TÜBİTAK

A note on the lévy constant for continued fractions

Ting Zhong

Abstract

In this note, we study the lévy constant of continued fraction expansions. We show that for all $x \in[0,1)$, the upper lévy constant of x is finite except a set with Hausdorff dimension one-half.

Key Words: Continued fractions, lévy constant, Hausdorff dimension.

1. Introduction

It is well known that every irrational number $x \in[0,1)$ has a unique standard continued fraction expansion of the form

$$
x=\frac{1}{a_{1}(x)+\frac{1}{a_{2}(x)+\frac{1}{a_{3}(x)+\ddots}}}=:\left[a_{1}, a_{2}, a_{3}, \cdots\right],
$$

where each partial quotient $a_{n}(x) \in \mathbb{N}$ is uniquely defined by the number x.
For any $n \geq 1$ and $a_{1}, \cdots, a_{n} \in \mathbb{N}$, define a $C F$-interval of rank n as

$$
I\left(a_{1}, a_{2}, \cdots, a_{n}\right)=\left\{x \in[0,1): a_{k}(x)=a_{k}, 1 \leq k \leq n\right\} .
$$

Therefore, (see [5], section 12), $I\left(a_{1}, \cdots, a_{n}\right)$ is the interval with endpoints $\frac{p_{n}}{q_{n}}$ and $\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}$, where p_{n} and q_{n} are defined by following recurrence relations

$$
\begin{align*}
& p_{-1}=1 ; \quad p_{0}=0 ; \quad p_{n}=a_{n} p_{n-1}+p_{n-2}, \quad n \geq 1 \\
& q_{-1}=0 ; \quad q_{0}=1 ; \quad q_{n}=a_{n} q_{n-1}+q_{n-2}, \quad n \geq 1 \tag{1}
\end{align*}
$$

Thus, the length of $I\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ is

$$
\begin{equation*}
\left|I\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right|=\left|\frac{p_{n}}{q_{n}}-\frac{p_{n}+p_{n-1}}{q_{n}+q_{n-1}}\right|=\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)} . \tag{2}
\end{equation*}
$$

[^0]For an irrational number $x \in[0,1)$, we call

$$
\beta^{*}(x)=\limsup _{n \rightarrow \infty} \frac{\log q_{n}(x)}{n} \text { and } \quad \beta_{*}(x)=\liminf _{n \rightarrow \infty} \frac{\log q_{n}(x)}{n},
$$

the upper lévy constant and lower lévy constant of x, respectively. If $\beta^{*}(x)=\beta_{*}(x)$, we say the lévy constant of x exists and denote the common value by $\beta(x)$. A famous result of P . Lévy [6] says that for almost all x, the lévy constant exists and

$$
\beta(x)=\frac{\pi^{2}}{12 \log 2} \approx 1.18657
$$

$\beta^{*}(x)$ and $\beta_{*}(x)$ describe the exponential growth rates of $q_{n}(x)$ in n. Faiver [2] showed that every quadratic number has a lévy constant. It is easy to see that for any irrational number $x \in[0,1)$, one has $\beta_{*}(x) \geq \log \frac{\sqrt{5}+1}{2}$, then Faiver [3] also established that for all $\lambda \geq \log \frac{\sqrt{5}+1}{2}$, there exists an $x \in I$ such that $\beta(x)=\lambda$ by employing an ergodic theorem. Later, Baxa [1] showed the following more general result by elementary means.

Theorem 1.1 For any $\log \frac{\sqrt{5}+1}{2} \leq \lambda_{*} \leq \lambda^{*}<\infty$, there exist uncountably many $x \in[0,1)$ such that $\beta_{*}(x)=\lambda_{*}$ and $\beta^{*}(x)=\lambda^{*}$.

In 2006, Wu [7] improved Baxa's result by showing the following theorem.
Theorem 1.2 For any $\log \frac{\sqrt{5}+1}{2} \leq \lambda_{*} \leq \lambda^{*}<\infty$, let

$$
E\left(\lambda_{*}, \lambda^{*}\right)=\left\{x \in[0,1): \beta_{*}(x)=\lambda_{*}, \beta^{*}(x)=\lambda^{*}\right\}
$$

Then

$$
\operatorname{dim}_{H} E\left(\lambda_{*}, \lambda^{*}\right) \geq \frac{\lambda_{*}-\log \frac{\sqrt{5}+1}{2}}{\lambda^{*}}
$$

In this note, we consider the set of $x \in[0,1)$ whose upper lévy constant is infinite and obtain
Theorem 1.3 Let

$$
E^{\infty}=\left\{x \in[0,1): \limsup _{n \rightarrow \infty} \frac{\log q_{n}(x)}{n}=\infty\right\}
$$

Then

$$
\operatorname{dim}_{H} E^{\infty}=\frac{1}{2}
$$

Here and in what follows, dim_{H} denotes the Hausdorff dimension of a subset of $[0,1)$, and $|\cdot|$ denotes the diameter. We sketch, very briefly, the definition and some basic properties of Hasdorff dimension. If $E \subset R$ and $\delta>0$, define for each $s \geq 0$,

$$
\begin{aligned}
& H^{s}(E)=\liminf _{\delta \rightarrow 0}\left\{\sum_{n=1}^{\infty}\left|I_{n}\right|^{s}: E \subset \bigcup_{n=1}^{\infty} I_{n},\left|I_{n}\right| \leq \delta, n=1,2, \cdots\right\} \\
& \operatorname{dim}_{H} E=\inf \left\{s \geq 0: H^{s}(E)=0\right\}=\sup \left\{s \geq 0: H^{s}(E)=\infty\right\}
\end{aligned}
$$

ZHONG

The following two facts are basic in calculating Hasdorff dimension of various sets.
Lemma 1.4 Let $E \subset R$ and let $s \geq 0$ be given. Suppose for each $\delta>0$ there is a sequence of intervals $\left\{I_{n}\right\}$ such as $E \subset \bigcup I_{n},\left|I_{n}\right| \leq \delta$ for all n, and $\sum_{n=1}^{\infty}\left|I_{n}\right|^{s} \leq 1$. Then $\operatorname{dim}_{H} E \leq s$.

Lemma 1.5 Let $E \subset R$ be a Borel set and μ be a measure with $\mu(E)>0$. If for any $x \in E$

$$
\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \geq s
$$

where $B(x, r)$ denotes the open ball with center at x and radius r. Then $\operatorname{dim}_{H} E \geq s$.
Lemma 1 is obvious; for Lemma 2, see ([4], Proposition 2.3).

2. Proof of Theorem 1.3

In this section, we show Theorem 1.3 in detail and divide the proof into two parts: upper bound and lower bound.
I. Upper bound. $\operatorname{dim}_{H} E \leq \frac{1}{2}$.

Proof. By (1), we have

$$
a_{n} q_{n-1} \leq q_{n} \leq 2 a_{n} q_{n-1}
$$

Successive application of this inequality gives

$$
\begin{equation*}
a_{1} a_{2} \cdots a_{n} \leq q_{n} \leq 2^{n} a_{1} a_{2} \cdots a_{n} . \tag{3}
\end{equation*}
$$

Thus we get the following alternative description of E^{∞} :

$$
E^{\infty}=\left\{x \in[0,1): \limsup _{n \rightarrow \infty} \frac{\log a_{1}(x)+\log a_{2}(x)+\cdots+\log a_{n}(x)}{n}=\infty\right\}
$$

Let

$$
E^{(m)}=\left\{x \in[0,1): \limsup _{n \rightarrow \infty} \frac{\log a_{1}(x)+\log a_{2}(x)+\cdots+\log a_{n}(x)}{n}>m\right\}
$$

Then E^{∞} can be written

$$
E^{\infty}=\bigcap_{m=1}^{\infty} E^{(m)}=\lim _{n \rightarrow \infty} E^{(m)}
$$

and for every $x=\left[a_{1}, a_{2}, a_{3}, \cdots\right] \in E^{(m)}$, there exist infinitely many positive integers n_{i} such that

$$
\frac{\log a_{1}(x)+\cdots+\log a_{n_{i}}(x)}{n_{i}}>m, i=1,2,3, \cdots
$$

So that, for any $\delta>0$, the family of the $C F$-intervals

$$
\mathcal{A}(m, \delta)=\left\{I\left(a_{1}, a_{2}, \cdots, a_{n_{i}}\right): \frac{\log a_{1}(x)+\cdots+\log a_{n_{i}}(x)}{n_{i}}>m,\left|I\left(a_{1}, a_{2}, \cdots, a_{n_{i}}\right)\right| \leq \delta, n_{i} \in \mathbb{N}\right\}
$$

ZHONG

is a δ-cover of $E^{(m)}$.
Note that, for any two $C F$-intervals, say I and I^{\prime}, the following relation holds:

$$
I \cap I^{\prime} \neq \phi \Longrightarrow I \subseteq I^{\prime} \text { or } \mathrm{I}^{\prime} \subseteq \mathrm{I} .
$$

In fact, if $I=I\left(a_{1}, \cdots, a_{n}\right)$ and $I^{\prime}=I\left(a_{1}^{\prime}, \cdots, a_{n+k}^{\prime}\right)(k \geq 0)$ have a common point $x=\left[x_{1}, x_{2}, \cdots\right]$, then $a_{1}=x_{1}=a_{1}^{\prime}, a_{2}=x_{2}=a_{2}^{\prime}, \cdots, a_{n}=x_{n}=a_{n}^{\prime}$. It follows that $I^{\prime} \subseteq I$.

We remove from $\mathcal{A}(m, \delta)$ all those the $C F$-intervals which are contained in other $C F$-interval in $\mathcal{A}(m, \delta)$, and denote the complement by $A(m, \delta)$. Then, $A(m, \delta)$ is a non-overlapping δ-cover of $E^{(m)}$.

Now we define a family of measures $\left\{\mu_{t}: t>1\right\}$ as

$$
\begin{equation*}
\mu_{t}\left(I\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right)=e^{-n p(t)-t \log \sum_{i=1}^{n} \log a_{i}} \tag{4}
\end{equation*}
$$

where $p(t)=\log \zeta(t)=\log \sum_{n \geq 1} \frac{1}{n^{t}},(t>1)$.
By (2) and (3), we have for any $\epsilon>0$,

$$
\begin{equation*}
\log \left|I\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right|^{\frac{\epsilon+t}{2}} \leq-(\epsilon+t) \log \left(a_{1} a_{2} \cdots a_{n}\right)=-\epsilon \sum_{i=1}^{n} \log a_{i}-t \sum_{i=1}^{n} \log a_{i} \tag{5}
\end{equation*}
$$

By the definition of $A(m, \delta)$, for every $I=I\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in A(m, \delta)$ with $m \geq \frac{p(t)}{\epsilon}$, we have

$$
\begin{equation*}
-\epsilon \sum_{i=1}^{n} \log a_{i} \leq-\epsilon \cdot m n \leq-n p(t) . \tag{6}
\end{equation*}
$$

Combining (4), (5) and (6), we get for any $\epsilon>0$, and $I=I\left(a_{1}, a_{2}, \cdots, a_{n}\right) \in A(m, \delta)$ with $m \geq \frac{p(t)}{\epsilon}$,

$$
\left|I\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right|^{\frac{\epsilon+t}{2}} \leq e^{-n p(t)-t \log \sum_{i=1}^{n} \log a_{i}}=\mu_{t}\left(I\left(a_{1}, a_{2}, \cdots, a_{n}\right)\right) .
$$

Since $A(m, \delta)$ is a non-overlapping δ-cover of $E^{(m)}$, we sum the above inequality to have

$$
\sum_{I \in A(m, \delta)}|I|^{\frac{t+\epsilon}{2}} \leq \sum_{I \in A(m, \delta)} \mu_{t}(I)=\mu_{t}\left(\bigcup_{I \in A(m, \delta)} I\right) \leq 1
$$

By Lemma 1.4, we get for any $t>1, \epsilon>0$ and $m \geq \frac{p(t)}{\epsilon}$,

$$
\operatorname{dim}_{H} E^{(m)} \leq \frac{t+\epsilon}{2}
$$

Letting $\epsilon \rightarrow 0$ and since $t>1$ is arbitrary, we obtain

$$
\operatorname{dim}_{H} E^{\infty} \leq \frac{1}{2}
$$

ZHONG

II. Lower bound. $\operatorname{dim}_{H} E^{\infty} \geq \frac{1}{2}$.

Proof. Put

$$
\begin{equation*}
F=\left\{x \in[0,1): 2^{n} \leq a_{n}(x)<2^{n+1}, \text { for all } n \geq 1\right\} \tag{7}
\end{equation*}
$$

It is easy to check that $F \subset E^{\infty}$. So it is enough to prove $\operatorname{dim}_{H} F \geq \frac{1}{2}$. To give a precise view on the structure of F, we shall make use of a kind of symbolic space defined as follows.

$$
\mathcal{D}_{n}=\left\{\left(a_{1}, \cdots, a_{n}\right) \in \mathbb{N}^{n}: 2^{k} \leq a_{k}<2^{k+1}, \text { for all } 1 \leq k \leq n\right\}
$$

For any $\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{D}_{n}$, call

$$
J\left(a_{1}, \cdots, a_{n}\right)=c l\left\{x \in[0,1): a_{k}(x)=a_{k}, 1 \leq k \leq n\right\}
$$

an admissible CF-intervals of rank n, where " $c l$ " denotes the closure of a set in $[0,1)$. It is observable that

$$
F=\bigcap_{n=1}^{\infty} \bigcup_{\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{D}_{n}} J\left(a_{1}, \cdots, a_{n}\right)
$$

Let μ be a probability measure supported on F such that for every admissible intervals $J\left(a_{1}, \cdots, a_{n}\right)$,

$$
\begin{equation*}
\mu\left(J\left(a_{1}, \cdots, a_{n}\right)\right)=\frac{1}{\sharp \mathcal{D}_{n}}=\frac{1}{2^{1+2+\cdots+n}}, \tag{8}
\end{equation*}
$$

where \sharp denotes the cardinality.
Now we estimate the μ-measure of arbitrary ball $B(x, r)$ with center $x \in F$ and radius r small enough. Choose $n \geq 1$ such that

$$
\left|J\left(a_{1}, \cdots, a_{n+1}\right)\right| \leq r<\left|J\left(a_{1}, \cdots, a_{n}\right)\right|
$$

Calculations show

$$
\left|J\left(a_{1}, \cdots, a_{n}\right)\right| \leq \sum_{1 \leq i \leq 4}\left|J\left(a_{1}, \cdots, a_{n-1}, a_{n}+i\right)\right|
$$

So that, from $a_{n} \geq 2$ and $r<\left|J\left(a_{1}, \cdots, a_{n}\right)\right|$ we have

$$
\begin{equation*}
B(x, r) \subset J\left(a_{1}, \cdots, a_{n-1}\right) \tag{9}
\end{equation*}
$$

On the other hand, from (2), (3) and (7), We have

$$
\begin{equation*}
r \geq\left|J\left(a_{1}, \cdots, a_{n+1}\right)\right|>\frac{1}{2 q_{n+1}^{2}}>\frac{1}{2^{2 n+3} a_{1}^{2} a_{2}^{2} \cdots a_{n+1}^{2}}>\frac{1}{2^{2 n+3+(n+1)(n+4)}} \tag{10}
\end{equation*}
$$

Combining (8), (9) and (10), we get

$$
\liminf _{r \rightarrow 0} \frac{\log \mu(B(x, r))}{\log r} \geq \liminf _{r \rightarrow 0} \frac{\frac{(n-1) n}{2}}{2 n+3+(n+1)(n+4)}=\frac{1}{2}
$$

ZHONG

By using lemma 1.5 , we obtain $\operatorname{dim}_{H} F \geq \frac{1}{2}$, which shows $\operatorname{dim}_{H} E^{\infty} \geq \frac{1}{2}$ since $F \subset E^{\infty}$. This completes the proof.

References

[1] Baxa, C.: On the growth rate of the denominators of convergents. Acta Math. Hungar. 83, 125-130 (1999).
[2] Faiver, C.: Distribution of Lévy constants for quadratic numbers. Acta Arith. 61, 13-34 (1992).
[3] Faiver, C.: The Lévy constants of an irrational number. Acta Math. Hungar. 74, 57-61 (1997).
[4] Falconer, K. J.: Techniques in Fractal Geometry. New York: Wiley 1997.
[5] Khintchine, A. Ya.: Continued Fractions. P. Noordhoff. Groningen. The Netherlands 1963.
[6] Lévy, P.: Sur les lois de probabilité don't dépendent les quotients complets et incomplets d'une fraction continue. Bull. Soc. Math. 57, 178-194 (1929).
[7] Wu, J.: A remark on the growth rate of the denominators of convergents . Monatsh. Math. 147, 259-264 (2006).

Ting ZHONG
Received 12.03.2008
Department of Mathematics, Jishou University
Zhangjiajie, Hunan, 427000, P.R. CHINA
e-mail: zhongting_2005@126.com

[^0]: 2000 AMS Mathematics Subject Classification: 11K50; 28A80.

