| \leq 1$,

$$
\begin{equation*}
k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\}|p(R z)-p(z)| \leq\left|q(R z)-q(z)-m \bar{\alpha}\left(R^{n}-1\right) z^{n}\right| \tag{17}
\end{equation*}
$$

for $|z|=1$ and $R>1$.
Also all the zeros of $q(z)$ lie in $|z| \leq \frac{1}{k} \leq 1$, it follows by Lemma 2 (with $p(z)$ replaced by $q(z)$ and t by $\frac{1}{k}$) that

$$
|q(R z)-q(z)| \geq\left(R^{n}-1\right) k^{n} \min _{|z|=\frac{1}{k}}|q(z)|
$$

But

$$
\min _{|z|=\frac{1}{k}}|q(z)|=\frac{1}{k^{n}} \min _{|z|=k}|p(z)|
$$

therefore, we have

$$
\begin{equation*}
|q(R z)-q(z)| \geq\left(R^{n}-1\right) m, \text { for }|z|=1 \text { and } R>1 \tag{18}
\end{equation*}
$$

Now choosing the argument of α with $|\alpha|=1$ on the right hand side of (17) such that for $|z|=1$ and $R>1$,

$$
\left|q(R z)-q(z)-m \bar{\alpha}\left(R^{n}-1\right) z^{n}\right|=|q(R z)-q(z)|-\left(R^{n}-1\right) m
$$

which is possible by (18), we conclude that

$$
k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\}|p(R z)-p(z)| \leq|q(R z)-q(z)|-\left(R^{n}-1\right) m, \text { for }|z|=1
$$

and $R>1$, which is inequality (14) and that proves Lemma 5 completely.

Lemma 6 If $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, is a polynomial of degree n having no zeros in $|z|<k, k \geq 1$ and $m=\min _{|z|=k}|p(z)|$, then

$$
k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\} \geq k^{t}, \quad t \geq 1
$$

Proof of Lemma 6. We will first show that

$$
\begin{equation*}
\frac{R^{t}-1}{R^{n}-1} \leq \frac{t}{n} \tag{19}
\end{equation*}
$$

holds for all $R>1$ and $1 \leq t \leq n$.

MIR, DEWAN, SINGH

To establish (19), it suffices to consider the case $1 \leq t \leq n-1$ and $R>1$. For $R>1$ and $1 \leq t \leq n-1$, we have

$$
\begin{aligned}
t R^{n}-n R^{t}+(n-t) & =t R^{t}\left(R^{n-t}-1\right)-(n-t)\left(R^{t}-1\right) \\
& =(R-1)\left\{t R^{t}\left(R^{n-t-1}+R^{n-t-2}+\ldots+1\right)-(n-t)\left(R^{t-1}+R^{t-2}+\ldots+R+1\right)\right\} \\
& \geq(R-1)\left\{t(n-t) R^{t}-(n-t) t R^{t-1}\right\} \\
& =t(n-t)(R-1)^{2} R^{t-1} \\
& >0 .
\end{aligned}
$$

This implies $t\left(R^{n}-1\right)>n\left(R^{t}-1\right)$, for all $R>1$ and $1 \leq t \leq n-1$, which is equivalent to (19).
Also, we have by an inequality (see [8, Proof of Lemma 3]),

$$
\begin{equation*}
\frac{\left|a_{t}\right| k^{t}}{\left|a_{0}\right|-m} \leq \frac{n}{t}, \quad t \geq 1 \tag{20}
\end{equation*}
$$

Combining (19) and (20), we get

$$
\frac{\left|a_{t}\right| k^{t}}{\left|a_{0}\right|-m} \leq \frac{R^{n}-1}{R^{t}-1} .
$$

The above inequality is clearly equivalent to

$$
\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right| k^{t}}{\left|a_{0}\right|-m}(k-1) \leq(k-1),
$$

which implies

$$
\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right| k^{t+1}}{\left|a_{0}\right|-m}+1 \leq\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right| k^{t}}{\left|a_{0}\right|-m}+k,
$$

from which Lemma 6 follows.

Lemma 7 If $p(z)$ is a polynomial of degree n, then for every $R>1$,

$$
|p(R z)-p(z)|+|q(R z)-q(z)| \leq\left(R^{n}-1\right) \max _{|z|=1}|p(z)|
$$

The above lemma is due to Aziz [2].

3. Proof of the theorem

Since $p(z)=a_{0}+\sum_{v=t}^{n} a_{v} z^{v}, t \geq 1$, does not vanish in $|z|<k, k \geq 1$, by Lemma 5 , we have

$$
\begin{equation*}
k^{t+1}\left\{\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right\}|p(R z)-p(z)| \leq|q(R z)-q(z)|-\left(R^{n}-1\right) m \tag{21}
\end{equation*}
$$

Inequality, (21) when combined with Lemma 7, gives

$$
\left\{\begin{aligned}
\left\{1+k^{t+1}\left(\frac{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t-1}+1}{\left(\frac{R^{t}-1}{R^{n}-1}\right) \frac{\left|a_{t}\right|}{\left|a_{0}\right|-m} k^{t+1}+1}\right)\right\}|p(R z)-p(z)| & \leq|p(R z)-p(z)|+|q(R z)-q(z)|-\left(R^{n}-1\right) m \\
& \leq\left(R^{n}-1\right)\left\{\max _{|z|=1}|p(z)|-m\right\}
\end{aligned}\right.
$$

from which the theorem follows.

Acknowledgements

The research of third author is supported by Council of Scientific and Industrial Research, New Delhi, under grant F.No.9/466(78)/2004-EMR-I.

References

[1] Ankeny, N.C. and Rivlin, T.J.: On a theorem of S. Bernstein, Pacific J. Math. 5, 849-852 (1955).
[2] Aziz, A.: Inequalities for the derivative of a polynomial, Proc. Amer. Math. Soc. 89, 259-266 (1983).
[3] Aziz, A.: Growth of polynomials whose zeros are with in or outside a circle, Bull. Aust. Math. Soc. 35, 247-256 (1987).
[4] Aziz, A. and Dawood, Q.M.: Inequalities for a polynomial and its derivative, J. Approx. Theory 54, 306-313 (1988).
[5] Aziz, A. and Rather, N.A.: New L^{q} inequalities for polynomials, Math. Ineq. and Appl. 1, 177-191 (1998).
[6] Aziz, A. and Shah, W.M.: Inequalities for a polynomial and its derivative, Math. Ineq. and Appl. 7, 379-391 (2004).
[7] Chan, T.N.and Malik, M.A.: On Erdös-Lax Theorem, Proc. Indian Acad. Sci. 92, 191-193 (1983).
[8] Gardner, R.B., Govil, N.K. and Weems, A.: Some results concerning rate of growth of polynomials, East J. on Approx. 10, 301-312 (2004).
[9] Gardner, R.B., Govil, N.K. and Musukula, S.R.: Rate of growth of polynomials not vanishing inside a circle, J. of Ineq. in Pure and Appl. Math. 6 (Issue 2, Art. 53), 1-9 (2005).
[10] Lax, P.D.: Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50, 509-513 (1944).
[11] Malik, M.A.: On the derivative of a polynomial, J. London Math. Soc. 1, 57-60 (1969).
[12] Milovanović, G.V., Mitrinović, D.S. and Rassias, Th. M.: Topics in polynomials, Extermal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.
[13] Qazi, M.A.: On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115, 337-343 (1992).
[14] Schaeffer, A.C.: Inequalities of A. Markoff and S. Bernsetein for polynomials and related functions, Bull. Amer. Math. Soc. 47, 565-579 (1941).

Abdullah MIR
Department of Mathematics,
Islamia College of Science and Commerce, Srinagar, Kashmir - 190002 INDIA
K. K. DEWAN, Naresh SINGH

Department of Mathematics,
Faculty of Natural Sciences,
Jamia Millia Islamia (Central University)
New Delhi - 110025 INDIA

[^0]: 2000 AMS Mathematics Subject Classification: 30A10, 30C10, 30D15.

