
Turk J Math

33 (2009) , 315 – 320.

c© TÜBİTAK
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A note on the lévy constant for continued fractions

Ting Zhong

Abstract

In this note, we study the lévy constant of continued fraction expansions. We show that for all x ∈ [0, 1),

the upper lévy constant of x is finite except a set with Hausdorff dimension one-half.
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1. Introduction

It is well known that every irrational number x ∈ [0, 1) has a unique standard continued fraction expansion
of the form

x =
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

=: [a1, a2, a3, · · · ],

where each partial quotient an(x) ∈ N is uniquely defined by the number x .

For any n ≥ 1 and a1, · · · , an ∈ N , define a CF-interval of rank n as

I(a1, a2, · · · , an) = {x ∈ [0, 1) : ak(x) = ak, 1 ≤ k ≤ n}.

Therefore, (see [5], section 12), I(a1, · · · , an) is the interval with endpoints
pn

qn
and

pn + pn−1

qn + qn−1
, where pn and

qn are defined by following recurrence relations

p−1 = 1; p0 = 0; pn = anpn−1 + pn−2, n ≥ 1.

q−1 = 0; q0 = 1; qn = anqn−1 + qn−2, n ≥ 1. (1)

Thus, the length of I(a1 , a2, · · · , an) is

|I(a1, a2, · · · , an)| =
∣∣∣pn

qn
− pn + pn−1

qn + qn−1

∣∣∣ =
1

qn(qn + qn−1)
. (2)
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For an irrational number x ∈ [0, 1), we call

β∗(x) = lim sup
n→∞

log qn(x)
n

and β∗(x) = lim inf
n→∞

log qn(x)
n

,

the upper lévy constant and lower lévy constant of x , respectively. If β∗(x) = β∗(x), we say the lévy constant
of x exists and denote the common value by β(x). A famous result of P. Lévy [6] says that for almost all x ,
the lévy constant exists and

β(x) =
π2

12 log 2
≈ 1.18657.

β∗(x) and β∗(x) describe the exponential growth rates of qn(x) in n . Faiver [2] showed that every quadratic

number has a lévy constant. It is easy to see that for any irrational number x ∈ [0, 1), one has β∗(x) ≥ log
√

5+1
2 ,

then Faiver [3] also established that for all λ ≥ log
√

5+1
2 , there exists an x ∈ I such that β(x) = λ by employing

an ergodic theorem. Later, Baxa [1] showed the following more general result by elementary means.

Theorem 1.1 For any log
√

5+1
2

≤ λ∗ ≤ λ∗ < ∞ , there exist uncountably many x ∈ [0, 1) such that β∗(x) = λ∗

and β∗(x) = λ∗ .

In 2006, Wu [7] improved Baxa’s result by showing the following theorem.

Theorem 1.2 For any log
√

5+1
2 ≤ λ∗ ≤ λ∗ < ∞ , let

E(λ∗, λ
∗) = {x ∈ [0, 1) : β∗(x) = λ∗, β∗(x) = λ∗}.

Then

dimH E(λ∗, λ
∗) ≥ λ∗ − log

√
5+1
2

λ∗ .

In this note, we consider the set of x ∈ [0, 1) whose upper lévy constant is infinite and obtain

Theorem 1.3 Let

E∞ =
{

x ∈ [0, 1) : lim sup
n→∞

log qn(x)
n

= ∞
}
.

Then

dimH E∞ =
1
2
.

Here and in what follows, dimH denotes the Hausdorff dimension of a subset of [0, 1), and | · | denotes the
diameter. We sketch, very briefly, the definition and some basic properties of Hasdorff dimension. If E ⊂ R

and δ > 0, define for each s ≥ 0,

Hs(E) = lim inf
δ→0

{ ∞∑
n=1

|In|s : E ⊂
∞⋃

n=1

In, |In| ≤ δ, n = 1, 2, · · ·
}

,

dimH E = inf
{
s ≥ 0 : Hs(E) = 0

}
= sup

{
s ≥ 0 : Hs(E) = ∞

}
.
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The following two facts are basic in calculating Hasdorff dimension of various sets.

Lemma 1.4 Let E ⊂ R and let s ≥ 0 be given. Suppose for each δ > 0 there is a sequence of intervals {In}
such as E ⊂ ⋃

In , |In| ≤ δ for all n , and
∑∞

n=1 |In|s ≤ 1. Then dimH E ≤ s.

Lemma 1.5 Let E ⊂ R be a Borel set and μ be a measure with μ(E) > 0 . If for any x ∈ E

lim inf
r→0

logμ(B(x, r))
log r

≥ s.

where B(x, r) denotes the open ball with center at x and radius r . Then dimH E ≥ s.

Lemma 1 is obvious; for Lemma 2, see ([4], Proposition 2.3).

2. Proof of Theorem 1.3

In this section, we show Theorem 1.3 in detail and divide the proof into two parts: upper bound and
lower bound.

I. Upper bound. dimH E ≤ 1
2 .

Proof. By (1), we have
anqn−1 ≤ qn ≤ 2anqn−1.

Successive application of this inequality gives

a1a2 · · ·an ≤ qn ≤ 2na1a2 · · ·an. (3)

Thus we get the following alternative description of E∞ :

E∞ =
{
x ∈ [0, 1) : lim sup

n→∞

loga1(x) + loga2(x) + · · ·+ logan(x)
n

= ∞
}
.

Let

E(m) =
{
x ∈ [0, 1) : lim sup

n→∞

log a1(x) + loga2(x) + · · ·+ logan(x)
n

> m
}

.

Then E∞ can be written

E∞ =
∞⋂

m=1

E(m) = lim
n→∞

E(m),

and for every x = [a1, a2, a3, · · · ] ∈ E(m) , there exist infinitely many positive integers ni such that

loga1(x) + · · ·+ logani(x)
ni

> m, i = 1, 2, 3, · · ·

So that, for any δ > 0, the family of the CF-intervals

A(m, δ) =
{

I(a1, a2, · · · , ani) :
loga1(x) + · · ·+ logani(x)

ni
> m, |I(a1, a2, · · · , ani)| ≤ δ, ni ∈ N

}
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is a δ−cover of E(m) .

Note that, for any two CF-intervals, say I and I′ , the following relation holds:

I ∩ I′ 	= φ =⇒ I ⊆ I′ or I′ ⊆ I.

In fact, if I = I(a1 , · · · , an) and I′ = I(a′
1, · · · , a′

n+k) (k ≥ 0) have a common point x = [x1, x2, · · · ] , then

a1 = x1 = a′
1, a2 = x2 = a′

2, · · · , an = xn = a′
n . It follows that I′ ⊆ I .

We remove from A(m, δ) all those the CF-intervals which are contained in other CF-interval in A(m, δ),

and denote the complement by A(m, δ). Then, A(m, δ) is a non-overlapping δ−cover of E(m) .
Now we define a family of measures {μt : t > 1} as

μt(I(a1 , a2, · · · , an)) = e
−np(t)−t log

n�

i=1
log ai

(4)

where p(t) = log ζ(t) = log
∑
n≥1

1
nt , (t > 1).

By (2) and (3), we have for any ε > 0,

log |I(a1, a2, · · · , an)| ε+t
2 ≤ −(ε + t) log(a1a2 · · ·an) = −ε

n∑
i=1

logai − t

n∑
i=1

logai. (5)

By the definition of A(m, δ), for every I = I(a1, a2, · · · , an) ∈ A(m, δ) with m ≥ p(t)
ε

, we have

−ε

n∑
i=1

logai ≤ −ε ·mn ≤ −np(t). (6)

Combining (4), (5) and (6), we get for any ε > 0, and I = I(a1, a2, · · · , an) ∈ A(m, δ) with m ≥ p(t)
ε ,

|I(a1, a2, · · · , an)| ε+t
2 ≤ e

−np(t)−t log
n�

i=1
log ai

= μt(I(a1 , a2, · · · , an)).

Since A(m, δ) is a non-overlapping δ−cover of E(m) , we sum the above inequality to have

∑
I∈A(m,δ)

|I| t+ε
2 ≤

∑
I∈A(m,δ)

μt(I) = μt

( ⋃
I∈A(m,δ)

I
)
≤ 1.

By Lemma 1.4, we get for any t > 1, ε > 0 and m ≥ p(t)
ε

,

dimH E(m) ≤ t + ε

2
.

Letting ε → 0 and since t > 1 is arbitrary, we obtain

dimH E∞ ≤ 1
2
.

�
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II. Lower bound. dimH E∞ ≥ 1
2 .

Proof. Put

F =
{
x ∈ [0, 1) : 2n ≤ an(x) < 2n+1, for all n ≥ 1

}
. (7)

It is easy to check that F ⊂ E∞ . So it is enough to prove dimH F ≥ 1
2 . To give a precise view on the structure

of F , we shall make use of a kind of symbolic space defined as follows.

Dn =
{

(a1, · · · , an) ∈ N
n : 2k ≤ ak < 2k+1, for all 1 ≤ k ≤ n

}
.

For any (a1, · · · , an) ∈ Dn , call

J(a1, · · · , an) = cl
{

x ∈ [0, 1) : ak(x) = ak, 1 ≤ k ≤ n
}

an admissible CF-intervals of rank n , where “cl” denotes the closure of a set in [0, 1). It is observable that

F =
∞⋂

n=1

⋃
(a1,··· ,an)∈Dn

J(a1, · · · , an).

Let μ be a probability measure supported on F such that for every admissible intervals J(a1, · · · , an),

μ(J(a1, · · · , an)) =
1

	Dn
=

1
21+2+···+n

, (8)

where 	 denotes the cardinality.

Now we estimate the μ-measure of arbitrary ball B(x, r) with center x ∈ F and radius r small enough.
Choose n ≥ 1 such that

|J(a1, · · · , an+1)| ≤ r < |J(a1, · · · , an)|.
Calculations show

|J(a1, · · · , an)| ≤
∑

1≤i≤4

|J(a1, · · · , an−1, an + i)|.

So that, from an ≥ 2 and r < |J(a1, · · · , an)| we have

B(x, r) ⊂ J(a1, · · · , an−1). (9)

On the other hand, from (2), (3) and (7), We have

r ≥ |J(a1, · · · , an+1)| >
1

2q2
n+1

>
1

22n+3a2
1a

2
2 · · ·a2

n+1

>
1

22n+3+(n+1)(n+4)
. (10)

Combining (8), (9) and (10), we get

lim inf
r→0

log μ(B(x, r))
log r

≥ lim inf
r→0

(n−1)n
2

2n + 3 + (n + 1)(n + 4)
=

1
2
.
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By using lemma 1.5, we obtain dimH F ≥ 1
2 , which shows dimH E∞ ≥ 1

2 since F ⊂ E∞ . This completes
the proof. �
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