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Abstract

Being motivated by some methods for construction of homothetically indecomposable polytopes, we

obtain new methods for construction of families of integrally indecomposable polytopes. As a result, we

find new infinite families of absolutely irreducible multivariate polynomials over any field F . Moreover, we

provide different proofs of some of the main results of Gao [2].
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1. Introduction

Absolutely irreducible polynomials over a field are important and have applications in many areas of

algebra and geometry such as algebraic geometry, number theory, coding theory, combinatorics, permutation

polynomials. We have some well-known irreducibility criteria such as Eisenstein criterion and Eisenstein-

Dumas criterion. Another criterion in the literatures is known as Newton polygon method. Recently, Gao

has strengthened Newton polygon method as Newton polytope method. As a result of Newton polytope method,

existence of an integrally indecomposable polytope in R
n implies the existence of an infinite family of absolutely

irreducible polynomials in n variables over an arbitrary field (see Remark 1.4 below). In [2, 3], infinite

classes of integrally indecomposable polytopes have been found by some methods for constructing integrally

indecomposable polytopes. A connection of homothetic indecomposability to integral indecomposability was

also given in [3].

In this study we obtain further connections and applications of homothetic indecomposability to integral

indecomposability. Using modifications of some methods for construction of homothetically indecomposable

polytopes, we obtain new methods for construction of new families of integrally indecomposable polytopes,

which are not included in [2, 3]. Therefore, we find new infinite families of absolutely irreducible polynomials

(see Theorems 2.4, 2.7 and 2.8 below). Moreover, using our results we give different proofs of some of the main

results of [2], see Example 2.10 below. Throughout the paper, we provide concrete examples illustrating our

results.
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In the rest of this section we give some basic facts and definitions for Newton polytope method. We give

our results in Section 2, after some background on the homothetic indecomposability.

Let R
n denote the n-dimensional Euclidean space and S be a subset of R

n. The smallest convex set

containing S, denoted by conv(S), is called the convex hull of S. When S = {a1, a2, ..., an} is a finite set, we

shall write conv(a1 , ..., an) instead of conv(S). It can be shown easily that

conv(S) =

{
k∑

i=1

λixi : {x1, ..., xk} ⊆ S, λi ≥ 0,
k∑

i=1

λi = 1

}
.

The affine hull aff(S) of S is defined as

aff(S) =

{
k∑

i=1

λixi : {x1, ..., xk} ⊆ S,

k∑
i=1

λi = 1

}
.

For any point x ∈ S , x is said to be in the relative interior of S , denoted as x ∈ relint(S), if x lies in the

interior of S relative to aff(S), i.e. there exists an open ball B in aff(S) such that x ∈ B ⊂ S.

The convex hull of finitely many points in R
n is called a polytope. A point of a polytope is called a

vertex if it is not on the line segment joining any other two different points of the polytope. It is known that a

polytope is always the convex hull of its vertices, for example see [13, Proposition 2.2].

The main operation for convex sets in R
n is defined as follows.

Definition 1.1 For any two sets A and B in R
n, the sum

A + B = {a + b : a ∈ A, b ∈ B}

is called Minkowski sum, or vector addition of A and B.

A point in R
n is called integral if its coordinates are integers. A polytope in R

n is called integral if all

of its vertices are integral. An integral polytope C is called integrally decomposable if there exist integral

polytopes A and B such that C = A + B where both A and B have at least two points. Otherwise, C is

called integrally indecomposable.

Let F be any field and consider any polynomial

f(x1, x2, ..., xn) =
∑

ce1e2...enxe1
1 xe2

2 ...xen
n ∈ F [x1, ..., xn].

We can think an exponent vector (e1, e2, ..., en) of f as a point in R
n. The Newton polytope of f, denoted

by Pf , is defined as the convex hull in R
n of all the points (e1, ..., en) with ce1e2...en �= 0.

Recall that a polynomial over a field F is called absolutely irreducible if it remains irreducible over

every algebraic extension of F .

By using Newton polytopes of multivariate polynomials, we can determine infinite families of absolutely

irreducible polynomials over an arbitrary field F by using the following result due to Ostrowski [9].

Lemma 1.2 Let f, g, h ∈ F [x1, ..., xn] with f �= 0 and f = gh. Then Pf = Pg + Ph.
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Proof. See, for example, the proof of [2, Lemma 2.1]. �

As a direct result of Lemma 1.2, we have the following corollary which is an irreducibility criterion for

multivariate polynomials over arbitrary fields.

Corollary 1.3 Let F be any field and f a nonzero polynomial in F [x1, ..., xn] not divisible by any xi. If the

Newton polytope Pf of f is integrally indecomposable then f is absolutely irreducible over F.

Proof. See [2, page 507]. �

Remark 1.4 For a polynomial f ∈ F [x1, x2, ..., xn], if Pf is integrally indecomposable, we say that f is

absolutely irreducible over F by the polytope method.

Notation: For any element v = (a1, ..., an) of Z
n we shall write gcd(v) to mean gcd(a1, ..., an), i.e. the

greatest common divisor of all the components of v. Similarly, for several vectors v1, ..., vk in Z
n, by writing

gcd(v1, ..., vk) we mean the greatest common divisor of all the components of the vectors v1, ..., vk. For any

points v1, v2 ∈ Z
n, [v1, v2] refers to line segment from v1 to v2.

2. Integrally indecomposable polytopes in R
n

Beside the integral indecomposability, there is another concept, homothetic indecomposability for poly-

topes; see the book [4, Chapter 15]. Let P and Q be polytopes in R
n, not necessarily integral. Q is said to

be homothetic to P if there exists a real number r ≥ 0 and a vector v ∈ R
n such that

Q = rP + v = {ra + v : a ∈ P }.

A polytope Q is said to be homothetically indecomposable if Q = A + B for some polytopes A and B

then either A or B is homothetic to Q, e.g. if A is homothetic to Q then

Q = A + B = (rQ + v) + (1 − r)Q + (−v)

for some 0 ≤ r ≤ 1 and v ∈ R
n. Otherwise, Q is called homothetically decomposable. Homothetically

indecomposable polytopes have been widely studied in the literature, for example in [5, 7, 8, 10, 11, 12].

There is no direct comparison between integral and homothetic indecomposability of polytopes. A

polytope may satisfy only one of them or both or none.

For example, the only homothetically indecomposable polytopes in the plane are line segments and

triangles. Any summand of a line segment must be parallel to it and have smaller length than itself. Also, the

edges of a summand of triangle T must be parallel to the edges of T and have smaller length than them.

As we know, only some triangles or line segments, and many polygons having more than three edges are

integrally indecomposable. An integral square is both integrally and homothetically decomposable. There is a

result in [3] giving a relation between these two different concepts of decomposability of polytopes.
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Proposition 2.1 Let P be an integral polytope in R
n with vertices v1, ..., vm. If P is homothetically indecom-

posable and

gcd(v1 − v2, ..., v1 − vm) = 1

then P is integrally indecomposable.

Proof. See the proof of [3, Proposition 12]. �

From Proposition 2.1 we get the following simple and useful lemma.

Lemma 2.2 Let Q be a homothetically indecomposable integral polytope with vertices v1, ... ,vm. Then, Q is

integrally indecomposable if and only if

gcd(v1 − v2, ..., v1 − vm) = 1.

Proof. Let gcd(v1−v2, ..., v1−vm) = d > 1. Then, the polytope P = conv(0, v2 −v1, ..., vm−v1) is integral.

Therefore, Q = v1 + d · (1
d
P ).

Converse follows from Proposition 2.1. �

By Lemma 2.2, we can get infinitely many integrally indecomposable polytopes using the homothetically

indecomposable polytopes constructed in [5, 7, 8, 10, 11, 12].

In this section, we need some new terminologies. For details, see [1].

Definition 2.3 For α ∈ R, β ∈ R
n the set

H = {x ∈ R
n : β · x = α}

is called a hyperplane, where

β · x = β1v1 + ... + βnvn

is the dot product of the vectors β = (β1 , ..., βn), v = (v1, ..., vn). In a natural manner, the closed halfspaces

formed by H are defined as

H− = {x ∈ R
n : β · x ≤ α}, H+ = {x ∈ R

n : β · x ≥ α}.

A hyperplane HK is called a supporting hyperplane of a closed convex set K ⊂ R
n if K ⊂ H+

K or

K ⊂ H−
K and K ∩ HK �= ∅, i.e. HK contains a boundary point of K . A supporting hyperplane HK of K is

called nontrivial if K is not contained in HK . The halfspace H−
K (or H+

K ) is called a supporting halfspace of

K, possibly we may have K ⊂ HK .

Let C ⊂ R
n be a compact convex set. Then for any nonzero vector v ∈ R

n, the real number s =

supx∈C(x · v) is defined as max{x · v : x ∈ C}, where

x · v = x1v1 + ... + xnvn
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is the dot product of the vectors x = (x1, ..., xn) and v = (v1, ..., vn).

Let K ⊂ R
n be a nonempty convex compact set. The map

hK : R
n → R, u → supx∈K (x · u)

is called the support function of K.

Let K ⊂ R
n be a nonempty convex compact set. For every fixed nonzero vector u ∈ R

n, the hyperplane

having normal vector u is defined as

HK(u) = {x ∈ R
n : x · u = hK(u)}.

Note that HK(u) is a supporting hyperplane of K.

It is known that every supporting hyperplane of K has a representation of this form. See [1, Page 19].

Let P be a polytope. The intersection of P with a supporting hyperplane HP is called a face of P . A

vertex of P is a face of dimension zero. An edge of P is a face of dimension 1, which is a line segment. A

face F of P is called a facet if dim (F)= dim (P) −1. If u is any nonzero vector in R
n , FP (u) = HP (u)∩ P

shows the face of P in the direction of u, that is the intersection of P with its supporting hyperplane HP (u)

having outer normal vector u. It is known that FP (u) = FQ(u) + FR(u) if P = Q + R for some polytopes Q

and R.

Let P be a polytope. A sequence F0, F1, ..., Fm of faces of P is called a strong chain if dim(Fi∩Fi+1) ≥ 1

for i = 0, ..., m− 1. Such a chain is said to join two vertices u and v of P if, say u ∈ F0, and v ∈ Fm. See [7].

We observe that in the theorems about homothetic indecomposability given in [10, 7], we can consider

strong chain of integrally indecomposable faces instead of strong chain of homothetically indecomposable faces.

As a result, we get new theorems giving infinitely many new integrally indecomposable polytopes in R
n .

Theorem 2.4 Let P be an integral polytope in R
n such that any two of its vertices can be joined by a strong

chain of integrally indecomposable faces. Then P is integrally indecomposable.

Proof. Let us assume that P = Q + R for some integral polytopes such that P = conv(p1, p2, ..., pm) and

Q = conv(q1, q2, ..., qm), where in order to have the same number of vertices we allow the repetition of vertices

of Q . We shall show that Q is a translation of P, i.e. Q = P + v for some vector v ∈ R
n.

Let pi be any vertex of P and F = conv(pi, pi+1, ..., pk) = P ∩ HP (u) be an integrally indecomposable

face of P containing pi, where HP (u) is a supporting hyperplane of P having normal vector u ∈ R
n. Then,

the corresponding face G = conv(qi, qi+1, ..., qk) = F ∩ HP (u) of Q, i.e. F = G + H for some face H of R,

must be of the form G = F + v for some vector v ∈ R
n. Thus, any edge [qj, qj+1] of Q must be of the form

[qj, qj+1] = [pj, pj+1]+v. Hence, qj = pj +v and qj+1 = pj+1+v. Since any two vertices e, e′ of P can be joined

by a strong chain of integrally indecomposable faces F1, ..., Fs, where e ∈ F1, ..., e
′ ∈ Fs and dim (Fi∩Fi+1) ≥ 1

we conclude that qi = pi+v for all i, = 1, ..., m. So, Q = P +v. Consequently, P is integrally indecomposable. �

Example 2.5 As a result of Theorem 2.4, we give six new integrally indecomposable polytopes in R
n. We

can have infinitely many examples of this kind by taking extra suitable hyperplanes in the following items. We
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consider our polytopes as seen in the respective figures. That is, in Figures 1,2, 4, 5 and 6, we assume that

projection of C1 on C2 lies in relint(C2).

(1) Consider Figure 1. Let n ≥ 3 be an integer. Let C1 = conv(v1, v2, v3, ..., vn), C2 = conv(u1, u2, u3, ..., u2n)

and C3 = conv(w1, w2, w3, ..., wn) be integral polytopes lying on different nonparallel hyperplanes as shown

in Figure 1. Consider the integral polytope

C = conv(C1, C2, C3).

Assume that lateral white faces of C are integrally indecomposable quadrangles conv(v1, v2, u2, u3),

conv(v2, v3, u4, u5), ..., conv(vn, v1, u2n, u1). Then, C is integrally indecomposable if C1 or C2 is in-

tegrally indecomposable.
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Figure 1. Figure 2.

��

��

�
�

� � ��

��

�

�
� �

�

�
� �

��
��

��

��
��

��

��
�� ��

��

Figure 3. Figure 4.

(2) Consider Figure 2. Let n ≥ 4 be an even integer. We take the integral polytopes C1 = conv(v1 , v2, v3, ..., vn),

C2 = conv(u1, u2, u3, ..., un) and C3 = conv(w1, w2, w3, ..., wn) lying on different nonparallel hyperplanes
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as shown in Figure 2. Consider the integral polytope

C = conv(C1, C2, C3).

Suppose that the lateral faces conv(v1, v2, u1, u2), conv(v3 , v4, u3, u4), ..., conv(vn−1, vn, un−1, un) are

integrally indecomposable quadrangles. If C1 or C2 is integrally indecomposable then, C is integrally

indecomposable.

(3) Consider Figure 3. Let n ≥ 4 be an integer and H1, H2 be parallel nonintersecting hyperplanes in R
n.

Let C1 = conv(v1, v2, v3, ..., vn) ⊂ H1 and C2 = conv(u1, u2, u3, ..., un) ⊂ H2 be integral polytopes such

that

(i) [v1, v2] is not parallel to [u1, u2], [v3, v4] is not parallel to [u3, u4], ..., ( [vn, v1] is not parallel to

[un, u1] if n is a positive odd integer),

��
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��

��
��

��

��

�� ��

��

��
��
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Figure 5. Figure 6.

(ii) [v2, v3] is not parallel to [u2, u3], [v4, v5] is not parallel to [u4, u5], ..., ( [vn, v1] is not parallel to

[un, u1] if n is a positive even integer).

Figure 3 corresponds to the case n is an even positive integer. Assume that the triangular lateral faces of

the polytope C = conv(C1, C2) are integrally indecomposable. If C1 or C2 is integrally indecomposable

then so is C. Alternatively, if two adjacent triangular faces, the face C1 and the face C2 are integrally

indecomposable then C is integrally indecomposable.

Note that for non-parallel hyperplanes H1 and H2 in R
n, a similar result holds.
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(4) Consider Figure 4. Let n ≥ 4 be an integer. Let C1 = conv(v1 , v2, v3, ..., vn), C2 = conv(u1, u2, u3, ..., un),

and C3 = conv(w1, w2, w3, ..., wn) be integral polytopes lying on different parallel hyperplanes as shown in

Figure 4. Consider the integral polytope C = conv(C1, C2, C3). Assume that

(i) [v1, v2] is not parallel to [u1, u2], [v3, v4] is not parallel to [u3, u4], ..., ( [vn−1, vn] is not parallel to

[un−1, un] if n is a positive even integer),

(ii) [u1, u2] is not parallel to [w1, w2], [u3, u4] is not parallel to [w3, w4], ..., ( [un, u1] is not parallel to

[wn, w1] if n is a positive odd integer).

Also suppose that the lateral triangular faces of C are integrally indecomposable. Then, C is integrally

indecomposable if C1 or C2 is integrally indecomposable.

(5) Consider the polytope P in Figure 5. P is in the type of the polytope of case (4). Therefore, the same

result holds in this case also. Furthermore, in this case P lies inside a pyramid. Therefore, if the integral

polytope

C3 = conv(w1, w2, ..., wn)

is integrally indecomposable then P is integrally indecomposable by [2, Theorem 4.11].

(6) Consider Figure 6. In order to have another example of integrally indecomposable polytope Q, we take

an extra integral point v0 and form the integral polytope Q = conv(C, v0) where C = conv(C1, C2, C3) is

the polytope considered in case (4). Suppose that the lateral colored triangular faces of Q are integrally

indecomposable. If the polytope

C3 = conv(w1, w2, ..., wn)

is integrally indecomposable then so is Q. Note that Q may not lie inside a pyramid.

Note that in Example 2.5, (1), (2), (3), (4), (5) it is impossible to find a strong chain of homothetically

indecomposable faces joining any two distinct vertices of the related polytopes.

Corollary 2.6 If all 2-dimensional faces of a polytope P in R
n are integrally indecomposable, then so is P .

Proof. Let Q = conv(q1, ..., qm) be a summand of P = conv(p1 , ..., pm), where to have the same

number of vertices we allow the repetition of vertices of Q. Consider any 2-dimensional face FP (u) =

conv(pi, pi+1, ..., pj−1, pj) = P ∩ HP (u) of P, which is formed by the intersection of P with a supporting

hyperplane HP (u) of P having normal vector u ∈ R
n. Then, since FP (u) is integrally indecomposable, the

face FQ(u) = conv(qi, qi+1, ..., qj−1, qj) = Q ∩ HP (u) of Q must be of the form FQ(u) = FP (u) + v for some

nonzero vector v ∈ R
n. So, any edge [qr, qr+1] of Q must be of the form [qr, qr+1] = [pr, pr+1] + v. Hence,

qr = pr + v and qr+1 = pr+1 + v. Since any two edges E, E′ of P can be joined by a strong chain of integrally

indecomposable faces F0, ..., Fs, where E ⊂ F0, ..., E
′ ⊂ Fs and dim (Fi∩Fi+1) ≥ 1 we deduce that qi = pi +v

for all i, = 1, ..., m. So, Q = P + v. Consequently, P is integrally indecomposable. �

A family F of faces of a polytope P is called strongly connected if for each F, G ∈ F , there exists

a strong chain F = F1, F2, ..., Fm = G with each Fi ∈ F . A subset F of faces touches a face F of P if

(
⋃

Fi∈F Fi) ∩ F �= ∅ . Recall that a facet of P is a face F of dimension dim(F ) = dim(P ) − 1. See [7].

290



KOYUNCU, ÖZBUDAK

Theorem 2.7 If P is an integral polytope having a strongly connected family of integrally indecomposable faces

that touches each of its facets then it is integrally indecomposable.

Proof. We can consider an n-dimensional polytope P in R
n, which has a strongly connected family F of

integrally indecomposable faces touching every facet of P. We can express P as

P = {x ∈ R
n : x · ui ≤ hP (ui), i = 1, ..., m},

where u1, ..., um are the outer normal vectors to the facets of P having supporting functions hP (ui) =

supx∈P (x · ui) and the supporting hyperplanes HP (ui) = {x ∈ R
n : x · ui = hP (ui)} .

Let us suppose that P = Q + R for some integral polytopes Q, R in R
n. Now, consider any strong

chain F0, F1, ..., Fk ∈ F of integrally indecomposable faces of P . Let Gj be the face of Q corresponding to

Fj, i.e. Fj = Gj + Hj for some face Hj of R. Since Gj is a summand of the integrally indecomposable face

Fj, there exists a vector tj ∈ R
n such that Gj = Fj + tj . Since dim(Fj−1 ∩ Fj) ≥ 1 for each j, we see that

tj−1 = tj. Therefore, for any strongly connected family F of integrally indecomposable faces of P, we have a

vector t ∈ R
n such that if G is the face of Q corresponding to F ∈ F then G = F + t.

By the hypothesis of our theorem, the family F touches every facet of P. If Fi = FP (ui) is such a facet

then it has a vertex a lying in some face FP (v) ∈ F . The corresponding vertex b of Q lies in FQ(v). Hence, we

have b = a+t. By considering the support function hQ of Q , we have hQ(ui) = b·ui = (a+t)·ui = a·ui+t·ui =

hP (ui)+t·ui = hP+t(ui) for i = 1, ..., m. As a result, Q = P +t, showing that P is integrally indecomposable. �

The following theorem is a consequence of Theorem 2.7.

Theorem 2.8 Let A and B be integral polytopes such that C = conv(A ∪ B) with dim(C) = dim(A) +

dim(B) + 1. Moreover, suppose also that ai, ai+1, a are vertices of A, such that ai and ai+1 are adjacent, and

b is a vertex of B satisfying gcd(b − ai, b− ai+1) = 1 or gcd(b − a) = 1. Then C is integrally indecomposable.

In addition, if C = (v1, v2, ..., vn) then, it is integrally indecomposable if and only if gcd(v1 − v2, v1 −
v3, ..., v1 − vn) = 1 .

Proof. Every facet of C = conv(A ∪ B) contains either A or B. Therefore, if ai, ai+1, a are vertices of A,

ai and ai+1 are being adjacent, and b is a vertex of B with gcd(b−ai, b−ai+1) = 1 or gcd(b−a) = 1 then the

face T = conv(ai, ai+1, b), which is an integrally indecomposable triangle, or the face L = conv(a, b), which is

an integrally indecomposable line segment, meets every facet of C. Therefore, by Theorem 2.7, taking F = {T}
or F = {L}, C is integrally indecomposable.

Second part follows from Lemma 2.2 since C is also homothetically indecomposable by [7, Theorem 3]. �

Example 2.9 (i) Numeric example for Theorem 2.4:

Let us consider the polytopes

C1 = conv((0, 10, 0), (15, 0, 0), (30, 0, 0), (35, 10, 0), (35, 28, 0),

(32, 40, 0), (16, 40, 0), (0, 26, 0)),
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C2 = conv((5, 12, 10), (14, 3, 10), (27, 3, 10), (33, 9, 10), (33, 24, 10),

(28, 3, 10), (16, 33, 10), (5, 26, 10)),

C3 = conv((12, 14, 20), (17, 7, 20), (25, 7, 20), (30, 10, 20), (30, 20, 20),

(26, 23, 20), (18, 23, 20), (12, 22, 20))

lying in the planes z = 0, z = 10 and z = 20, respectively. Then, the polytope C = conv(C1, C2, C3, (21, 15, 30)),

which is of type of the polytope in Example 2.5, (6), is integrally indecomposable by Theorem 2.4 since C has a

strong chain of integrally indecomposable triangular faces joining any two of its vertices and gcd((21, 15, 30)−
(12, 14, 20)) = gcd(9, 1, 10) = 1.

(ii) Numeric example for item (5) of Example 2.5:

Now, take the polytopes

P1 = conv((0, 10, 0), (15, 0, 0), (30, 12, 0), (12, 36, 0)),

P2 = conv((5, 14, a), (14, 6, a), (24, 14, a), (11, 12, a)),

P3 = conv((8, 14, b), (15, 10, b), (20, 14, b), (11, 18, b))

located in the planes z = 0, z = a and z = b , respectively, with a, b positive integers such that b ≥ a .

P3 is an integrally indecomposable quadrangle since its all edges are primitive. We see that the polytope

P = conv(P1, P2, P3) is integrally indecomposable by Theorem 2.4 (also by Theorem 2.7) since it has a strongly

connected family F of integrally indecomposable faces which connects any two vertices of P (which touches

each facet of P .) Actually, this strongly connected family of faces is

F = {conv((8, 14, b), (15, 10, b), (20, 14, b), (11, 18, b)),

conv((0, 10, 0), (15, 0, 0), (14, 6, a)), conv((0, 10, 0), (14, 6, a), (5, 14, a))

conv((5, 14, a), (14, 6, a), (15, 10, b), conv((5, 14, a), (15, 10, b), (8, 14, b)),

conv((30, 12, 0), (12, 36, 0), (24, 14, a)), conv((12, 36, 0), (11, 22, a), (24, 14, a)),

conv((24, 14, a), (11, 22, a), (20, 14, b), conv((11, 22, a), (20, 14, b), (11, 18, b))}.
(iii) Numeric example for item (4) of Example 2.5:

Consider the polytopes

Q1 = conv((5, 14, c), (14, 6, c), (24, 14, c), (11, 12, c)),

Q2 = conv((0, 10, d), (15, 0, d), (30, 12, d), (12, 36, d)),

Q3 = conv((8, 14, e), (15, 10, e), (20, 14, e), (11, 18, e))

placed in the planes z = c, z = d and z = e respectively with c, d, e positive integers such that e > d > c .

Q3 is an integrally indecomposable quadrangle since its all edges are primitive. We see that the polytope

Q = conv(Q1, Q2, Q3) is integrally indecomposable by Theorem 2.4 (also by Theorem 2.7) since it has a

strongly connected family F of integrally indecomposable faces which connects any two vertices of Q (which

touches each facet of Q .) The suitable strongly connected family of integrally indecomposable faces is

F = {conv((8, 14, e), (15, 10, e), (20, 14, e), (11, 18, e)),

conv((0, 10, d), (15, 0, d), (14, 6, c)), conv((0, 10, d), (14, 6, c), (5, 14, c))

conv((5, 14, c), (14, 6, c), (15, 10, e), conv((5, 14, c), (15, 10, e), (8, 14, e)),

conv((30, 12, d), (12, 36, d), (24, 14, c)), conv((12, 36, d), (11, 22, c), (24, 14, c)),

conv((24, 14, c), (11, 22, c), (20, 14, e), conv((11, 22, c), (20, 14, e), (11, 18, e))}.
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Example 2.10 Let P = conv(v1, v2, ..., vk) be an (m− 1)-dimensional integral polytope lying in a hyperplane

H in R
n. Take any integral point v /∈ H. Then the pyramid C=conv(P,v) is homothetically indecomposable

by Theorem 2.8 since

m = dim(C) = dim(P ) + dim({v}) + 1 = (m − 1) + 0 + 1.

In particular, our pyramid C is integrally indecomposable if and only if

gcd(v − v1, v − v2, ..., v− vk).

Consequently, e.g., for two distinct integral points v1 and v in R
n , the line segment � = [v1, v] is

integrally indecomposable if and only if gcd(v − v1) = 1 since

dim(�) = 1 = 0 + 0 + 1 = dim({v1}) + dim({v}) + 1.

Moreover, if v1, v2 and v are three distinct nonlinear integral points in R
n then the triangle T =

conv(v1, v2, v) is integrally indecomposable if and only if gcd(v − v1, v − v2) = 1 since

dim(T ) = 2 = 1 + 0 + 1 = dim([v1, v2]) + dim({v}) + 1.

Let �1 = [v1, v2] and �2 = [v3, v4] be the skew line segments formed by the distinct integral points

v1, v2, v3, v4 in R
n not lying in the same plane. Then, by Theorem 2.8, the polytope conv(v1, v2, v3, v4) is

integrally indecomposable if and only if gcd(v1 − v2, v1 − v3, v1 − v4) = 1. Because, we have

dim(conv(�1 ∪ �2)) = 3 = 1 + 1 + 1 = dim(�1) + dim(�2) + 1.

Remark 2.11 Example 2.10 provides instructive examples relevant to [4, Fact 2-page 318].
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Muğla University

48170, Muğla-TURKEY
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