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Some inequalities concerning the rate of growth of polynomials
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Abstract

In this paper we consider a class of polynomials p(z) = a0 +
n�

v=t

avzv , t ≥ 1, not vanishing in |z| < k ,

k ≥ 1 and investigate the dependence of max
|z|=1

|p(Rz) − p(z)| on max
|z|=1

|p(z)| . Our result not only generalizes

some polynomial inequalities, but also a variety of interesting results can be deduced from it by a fairly

uniform procedure.
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1. Introduction and statement of results

Let p(z) be a polynomial of degree atmost n , then according to a famous result known as Bernstein’s
inequality (for reference, see [12, p. 531] or [14]),

max
|z|=1

|p′(z)| ≤ n max
|z|=1

|p(z)|, (1)

whereas concerning the maximum modulus of p(z) on a large circle |z| = R > 1, we have (for reference, see
[12, p. 442])

max
|z|=R

|p(z)| ≤ Rn max
|z|=1

|p(z)| . (2)

If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then inequalities (1) and
(2) can be sharpened. In fact, if p(z) �= 0 in |z| < 1, then (1) and (2) can respectively be replaced by

max
|z|=1

|p′(z)| ≤ n

2
max
|z|=1

|p(z)| (3)

and

max
|z|=R

|p(z)| ≤
(

Rn + 1
2

)
max
|z|=1

|p(z)|, R > 1 . (4)
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Inequality (3) was conjectured by Erdös and later verified by Lax [10], whereas Ankeny and Rivlin [1] used (3)
to prove (4).

As an extension of (3) Malik [11] verified that if p(z) does not vanish in |z| < k , k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + k
max
|z|=1

|p(z)| . (5)

Chan and Malik [7] generalized (5) in a different direction and proved that if p(z) = a0 +
n∑

v=t
avzv , t ≥ 1,

is a polynomial of degree n which does not vanish in |z| < k , where k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

1 + kt
max
|z|=1

|p(z)| . (6)

Inequality (6) was independently proved by Qazi [13, Lemma 1], who also under the same hypothesis
proved that

max
|z|=1

|p′(z)| ≤ n

⎧⎪⎪⎨
⎪⎪⎩

1 +
t

n

∣∣∣∣ at

a0

∣∣∣∣ kt+1

1 + kt+1 +
t

n

∣∣∣∣ at

a0

∣∣∣∣ (kt+1 + k2t)

⎫⎪⎪⎬
⎪⎪⎭

max
|z|=1

|p(z)|. (7)

The following result which is due to Gardner, Govil and Weems [8] is of independent interest, because it
provides generalizations and refinements of inequalities (3), (5), (6) and (7).

Theorem A If p(z) = a0 +
n∑

v=t
avzv , t ≥ 1 , is a polynomial of degree n having no zeros in |z| < k , where

k ≥ 1 , then

max
|z|=1

|p′(z)| ≤ n

⎧⎪⎪⎨
⎪⎪⎩

1 +
(

t

n

) |at|
|a0| − m

kt+1

1 + kt+1 +
(

t

n

) |at|
|a0| − m

(kt+1 + k2t)

⎫⎪⎪⎬
⎪⎪⎭

(
max
|z|=1

|p(z)| − m

)
, (8)

where
m = min

|z|=k
|p(z)| .

Clearly for m = 0, inequality (8) reduces to inequality (7).

Recently, Aziz and Shah [6] investigated the dependence of max
|z|=1

|p(Rz) − p(z)| on max
|z|=1

|p(z)| , where

R > 1 and proved the following theorem.

Theorem B Let p(z) = a0 +
n∑

v=t
avzv , t ≥ 1 , be a polynomial of degree n which does not vanish in |z| < k ,

where k ≥ 1 , then for every R > 1 and |z| = 1 ,

|p(Rz) − p(z)| ≤ (Rn − 1)

⎧⎪⎪⎨
⎪⎪⎩

1 +
{

Rt − 1
Rn − 1

} ∣∣∣∣ at

a0

∣∣∣∣ kt+1

1 + kt+1 +
{

Rt − 1
Rn − 1

} ∣∣∣∣ at

a0

∣∣∣∣ (kt+1 + k2t)

⎫⎪⎪⎬
⎪⎪⎭

max
|z|=1

|p(z)|. (9)
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If we divide both sides of (9) by R − 1 and make R → 1, we get (7).

In this paper we shall prove the following more general result which includes not only Theorem A and
Theorem B as special cases but also leads to a standard development of interesting generalizations of some
well-known results.

Theorem. Let p(z) = a0 +
n∑

v=t
avz

v , t ≥ 1 , be a polynomial of degree n which does not vanish in |z| < k ,

where k ≥ 1 , and m = min
|z|=k

|p(z)| , then for every R > 1 and |z| = 1 ,

|p(Rz) − p(z)| ≤ (Rn − 1)

⎧⎪⎪⎨
⎪⎪⎩

1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1

1 + kt+1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

(kt+1 + k2t)

⎫⎪⎪⎬
⎪⎪⎭

×
{

max
|z|=1

|p(z)| − m

}
. (10)

Remark 1 If we divide the two sides of (10) by R− 1 and make R → 1 , we immediately get (8). For m = 0 ,
the above theorem reduces to Theorem B.

If we use the fact that |p(Rz)| ≤ |p(Rz) − p(z)| + |p(z)| , then the following corollary is an immediate
consequence of the above theorem.

Corollary. Let p(z) = a0 +
n∑

v=t
avz

v , t ≥ 1 , be a polynomial of degree n which does not vanish in |z| < k ,

where k ≥ 1 , and m = min
|z|=k

|p(z)| , then for every R > 1 ,

max
|z|=R

|p(z)| ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rn + kt+1

⎧⎪⎪⎨
⎪⎪⎩

1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1

1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1

⎫⎪⎪⎬
⎪⎪⎭

1 + kt+1

⎧⎪⎪⎨
⎪⎪⎩

1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1

1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

max
|z|=1

|p(z)|

−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(Rn − 1)m

1 + kt+1

⎧⎪⎪⎨
⎪⎪⎩

1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1

1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)

It can be easily verified that for every n and R > 1, the function(
Rn + x

1 + x

)
max
|z|=1

|p(z)| −
(

Rn − 1
1 + x

)
m , is a non-increasing function of x . If we combine this fact with Lemma
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6 (stated in Section 2), according to which

kt+1

⎧⎪⎪⎨
⎪⎪⎩

1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1

1 +
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1

⎫⎪⎪⎬
⎪⎪⎭

≥ kt, t ≥ 1,

we get

max
|z|=R

|p(z)| ≤
(

Rn + kt

1 + kt

)
max
|z|=1

|p(z)| −
(

Rn − 1
1 + kt

)
m, (12)

which is a generalization of a result due to Aziz [3, Theorem 4]. Also for k = t = 1, inequality (12) reduces to
a result of Aziz and Dawood [4].

2. Lemmas

We need the following lemmas.

Lemma 1 If p(z) = a0 +
n∑

v=t
avz

v , t ≥ 1 , is a polynomial of degree n having no zeros in |z| < k , k ≥ 1 , then

for |z| = 1 and R > 1 ,

|q(Rz) − q(z)| ≥ kt+1

⎧⎪⎪⎨
⎪⎪⎩

(
Rt − 1
Rn − 1

)∣∣∣∣ at

a0

∣∣∣∣ kt−1 + 1
(

Rt − 1
Rn − 1

) ∣∣∣∣at

a0

∣∣∣∣ kt+1 + 1

⎫⎪⎪⎬
⎪⎪⎭

|p(Rz) − p(z)|, (13)

where q(z) = znp

(
1
z̄

)
.

The above lemma is due to Aziz and Shah [6].

The following lemma is due to Aziz and Rather [5].

Lemma 2 If p(z) is a polynomial of degree n having all its zero in |z| ≤ t , where t ≤ 1 , then

|p(Rz) − p(z)| ≥
(

Rn − 1
tn

)
min
|z|=t

|p(z)|, for |z| = 1 and R ≥ 1 .

Lemma 3 The function

S(x) = kt+1

⎧⎪⎪⎨
⎪⎪⎩

(
Rt − 1
Rn − 1

) ( |at|
x

)
kt−1 + 1

(
Rt − 1
Rn − 1

)( |at|
x

)
kt+1 + 1

⎫⎪⎪⎬
⎪⎪⎭

,

is a non-decreasing function of x .
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Proof of Lemma 3. The proof follows by considering the first derivative test for S(x).

Lemma 4 If p(z) =
n∑

v=0
avzv is a polynomial of degree n , p(z) �= 0 in |z| < k , then |p(z)| > m for |z| < k ,

and in particular |a0| > m, where m = min
|z|=k

|p(z)| .

The above lemma is due to Gardner, Govil and Musukula [9].

Lemma 5 If p(z) = a0 +
n∑

v=t
avz

v , t ≥ 1 , is a polynomial of degree n having no zeros in |z| < k , k ≥ 1 and

q(z) = znp

(
1
z̄

)
, then for |z| = 1 and R > 1 ,

kt+1

⎧⎪⎪⎨
⎪⎪⎩

(
Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1 + 1

⎫⎪⎪⎬
⎪⎪⎭

|p(Rz) − p(z)| ≤ |q(Rz) − q(z)| − (Rn − 1)m, (14)

where m = min
|z|=k

|p(z)| .

Proof of Lemma 5. Since p(z) has all its zeros in |z| ≥ k ≥ 1 and m = min
|z|=k

|p(z)| , therefore

m ≤ |p(z)| for |z| = k .

Hence, it follows by Rouche’s Theorem that for m > 0 and for every complex number α with |α| ≤ 1, the
polynomial h(z) = p(z) − αm does not vanish in |z| < k , k ≥ 1.

Applying Lemma 1 to the polynomial h(z) = p(z)−αm , we get for every complex number α with |α| ≤ 1

kt+1

⎧⎪⎪⎨
⎪⎪⎩

(
Rt − 1
Rn − 1

) |at|
|a0 − m|k

t−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0 − m|k

t+1 + 1

⎫⎪⎪⎬
⎪⎪⎭

|p(Rz) − p(z)| ≤ |q(Rz) − q(z) − mᾱ(Rn − 1)zn|, (15)

for |z| = 1 and R > 1.

Since for every α , |α| ≤ 1 we have

|a0 − αm| ≥ |a0| − |α|m ≥ |a0| − m (16)

and |a0| > m by Lemma 4, we get on combining (15), (16) and Lemma 3 that for every α where |α| ≤ 1,

kt+1

⎧⎪⎪⎨
⎪⎪⎩

(
Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1 + 1

⎫⎪⎪⎬
⎪⎪⎭

|p(Rz) − p(z)| ≤ |q(Rz) − q(z) − mᾱ(Rn − 1)zn|, (17)
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for |z| = 1 and R > 1.

Also all the zeros of q(z) lie in |z| ≤ 1
k
≤ 1, it follows by Lemma 2 (with p(z) replaced by q(z) and t

by
1
k

) that

|q(Rz) − q(z)| ≥ (Rn − 1)kn min
|z|= 1

k

|q(z)| .

But

min
|z|= 1

k

|q(z)| =
1
kn

min
|z|=k

|p(z)|,

therefore, we have

|q(Rz) − q(z)| ≥ (Rn − 1)m, for |z| = 1 and R > 1 . (18)

Now choosing the argument of α with |α| = 1 on the right hand side of (17) such that for |z| = 1 and R > 1,

|q(Rz) − q(z) − mᾱ(Rn − 1)zn| = |q(Rz) − q(z)| − (Rn − 1)m,

which is possible by (18), we conclude that

kt+1

⎧⎪⎪⎨
⎪⎪⎩

(
Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1 + 1

⎫⎪⎪⎬
⎪⎪⎭

|p(Rz) − p(z)| ≤ |q(Rz) − q(z)| − (Rn − 1)m, for |z| = 1

and R > 1, which is inequality (14) and that proves Lemma 5 completely. �

Lemma 6 If p(z) = a0 +
n∑

v=t
avz

v , t ≥ 1 , is a polynomial of degree n having no zeros in |z| < k , k ≥ 1 and

m = min
|z|=k

|p(z)| , then

kt+1

⎧⎪⎪⎨
⎪⎪⎩

(
Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1 + 1

⎫⎪⎪⎬
⎪⎪⎭

≥ kt , t ≥ 1 .

Proof of Lemma 6. We will first show that

Rt − 1
Rn − 1

≤ t

n
(19)

holds for all R > 1 and 1 ≤ t ≤ n .
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To establish (19), it suffices to consider the case 1 ≤ t ≤ n−1 and R > 1. For R > 1 and 1 ≤ t ≤ n−1,
we have

tRn − nRt + (n − t) = tRt(Rn−t − 1) − (n − t)(Rt − 1)

= (R − 1){tRt(Rn−t−1 + Rn−t−2 + . . . + 1) − (n − t)(Rt−1 + Rt−2 + . . . + R + 1)}
≥ (R − 1){t(n − t)Rt − (n − t)tRt−1}
= t(n − t)(R − 1)2Rt−1

> 0 .

This implies t(Rn − 1) > n(Rt − 1), for all R > 1 and 1 ≤ t ≤ n − 1, which is equivalent to (19).

Also, we have by an inequality (see [8, Proof of Lemma 3]),

|at|kt

|a0| − m
≤ n

t
, t ≥ 1 . (20)

Combining (19) and (20), we get

|at|kt

|a0| − m
≤ Rn − 1

Rt − 1
.

The above inequality is clearly equivalent to

(
Rt − 1
Rn − 1

) |at|kt

|a0| − m
(k − 1) ≤ (k − 1),

which implies (
Rt − 1
Rn − 1

) |at|kt+1

|a0| − m
+ 1 ≤

(
Rt − 1
Rn − 1

) |at|kt

|a0| − m
+ k,

from which Lemma 6 follows. �

Lemma 7 If p(z) is a polynomial of degree n , then for every R > 1 ,

|p(Rz) − p(z)| + |q(Rz) − q(z)| ≤ (Rn − 1)max
|z|=1

|p(z)|

The above lemma is due to Aziz [2].

3. Proof of the theorem

Since p(z) = a0 +
n∑

v=t
avzv , t ≥ 1, does not vanish in |z| < k , k ≥ 1, by Lemma 5, we have

kt+1

⎧⎪⎪⎨
⎪⎪⎩

(
Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1 + 1

⎫⎪⎪⎬
⎪⎪⎭

|p(Rz) − p(z)| ≤ |q(Rz) − q(z)| − (Rn − 1)m. (21)
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Inequality, (21) when combined with Lemma 7, gives

⎧⎪⎪⎨
⎪⎪⎩

1 + kt+1

⎛
⎜⎜⎝

(
Rt − 1
Rn − 1

) |at|
|a0| − m

kt−1 + 1
(

Rt − 1
Rn − 1

) |at|
|a0| − m

kt+1 + 1

⎞
⎟⎟⎠

⎫⎪⎪⎬
⎪⎪⎭

|p(Rz) − p(z)| ≤ |p(Rz)− p(z)| + |q(Rz) − q(z)| − (Rn − 1)m

≤ (Rn − 1)
{

max
|z|=1

|p(z)| − m

}
,

from which the theorem follows. �
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