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A note on the 1évy constant for continued fractions

Ting Zhong

Abstract

In this note, we study the 1évy constant of continued fraction expansions. We show that for all z € [0,1),

the upper 1évy constant of x is finite except a set with Hausdorff dimension one-half.
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1. Introduction

It is well known that every irrational number z € [0, 1) has a unique standard continued fraction expansion

of the form

T = 1 = [a17a27a37"']7

where each partial quotient a,(z) € N is uniquely defined by the number .

For any n > 1 and a1, -+ ,a, € N, define a CF-interval of rank n as
I{ai,a2, -+ ,a,) ={z €[0,1): ax(z) = ar,1 <k <n}.
Therefore, (see [5], section 12), I(ay,- - ,a,) is the interval with endpoints Pn - and %, where p, and
qn qn dn—1
qn are defined by following recurrence relations
pP-1=1 po=0; pn = anPp—1+pn-2, n=1
7-1=0; go=1; ¢gn = angn-1+Ggn—2, n=>1 (1)
Thus, the length of I(a1,as, - ,ay,) is
(01,05, ay)| = |22 = B2 Lol (2)

Gn Gt -1l Gu(@n +qn-1)
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For an irrational number z € [0,1), we call

n—00 n n—00 n

)

the upper 1évy constant and lower lévy constant of z, respectively. If §*(x) = B.(z), we say the 1évy constant
of z exists and denote the common value by ((z). A famous result of P. Lévy [6] says that for almost all z,
the lévy constant exists and

2

T
121og?2

B(x) = ~ 1.18657.

B*(z) and B, (z) describe the exponential growth rates of ¢, (z) in n. Faiver [2] showed that every quadratic

number has a 1évy constant. It is easy to see that for any irrational number « € [0,1), one has S.(z) > log @ ,

then Faiver [3] also established that for all A > log \/52“ , there exists an € I such that §(z) = X\ by employing

an ergodic theorem. Later, Baxa [1] showed the following more general result by elementary means.

Theorem 1.1 For any log @ < A < XA* < 00, there exist uncountably many x € [0,1) such that B.(x) = A\
and [*(x) = \*.

In 2006, Wu [7] improved Baxa’s result by showing the following theorem.

Theorem 1.2 For any log@ <A <A< o0, let

EX\, ) ={z €]0,1): Bu(x) = X, B (x) ="}
Then
A —1 VB+1
dimgr E(A, \Y) > %.
In this note, we consider the set of = € [0,1) whose upper 1évy constant is infinite and obtain

Theorem 1.3 Let

log gn
E>® = {x €1[0,1): limsupw = oo}.
n

Then

. o 1
dimyg F° = R

Here and in what follows, dimyg denotes the Hausdorff dimension of a subset of [0,1), and |- | denotes the
diameter. We sketch, very briefly, the definition and some basic properties of Hasdorff dimension. If £ C R
and 6 > 0, define for each s > 0,

H*(E) = 11£r551f{ i IL]*:EC G I, |L| <6n=1,2-- }
n=1 n=1

dimg E=inf{s >0: H*(E) =0} =sup{s > 0: H*(E) = oo}.
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The following two facts are basic in calculating Hasdorff dimension of various sets.

Lemma 1.4 Let E C R and let s > 0 be given. Suppose for each & > 0 there is a sequence of intervals {I,}
such as E C ULy, [In| <6 forall n, and Y| [I,|* < 1. Then dimy E < s.

Lemma 1.5 Let E C R be a Borel set and u be a measure with u(E) > 0. If for any z € E

r—0 logr

where B(x,r) denotes the open ball with center at x and radius r. Then dimy F > s.

Lemma 1 is obvious; for Lemma 2, see ([4], Proposition 2.3).

2. Proof of Theorem 1.3

In this section, we show Theorem 1.3 in detail and divide the proof into two parts: upper bound and

lower bound.
I. Upper bound. dimpFE < %

Proof. By (1), we have
anQdn—1 < dn < 2anqn—1'

Successive application of this inequality gives
a1az - < gn <2"a1a2 - - ay. (3)

Thus we get the following alternative description of E°°:

1 1 ...+ logay,
E>® = {xe [0,1) : limsup oga1(2) +logaz(2) + -~ + logan(2) zoo}.

n—oo n

Let

1 1 .-+ logay
EM = {x €10,1) : limsup ogai(z) +logas(x) +- - +logan(z) N m}.

n—oo n

Then E°° can be written

E* = () E'™ = lim E™),
m=1

and for every = = [a1,a2,a3, -] € E(™) | there exist infinitely many positive integers n; such that

logay(z) + - - -+ logan, (2)
n;

>m, i=1,23,

So that, for any § > 0, the family of the CF-intervals

A, 8) = {I(ar,a, - ay,) : 2@ T L1080, (2]

- >m,|I(a1,a2,---,ani)|§5,ni€N}
T
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is a d—cover of E(M),

Note that, for any two CF-intervals, say I and I’, the following relation holds:
INI'#4#¢=ICIorl'CL

In fact, if I = I(a1,---,a,) and I' = I(ay,---,a),;) (k > 0) have a common point x = [z, 22, -], then
a1 =11 =aj,a2 =T =ah, - ,an =2, = a,. It follows that I’ C I.
We remove from A(m, d) all those the CF-intervals which are contained in other CF-intervalin A(m,?),

and denote the complement by A(m, ). Then, A(m,d) is a non-overlapping §— cover of E(™).

Now we define a family of measures {u; :t > 1} as

—np(t)—tlog i log a;
Mt([(@l,@Q,"' 7an)) =€ i=1

where p(t) = log((t) =log > =, (t > 1).

n>1

By (2) and (3), we have for any € > 0,

log|I(ai,az, -+ ,an) < —(e+1t)log(aras---a,) = —GZIOgai - tZIOgai. (5)
i=1 i=1
By the definition of A(m,d), for every I = I(a1,as,- - ,an) € A(m,d) with m > @, we have
—EZ].Og a; < —e-mn < —np(t). (6)
i=1

Combining (4), (5) and (6), we get for any € > 0, and I = I(ay,aq, - ,a,) € A(m,d) with m > )

€

n
e+t —np(t)—tlog 3 loga;
2 S e i=1

|I(a17a27"'7an) :Mt(I(alanu"'uan))'

Since A(m, §) is a non-overlapping d—cover of E("™) | we sum the above inequality to have

oo Y MAD=M( U I)gL

I€A(m,5) I€A(m,5) I€A(m,5)

By Lemma 1.4, we get for any ¢t > 1,¢ >0 and m > @,

t
dimpy E™ < ;9

Letting € — 0 and since t > 1 is arbitrary, we obtain

1
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II. Lower bound. dimgyg E* > %

Proof. Put

F:{xe [0,1): 2" < an(x) < 2", for allnzl}. (7)

It is easy to check that F' C E*°. So it is enough to prove dimgy F > % . To give a precise view on the structure

of F', we shall make use of a kind of symbolic space defined as follows.
D, = {(al,--- , Gp,) e N": 2F < qp < 281 for all 1§k§n}.
For any (a1,---,an) € Dy, call
J(ay, - ,an) = cl{x €0, :ap(z) =ak, 1 <k < n}

an admissible CF-intervals of rank n, where “cl” denotes the closure of a set in [0,1). It is observable that

Fzﬂ U J(ai, -+, an).

n=1 (a17”' 7a71)eD71

Let p be a probability measure supported on F' such that for every admissible intervals J(a1,-- -, ay),
1 1
M(J(U«lu"'uan)):ﬁ:mu (8)

where # denotes the cardinality.
Now we estimate the p-measure of arbitrary ball B(x,r) with center « € F' and radius r small enough.
Choose n > 1 such that
[J(a1, - ant1)| <7 <|J(a1, -, an)l|.

Calculations show

|J(a17"'7an)|§ Z |J(a17"'7an—17an+i)|'

1<i<4
So that, from a, > 2 and r < |J(a1,- -, a,)| we have
B(z,r) C J(a1, - ,an—1)- 9)

On the other hand, from (2), (3) and (7), We have

1 1 1
r>|J(ar, - any1)| > 2%, > 22030202 a2, 7 et () (10)
Combining (8), (9) and (10), we get
log u(B(z, ) {nun 1
liminf =2 22 > lim inf 2 = _.
r—0 logr r—0 2n+3+(n+1)(n+4) 2
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By using lemma 1.5, we obtain dimy F' > %, which shows dimg E* > % since F' C E°°. This completes

the proof. O
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