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On the geometry of null curves in the minkowski 4-space

R. Aslaner, A. İhsan Boran

Abstract

In this paper, we study the basic results on the general study of null curves in the Minkowski 4-space

R4
1 . A transversal vector bundle of a null curve in R4

1 is constructed using a frenet Frame consisting of two

real null and two space-like vectors. The null curves are characterized by using the Frenet frame.
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1. Introduction

Definition 1.1 The Minkowski 4-space is the space R4 with the Lorentzian inner product

g(x, y) = −x0y0 + x1y1 + x2y2 + x3y3 for all x, y ∈ R4

and will be denoted in the future by R4
1 . With respect to the standard basis of R4

1 , the matrix of g is
η = diag(−1, 1, 1, 1).

Definition 1.2 A non-zero vector x of R4
1 is called space-like if g(x, x) > 0 , time-like if g(x, x) < 0 , null if

g(x, x) = 0 and causal if g(x, x) ≤ 0 . Any two vectors x, y ∈ R4
1 are called orthogonal if g(x, y) = 0 . The zero

vector is taken to be space-like.

Lemma 1.1 [4] There are no casual vectors in R4
1 orthogonal to a time-like vector and two null vectors are

orthogonal if and only if they are linearly dependent.

Let C be a smooth curve in R4
1 with the immersion i : C −→ R4

1 . Suppose U is a coordinate
neighborhood on C and t is the corresponding local parameter. Then C is given by the map

C : I −→ R4
1

t −→ C(t) = (x0(t), x1(t), x2(t), x3(t))

where I is an open interval of R . The tangent vector field on U of C is

T =
dC

dt
=

(
dx0

dt
,
dx1

dt
,
dx2

dt
,
dx3

dt

)
. (1.1)
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The smooth curve C is said to be a null (light-like or isotropic) curve if the tangent vector to C at any
point is a null vector. It follows that C is a null curve if and only if locally at each point of U we have

g(T, T ) = 0 (1.2)

2. Null curves in minkowski 4-space R4
1

Let C be a null curve in R4
1 , that is, T =

dC

dt
and g(T, T ) = 0. Denote by TC the tangent bundle of

C and define
TC⊥ = ∪

p∈C
TpC⊥ ; TpC⊥ =

{
vp ∈ R4

1 : g(vp, ξp) = 0
}

[2] , where ξp is a null vector tangent to C at the point P . Clearly TC⊥ is a vector bundle over C of rank

3. Since g(ξp, ξp) = 0, the tangent bundle TC of C is a vector subbundle of TC⊥ , of rank 1. Consider a

complementary vector bundle S
(
TC⊥)

to TC in TC⊥ . Thus we have the orthogonal decomposition

TC⊥ = TC ⊥ S
(
TC⊥)

,

where the fibers of S
(
TC⊥)

at P ∈ C are nothing but some screen subspaces of TpC⊥ . The vector bundle

S
(
TC⊥)

is called the screen vector bundle of C . It follows that S
(
TC⊥)

is a non-degenerate vector bundle.
Therefore we have

TR4
1 |C = S

(
TC⊥)

⊥ S
(
TC⊥)⊥

, (2.1)

where S
(
TC⊥)⊥ is a complementary orthogonal vector bundle to S

(
TC⊥)

in TR4
1 |C . We denote the set of

sections of TR4
1 by Γ(TR4

1), that is, the set of the vector fields on TR4
1 . It is important to observe that Γ(TR4

1)

is a module over the ring of smooth functions C∞(R4
1) on R4

1 .

We recall that a sum of two subspaces is a direct sum if and only if the intersection of the subspaces is
{0}. Then we have the following corollary.

Corollary 2.1 Let C be a null curve in the Minkowski 4-space R4
1 , and S

(
TC⊥)

be a screen vector bundle
of C . Then the following assertions are equivalent:

1. S
(
TC⊥)

is a non-degenerate subbundle,

2. S
(
TC⊥)⊥ is a non-degenerate subbundle,

3. S
(
TC⊥)

and S
(
TC⊥)⊥ are complementary orthogonal vector bundles of Γ(TR4

1)

4. Γ(TR4
1) is the orthogonal direct sum of S

(
TC⊥)

and S
(
TC⊥)⊥ .

A. Bejancu stated and proved the following theorem in [2, Theorem 1.1], which shows the existence and
uniqueness of a vector bundle and plays an important role in studying the geometry of null curves.
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ASLANER, İHSAN BORAN

Theorem 2.1 Let C be a null curve in the Minkowski 4-space R4
1 , and S

(
TC⊥)

be a screen vector bundle of
C . Then there exists a unique vector bundle E over C of rank 1 , such that on each coordinate neighborhood
U ⊂ C there is a unique vector bundle N ∈ Γ(E |U ) satisfying

g(T, N) = 1 and g(N, N) = g(N, X) = 0, ∀X ∈ Γ(S
(
TC⊥)

|U ). (2.2)

The vector bundle E is denoted by ntr(C) and called the null transversal bundle of C with respect to

S
(
TC⊥)

. Next, consider the vector bundle

tr(C) = ntr(C) ⊥ S
(
TC⊥)

,

which is complementary but not orthogonal to call TC in TR4
1 . tr(C) the transversal vector bundle of C with

respect to S
(
TC⊥)

. The vector field N given in Theorem 2.1 is called the null transversal vector field of C

with respect to T . More precisely, we have

TR4
1 |C = TC ⊕ tr(C) = (TC ⊕ ntr(C)) ⊥ S

(
TC⊥)

(2.3)

As {T, N} is a basis of Γ ((TC ⊕ ntr(C)) |U ) , the local vector fields

W+ =
1√
2
{T + N} and W− =

1√
2
{T − N}

form an orthonormal basis with signature {1,−1}. Then, it follows that the fibers of TC⊕ntr(C) are hyperbolic
planes with respect to g .

Thus, we can obtain the following proposition.

Proposition 2.1 Let C be a null curve in R4
1 . Then any screen vector bundle S

(
TC⊥)

of C is Riemannian.

Suppose C is a null curve in R4
1 and D is the Levi-Civita connection on R4

1 . In this case, {T, N, W1, W2}
is a frame along C , where T and N are null vectors and W1, W2 are space-like vectors. Then, we obtain the
following equations:

DT T = hT + k1W1

DT N = −hN + k2W1 + k3W2

DT W1 = −k2T − k1N + k4W2

DT W2 = −k3T − k4W1,

(2.4)

where h and {k1, k2, k3, k4} are smooth functions on U ⊂ C and {W1, W2} is a certain orthonormal basis

of Γ
(
S

(
TC⊥)

|U
)
. We call F = {T, N, W1, W2} a Frenet frame on R4

1 along C with respect to the screen

vector bundle S
(
TC⊥)

and the functions {k1, k2, k3, k4} curvature functions of C with respect to F . Finally,

equations (2.4) are called the Frenet equations with respect to F [2]

Thus, we may give the following remarks.

Remark 2.1 For a null curve C in the Minkowski 4-space R4
1 there always exist a screen vector bundle

S
(
TC⊥)

and a Frenet frame F induced by S
(
TC⊥)

on any coordinate neighborhood U ⊂ C . In fact, there
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exist a Riemannian metric g on the vector bundle TC⊥ over C . Then consider S
(
TC⊥)

as the complementary

orthogonal vector bundle to TC in TC⊥ with respect to g .

If h = 0 in (2.4), then the parameter t is said to be a distinguished parameter. When we choose t as a
distinguished parameter, the first two equations in (2.4) become

DT T = k1W1

DT N = k2W1 + k3W2

(2.5)

The other equations remain unchanged. Thus we make the following remarks.

Remark 2.2 If C is a null curve in R4
1 given by the distinguished parameter t , then DT T is a space-like

vector field, so we may choose W1 as a unit space-like vector field collinear to DT T .

Remark 2.3 If k1 = 0 in (2.5), then C is a null geodesic in R4
1 .

Remark 2.4 Let C be a null curve given by the distinguished parameter in R4
1 . Then C is a null geodesic of

R4
1 if and only if the first curvature k1 vanishes identically on C .

Definition 2.1 Assume that C ⊂ R4
1 is a null curve with curvature functions k1, k2, k3. Then the harmonic

functions of C in R4
1 are defined as

Hi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

k1

k2
; if i = 1

H ′
1

k3
; if i = 2.

Example 2.1 Consider the curve C in R4
1 given by the equation

C(t) =
1√
2
(sinh t, cosh t, sin t, cos t), t ∈ R

Then the tangent vector bundle of C is

T =
dC

dt
=

1√
2
(cosh t, sinh t, cos t,− sin t)

Since g(T, T ) = 0 , C is a null curve. Moreover,

DT T =
1√
2
(sinh t, cosh t,− sin t,− cos t) and g(DT T, DT T ) = 1 > 0,

DT T is a space-like vector field, so we can take DT T = W1 which implies that h = 0 and k1 = 1 in the first
equation of (2.4). Thus h = 0 implies that t is the distinguished parameter for C and by Remark 2.3, C is a

non-geodesic in R4
1 . By taking the derivative of W1 with respect to T , we have

DT W1 =
1√
2
(cosh t, sinh t,− cos t, sin t, ) (2.6)

268



ASLANER, İHSAN BORAN

Choosing W2 = 1√
2
(sinh t, cosh t, sin t, cos t), and taking the derivative with respect to T , we have

DT W2 =
1√
2
(cosh t, sinh t, cos t,− sin t, ) = T.

This implies that k3 = −1, k4 = 0 in equation (2.4) and we obtain

N =
1√
2
(− cosh t,− sinh t, cos t,− sin t, ).

By taking the derivative of N with respect to T , we have

DT N =
1√
2
(− sinh t,− cosh t, cos t,− sin t, ) = −W2.

This implies that k2 = 0 in equation (2.4), so the harmonic curvatures H1 and H2 of C are indefinite.

3. The characterizations of null helices in minkowski 4-space R4
1

In the Euclidean space R3 , a helix satisfies that its tangent makes a constant angle with a fixed direction
called the axis. In the general case, we must replace the fixed direction by a parallel vector field. The authors
proved that a curve is a helix if and only if there exists a parallel vector field lying in the osculating space of
the curve and making constant angles with the tangent and the principal normal [5].

When the ambient space is a Minkowski space, then some results have been obtained. For example, in
[3] a non-null curve α immersed in R3

1 is a helix if and only if its tangent indicatrix is contained in some plane.

In the geometry of null curves difficulties arise because the arc length vanishes, so that it is not possible
to normalize the tangent vector in the usual way. A method of proceeding is to introduce a new parameter
called the pseudo-arc which normalizes the derivative of the tangent vector.

Suppose C is a null curve in R4
1 given by the distinguished parameter. Moreover, if the last curvature

k4 vanishes, then the frame {T, N, W1, W2} is called a distinguished Frenet frame [6].

Definition 3.1 Let C : I ⊂ R −→ R4
1 be a null curve and X be a non-zero constant vector field in R4

1 . If
g(T, X) �= 0 is a constant for all t ∈ I , then the curve C is said to be null helix and sp{X} is said to be the
inclination axes of C .

Let C be a null helix give by the distinguished parameter and {T, N, W1, W2} be a distinguished Frenet frame in

R4
1 . If C is a non geodesic curve, then there exists a unit constant vector field X such that g(T, X) = constant .

Thus by taking the derivative we obtain g(DT T, X) = 0. Moreover, by using the first equation from (2.5) we
obtain

g(DT T, X) = k1g(W1, X). (3.1)

Since g(DT T, X) = 0 and from (2.5) k1 �= 0, we may write

g(W1 , X) = 0. (3.2)
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By taking the derivative of (3.2) with respect to T and using the third equation in (2.4), we have

g(DT W1, X) = 0 =⇒ −k2g(T, X) − k1g(N, X) = 0

and

g(N, X) = −k2

k1
g(T, X) = −H−1

1 g(T, X), (3.3)

where H1 is the first harmonic curvature of the curve C . By taking the derivative of (3.3) with respect to T

and using the second equation in (2.5), we have

g(DT N, X) =
H ′

1

H2
1

g(T, X) = k3g(W2, X).

This implies that

g(W2, X) =
H ′

1

H2
1k3

g(T, X) =
H2

H2
1

g(T, X), (3.4)

where H2 is the second harmonic curvature of the curve C . By taking the derivative of (3.4) with respect to
T and using the last equation in (2.4) we have

g(DT W2, X) =
(

H ′
2

H2
1

− 2H ′
1 H2

H3
1

)
g(T, X) = −k3g(T, X)

=⇒ H ′
2 =

(
2H2

2

H1
− H2

1

)
k3.

Thus we can state the following theorem.

Theorem 3.1 If C is a null helix given by a distinguished Frenet frame {T, N, W1, W2} and curvature functions

k1, k2, k3 , then there exists a unit constant vector field X in R4
1 such that, sp{X} being a slope axis,

g(N, X) = −H−1
1 g(T, X), g(W1 , X) = 0, g(W2, X) =

H2

H2
1

g(T, X),

where H1 and H2 are the first and second harmonic curvatures of C , respectively, and

H ′
2 =

(
2H2

2

H1
− H2

1

)
k3.

Example 3.1 Let C : I ⊂ R −→ R4
1 be the null curve defined by

C (t) = (t, 0, cos t, sin t) ,

and X = (1, 0, 0, 0) a unit constant vector field in R4
1 . The tangent vector bundle of C is

T =
dC

dt
= (1, 0,− sin t, cos t).
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C is a null helix since g(T, T ) = 0 and g(T, X) = −1 = constant .
Also the frame {T, N, W1, W2} is a distinguished Frenet frame along C where

N = 1
2
(−1, 0,− sin t, cos t) ,

W1 = (0, 0,− cos t,− sin t) ,

W2 = (0, 1, 0, 0) .
Thus we can find the results

k1 = 1 , k2 = 1
2 , k3 = 0 and H1 = 2 , H2 = 0 .

Example 3.2 Let C be the curve in R4
1 defined by

C(t) = (
1
3
t3 + 2t, t2,

1
3
t3, 2t), t ∈ R

Then
dC

dt
= T = (t2 + 2, 2t, t2, 2) and g(T, T ) = 0 , so C is a null curve in R4

1 . If we take X = (0, 0, 0, 1
2 ) ,

then g(T, X) = 1 �= 0 is a constant. Therefore the curve C is a null helix. Since DT T = 2(t, 1, t, 0) �= 0 , C is
a non geodesic curve. Thus

N = −1
8
(t2 + 2, 2t, t2,−2).

Since h = g(DT T, N) = 0 , the parameter t is a distinguished parameter for C . Hence from (2.4) we have
k1 = 2 and

W1 = (t, 1, t, 0).

Since DT N = −1
4
(t, 1, t, 0) = −1

4
W1 we have k2 = −1

4
and k3 = 0 . Choose

W2 =
1
2
(t2, 2t, t2 − 2, 0)

then DT W2 = W1 and DT W1 =
1
4
T − 2N − W2.

The harmonic functions of C are H1 =
k1

k2
= −8 and H2 = 0 .

Theorem 3.2 A null curve C is a helix in the Minkowski 4-space R4
1 if and only if there exists a parallel

vector field lying in the space Sp{T, N, W2} of the curve; orthogonal to W1 and making constant angles with T

which is the tangent of C .

Proof: The necessary part follows from Theorem 3.1. So we prove the sufficient part. Let X be a
non-zero constant vector field in the space sp{T, N, W2} , hence g(W1 , X) = 0. Clearly this implies that

k1g(W1 , X) = 0

Since k1g(W1, X) = g(DT T, X) we get g(T, X) is a constant. Therefore C is a null helix.
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