тÜвітак

Existence and uniqueness theorem for slant immersions in Kenmotsu space forms

Pradeep Kumar Pandey, Ram Shankar Gupta

Abstract

In this paper we have obtained a general existence as well as uniqueness theorem for slant immersions into a Kenmotsu-space form.

Key Words: Kenmotsu manifold, slant immersion, mean curvature, sectional curvature.

1. Introduction

B. Y. Chen has defined and studied slant immersions by generalizing the concept of holomorphic and totally real immersions [5]. Latter, it was A. Lotta [14], who introduced the concept of slant immersion of a Riemannian manifold into an almost contact metric manifold. B. Y. Chen and Y. Tazawa [8] have obtained examples of n-dimensional proper slant submanifolds in the complex Euclidean n-space C^{n}. On the other hand, Chen and Vrancken [6] have established the existence of n-dimensional proper slant submanifolds into a non-flat complex space form $\bar{M}^{n}(4 c)$ and in contact geometry J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M. A. Fernandez [2] have established the existence and uniqueness theorem in Sasakian space form. Later, R. S. Gupta, S. M. K. Haider and A. Sharfuddin [10] have obtained the existence and uniqueness theorem into a non-flat cosymplectic space form.

The purpose of the present paper is to establish a general existence and uniqueness theorem for slant immersions in Kenmotsu-space forms.

In section 2, we review some basic formulae and results for our subsequent use.

2. Preliminaries

Let \bar{M} be a $(2 m+1)$-dimensional almost contact metric manifold with structure tensors (ϕ, ξ, η, g), where ϕ is a $(1,1)$ tensor field, ξ a vector field, η a 1 -form and g is the Riemannian metric on \bar{M}. These tensors satisfy [1]

[^0]
PANDEY, GUPTA

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \phi \xi=0, \eta(\xi)=1, \eta(\phi X)=0 \tag{2.1}
\end{equation*}
$$

and

$$
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \eta(X)=g(X, \xi)
$$

for any $X, Y \in T \bar{M}$, where $T \bar{M}$ denotes the Lie algebra of vector fields on \bar{M}.
An almost contact metric manifold \bar{M} is called a Kenmotsu manifold if [12],

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=g(\phi X, Y) \xi-\eta(Y) \phi X, \text { and } \bar{\nabla}_{X} \xi=X-\eta(X) \xi \tag{2.2}
\end{equation*}
$$

where $\bar{\nabla}$ denotes the Levi-Civita connection on \bar{M}.
The curvature tensor \bar{R} of Kenmotsu space form $\bar{M}(c)$ is given by [12],

$$
\bar{R}(X, Y) Z=\frac{c-3}{4}\{g(Y, Z) X-g(X, Z) Y\}+\frac{c+1}{4}\left\{\begin{array}{l}
\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+\eta(Y) g(X, Z) \xi \tag{2.3}\\
-\eta(X) g(Y, Z) \xi-g(\varphi X, Z) \varphi Y \\
+g(\varphi Y, Z) \varphi X+2 g(X, \varphi Y) \varphi Z
\end{array}\right\}
$$

for all $X, Y, Z \in T \bar{M}$.
Now, let M be an m-dimensional Riemannian manifold isometrically immersed in a Kenmotsu manifold \bar{M}. Denoting by $T M$ the tangent bundle of M and by $T^{\perp} M$ the set of all vector fields normal to M, we write,

$$
\begin{equation*}
\varphi X=P X+F X \text { and } \varphi N=t N+f N \tag{2.4}
\end{equation*}
$$

for any $X \in T M$ and $N \in T^{\perp} M$, where $P X$ (resp. $F X$) denotes the tangential (resp. normal) component of φX, and $t N$ (resp. $f N$) denotes the tangential (resp. normal) component of φN.

From now on, we assume that the structure vector field ξ is tangent to M. We take the orthogonal direct decomposition $T M=D \oplus\{\xi\}$.

A submanifold M is said to be slant if for any non zero X tangent to M at x such that X is not proportional to ξ_{x}, the angle $\theta(X)$ between φX and $T_{x} M$ is constant, i.e. $\theta(X)$ is independent of the choice of $x \in M$ and $X \in T_{x} M-\left\{\xi_{x}\right\}$. Sometime the angle $\theta(X)$ is termed as Wirtinger angle of the slant immersion. Invariant and anti-invariant immersions are slant immersions with slant angle $\theta=0$ and $\theta=\frac{\pi}{2}$, respectively. A slant immersion which is neither invariant nor anti-invariant is called a proper slant immersion.

Let $\bar{\nabla}$ (resp. ∇) denote the Riemannian connection on \bar{M} (resp. M) and ∇^{\perp} denote the connection in the normal bundle $T^{\perp} M$ of M. Then the Gauss and Weingarten formulae are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N \tag{2.6}
\end{equation*}
$$

for any $X, Y \in T M$ and $N \in T^{\perp} M$.

PANDEY, GUPTA

The second fundamental forms h and A_{N} are related by

$$
\begin{equation*}
g\left(A_{N} X, Y\right)=g(h(X, Y), N) \tag{2.7}
\end{equation*}
$$

Denote by R the curvature tensor of M and by R^{\perp} the curvature tensor of the normal connection. Then the equations of Gauss, Ricci and Codazzi are given by

$$
\begin{gather*}
\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)-g(h(X, W), h(Y, Z))+g(h(X, Z), h(Y, W)) \tag{2.8}\\
\bar{R}(X, Y, U, V)=R^{\perp}(X, Y, U, V)-g\left(\left[A_{U}, A_{V}\right] X, Y\right) \tag{2.9}
\end{gather*}
$$

and

$$
\begin{equation*}
(\bar{R}(X, Y) Z)^{\perp}=\left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{2.10a}
\end{equation*}
$$

for all $X, Y, Z, W \in T M$ and $U, V \in T^{\perp} M$, where $(\bar{R}(X, Y) Z)^{\perp}$ denotes the normal component of $\bar{R}(X, Y) Z$, and $\left(\bar{\nabla}_{X} h\right)(Y, Z)$ is given by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\nabla_{X}^{\perp}(h(Y, Z))-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right) \tag{2.10b}
\end{equation*}
$$

Now if P is the endomorphism given by (2.4), then we have

$$
\begin{equation*}
g(P X, Y)+g(X, P Y)=0 \tag{2.11}
\end{equation*}
$$

Thus, it is obvious that the operator P^{2}, which is denoted by Q, is self adjoint. Also,

$$
\begin{align*}
& \left(\nabla_{X} P\right) Y=\nabla_{X}(P Y)-P\left(\nabla_{X} Y\right) \tag{2.12}\\
& \left(\nabla_{X} F\right) Y=\nabla_{X}^{\perp}(F Y)-F\left(\nabla_{X} Y\right) \tag{2.13}
\end{align*}
$$

for any $X, Y \in T M$.
Now, Gauss and Weingarten formulae together with (2.2) and (2.9) imply

$$
\begin{gather*}
\left(\nabla_{X} P\right) Y=A_{F Y} X+t h(X, Y)+g(Y, P X) \xi-\eta(Y) P X \tag{2.14}\\
\nabla_{X}^{\perp}(F Y)-F\left(\nabla_{X} Y\right)=f h(X, Y)-h(X, P Y)-\eta(Y) F X \tag{2.15}
\end{gather*}
$$

for any $X, Y \in T M$.
For each $X \in T M$, we denote

$$
\begin{equation*}
X^{*}=\frac{F X}{\sin \theta} \tag{2.16}
\end{equation*}
$$

Now, one can define a symmetric bilinear $T M$-valued form δ on M, given by

$$
\begin{equation*}
\delta(X, Y)=\operatorname{th}(X, Y) \tag{2.17}
\end{equation*}
$$

Moreover, using (2.2), we have

$$
\begin{equation*}
\delta(X, \xi)=0 \tag{2.18}
\end{equation*}
$$

PANDEY, GUPTA

Also, from (2.4), (2.16) and (2.17), we get

$$
\begin{equation*}
\varphi \delta(X, Y)=P \delta(X, Y)+\sin \theta \delta^{*}(X, Y) \tag{2.19}
\end{equation*}
$$

Now using (2.4) and (2.17), we get

$$
\begin{equation*}
\varphi h(X, Y)=\delta(X, Y)+\sigma^{*}(X, Y) \tag{2.20}
\end{equation*}
$$

where σ is a symmetric bilinear D-valued form on M. Applying φ on (2.10) and using (2.19) with (1.4), we find

$$
\begin{equation*}
-h(X, Y)=P \delta(X, Y)+\sin \theta \delta^{*}(X, Y)+t \sigma^{*}(X, Y)+f \sigma^{*}(X, Y) \tag{2.21}
\end{equation*}
$$

Equating tangential as well as normal parts in the above equation, we have
(a) $P \delta(X, Y)=-t \sigma^{*}(X, Y)$
and
(b) $-h(X, Y)=\sin \theta \delta^{*}(X, Y)+f \sigma^{*}(X, Y)$.

Moreover, $\varphi^{2} \sigma(X, Y)=-\sigma(X, Y)=P^{2} \sigma(X, Y)+F P \sigma(X, Y)+t F \sigma(X, Y)+f F \sigma(X, Y)$
Comparison of tangential and normal parts yields
(c) $-\sin ^{2} \theta \sigma(X, Y)=t F \sigma(X, Y)$
and
(d) $\operatorname{FP\sigma }(X, Y)=-f F \sigma(X, Y)$.

Now from (a) and (c), we get

$$
\begin{equation*}
\sigma(X, Y)=\csc \theta P \delta(X, Y) \tag{2.22}
\end{equation*}
$$

Also, (b) and (d) after making use of (2.22), give

$$
\begin{equation*}
h(X, Y)=-\csc \theta \delta^{*}(X, Y) \tag{2.23}
\end{equation*}
$$

Using (2.19), we get

$$
\begin{equation*}
h(X, Y)=\csc ^{2} \theta(P \delta(X, Y)-\varphi \delta(X, Y)) \tag{2.24}
\end{equation*}
$$

Now, from (2.14)

$$
\begin{equation*}
g\left(\left(\nabla_{X} P\right) Y, Z\right)=-g(\delta(X, Z), Y)+g(\delta(X, Y), Z)+\eta(Z) g(P X, Y)+\eta(Y) g(X, P Z) \tag{2.25}
\end{equation*}
$$

From (2.3), we have

$$
\begin{align*}
\bar{R}(X, Y, Z, W)= & \frac{c-3}{4}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
& +\frac{c+1}{4}\left\{\begin{array}{c}
\eta(X) \eta(Z) g(Y, W)-\eta(Y) \eta(Z) g(X, W) \\
+\eta(Y) \eta(W) g(X, Z)-\eta(X) \eta(W) g(Y, Z)-g(\varphi X, Z) g(\varphi Y, W) \\
+g(\varphi Y, Z) g(\varphi X, W)+2 g(X, \varphi Y) g(\varphi Z, W)
\end{array}\right. \tag{2.26}
\end{align*}
$$

for $X, Y, Z, W \in T M$.

412

Using (2.1), (2.4) and (2.8) in (2.26), we find

$$
\begin{align*}
& R(X, Y, Z, W)-g(h(X, W), h(Y, Z))+g(h(X, Z), h(Y, W))=\frac{c-3}{4}\{g(Y, Z) g(X, W)- \\
& g(X, Z)(Y, W)\}+\frac{c+1}{4}\left\{\begin{array}{l}
\eta(X) \eta(Z) g(Y, W)-\eta(Y) \eta(Z) g(X, W) \\
+\eta(Y) \eta(W) g(X, Z)-\eta(X) \eta(W) g(Y, Z)-g(P X, Z) g(P Y, W) \\
+g(P Y, Z) g(P X, W)+2 g(X, P Y) g(P Z, W)
\end{array}\right\}, \tag{2.27}
\end{align*}
$$

which in the view of (2.23) and the relation $g(F X, F Y)=\sin ^{2} \theta\{g(X, Y)-\eta(X) \eta(Y)\}$, gives

$$
\begin{align*}
R(X, Y, Z, W)= & \csc ^{2} \theta\{g(\delta(X, W), \delta(Y, Z))-g(\delta(X, Z), \delta(Y, W))\} \\
& +\frac{c-3}{4}\{g(Y, Z) g(X, W)-g(X, Z)(Y, W)\} \\
& +\frac{c+1}{4}\left\{\begin{array}{l}
\eta(X) \eta(Z) g(Y, W)-\eta(Y) \eta(Z) g(X, W) \\
+\eta(Y) \eta(W) g(X, Z)-\eta(X) \eta(W) g(Y, Z) \\
-g(P X, Z) g(P Y, W)+g(P Y, Z) g(P X, W)+2 g(X, P Y) g(P Z, W)
\end{array}\right\} \tag{2.28}
\end{align*}
$$

Now taking normal part of equation (2.3), we get

$$
\begin{equation*}
[\bar{R}(X, Y) Z]^{\perp}=\frac{c+1}{4}\{-g(P X, Z) F Y+g(P Y, Z) F X+2 g(X, P Y) F Z\} \tag{2.29}
\end{equation*}
$$

We have,

$$
\begin{aligned}
\nabla \frac{\perp}{X}(h(Y, Z)) & =\nabla \frac{1}{X}\left(-\csc \theta \delta^{*}(Y, Z)\right) \\
= & -\csc ^{2} \theta \nabla \frac{1}{X}(F \delta(Y, Z)) \\
= & -\csc ^{2} \theta\left\{\left(\nabla_{X} F\right) \delta(Y, Z)+F\left(\nabla_{X} \delta(Y, Z)\right)\right\}
\end{aligned}
$$

Using (2.15), we get

$$
\nabla_{X}^{\perp}(h(Y, Z))=-\csc ^{2} \theta\left\{\begin{array}{l}
f h(X, \delta(Y, Z))-h(X, P \delta(Y, Z))+F\left(\left(\nabla_{X} \delta\right)(Y, Z)\right. \\
\left.+\delta\left(\nabla_{X} Y, Z\right)+\delta\left(Y, \nabla_{X} Z\right)\right)
\end{array}\right\}
$$

From (2.23), we obtain

$$
h\left(\nabla_{X} Y, Z\right)=-\csc \theta \delta^{*}\left(\nabla_{X} Y, Z\right)=-\csc ^{2} \theta F \delta\left(\nabla_{X} Y, Z\right)
$$

Also, $h\left(Y, \nabla_{X} Z\right)=-\csc ^{2} \theta F \delta\left(Y, \nabla_{X} Z\right)$.
Hence using (2.10) (b), we get

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=-\csc ^{2} \theta\left\{f h(X, \delta(Y, Z))-h\left(X, P \delta(Y, Z)+F\left(\left(\nabla_{X} \delta\right)(Y, Z)\right\}\right.\right.
$$

PANDEY, GUPTA

Since, $f h(X, Y)=\csc ^{2} \theta F P \delta(X, Y)$, we have

$$
\begin{align*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=- & \csc ^{2} \theta\left[\csc ^{2} \theta F P \delta(X, \delta(Y, Z))+\right. \tag{2.30}\\
& +\csc ^{2} \theta F \delta\left(X, P \delta(Y, Z)+F\left(\left(\nabla_{X} \delta\right)(Y, Z)\right]\right.
\end{align*}
$$

Now using (2.29) and (2.30) in Codazzi equation, we obtain

$$
\begin{align*}
& \left(\nabla_{X} \delta\right)(Y, Z)+\csc ^{2} \theta\{P \delta(X, \delta(Y, Z))+\delta(X, P \delta(Y, Z))\}+ \\
& +\frac{c+1}{4} \sin ^{2} \theta\{g(X, P Z)(Y-\eta(Y) \xi)+g(X, P Y)(Z-\eta(Z) \xi)\} \tag{2.31}\\
& =\left(\nabla_{Y} \delta\right)(X, Z)+\csc ^{2} \theta\{P \delta(Y, \delta(X, Z))+\delta(Y, P \delta(X, Z))\}+ \\
& +\frac{c+1}{4} \sin ^{2} \theta\{g(Y, P Z)(X-\eta(X) \xi)+g(Y, P X)(Z-\eta(Z) \xi)\}
\end{align*}
$$

3. Existence theorem for slant immersions into Kenmotsu space form

In this section we shall obtain a general existence theorem for slant immersions into Kenmotsu space form. In order to prove the existence theorem, we need the following result.

Theorem A ([9]). Let us take a manifold S with complete connection \bar{D} having parallel torsion and curvature tensors. Let M be a simply connected manifold and E be a vector bundle with connection \bar{D} over M having the algebraic structure (\bar{R}, \bar{T}) of S. Let $F: T M \rightarrow E$ be a vector bundle homomorphism satisfying the equations

$$
\begin{aligned}
& \bar{D}_{V} F(W)-\bar{D}_{W} F(V)-F([V, W])=\bar{T}(F(V), F(W)) \\
& \bar{D}_{V} \bar{D}_{W} U-\bar{D}_{W} \bar{D}_{V} U-\bar{D}_{[V, W]} U=\bar{R}(F(V), F(W)) U
\end{aligned}
$$

for any sections V, W of $T M$ and U of E. Then there exists a smooth map $f: M \rightarrow S$ and a parallel bundle isomorphism $\bar{\Phi}: E \rightarrow f^{*} T S$ preserving \bar{T} and \bar{R} such that $d f=\bar{\Phi} \circ F$.

Theorem 3.1 (Existence). Let c and θ be two constants with $0<\theta \leq \pi / 2$ and M be a simply-connected ($m+1$)-dimensional Riemannian manifold with metric tensor g. Suppose that there exists a unit global vector field ξ on M, an endomorphism P of the tangent bundle TM and a symmetric bilinear TM-valued form δ on M such that

$$
\begin{gather*}
P(\xi)=0, \quad g(\delta(X, Y), \xi)=0, \quad \nabla_{X} \xi=X-\eta(X) \xi \tag{3.1}\\
P^{2} X=-\cos ^{2} \theta(X-\eta(X) \xi) \tag{3.2}\\
g(P X, Y)+g(X, P Y)=0 \tag{3.3}\\
\delta(X, \xi)=0 \tag{3.4}\\
g\left(\left(\nabla_{X} P\right) Y, Z\right)=g(\delta(X, Y), Z)-g(\delta(X, Z), Y)+g(P X, Y) \eta(Z)+g(X, P Z) \eta(Y) \tag{3.5}
\end{gather*}
$$

PANDEY, GUPTA

$$
\begin{align*}
& R(X, Y, Z, W)=\csc ^{2} \theta\{g(\delta(X, W), \delta(Y, Z))-g(\delta(X, Z), \delta(Y, W))\} \\
&++\frac{c-3}{4}\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\} \\
&+\frac{c+1}{4}\left\{\begin{array}{l}
\eta(X) \eta(Z) g(Y, W)-\eta(Y) \eta(Z) g(X, W)+\eta(Y) \eta(W) g(X, Z) \\
-\eta(X) \eta(W) g(Y, Z)-g(P X, Z) g(P Y, W)+g(P Y, Z) g(P X, W) \\
+2 g(X, P Y) g(P Z, W)
\end{array}\right\} \tag{3.6}
\end{align*}
$$

and

$$
\begin{align*}
& \left(\nabla_{X} \delta\right)(Y, Z)+\csc ^{2} \theta\{P \delta(X, \delta(Y, Z))+\delta(X, P \delta(Y, Z))\} \\
& +\frac{c+1}{4} \sin ^{2} \theta\{g(X, P Z)(Y-\eta(Y) \xi)+g(X, P Y)(Z-\eta(Z) \xi)\} \tag{3.7}\\
& =\left(\nabla_{Y} \delta\right)(X, Z)+\csc ^{2} \theta\{P \delta(Y, \delta(X, Z))+\delta(Y, P \delta(X, Z))\} \\
& +\frac{c+1}{4} \sin ^{2} \theta\{g(Y, P Z)(X-\eta(X) \xi)+g(Y, P X)(Z-\eta(Z) \xi)\}
\end{align*}
$$

for all $X, Y, Z \in T M$, where η denotes the dual 1 -form of ξ. Then there exists a θ-slant immersion from M into Kenmotsu space form $\bar{M}^{2 m+1}(c)$ whose second fundamental form $h(X, Y)=\csc ^{2} \theta(P \delta(X, Y)-\varphi \delta(X, Y))$ is given by the relation

$$
\begin{equation*}
h(X, Y)=\csc ^{2} \theta(P \delta(X, Y)-\varphi \delta(X, Y)) \tag{3.8}
\end{equation*}
$$

Proof. Let c, θ, M, ξ, P and δ satisfy the conditions stated above. Suppose $T M \oplus D$ be the Whitney sum. We identify $(X, 0)$ with X for each $X \in T M$, and $(0, Z)$ by Z^{*} for each $Z \in D$. In particular, we identify $(\xi, 0)$ with $\hat{\xi}$ for ξ. We denote the product metric on $T M \oplus D$ by \hat{g}. Hence, if we denote the dual 1-form of $\hat{\xi}$ by $\hat{\eta}$ then, $\hat{\eta}(X, Z)=\eta(X)$, for any $X \in T M$ and $Z \in D$.

The endomorphism $\hat{\phi}$ on $T M \oplus D$ can be defined as

$$
\begin{equation*}
\hat{\phi}(X, 0)=(P X, \sin \theta(X-\eta(X) \xi)), \quad \hat{\phi}(0, Z)=(-\sin \theta Z,-P Z) \tag{3.9}
\end{equation*}
$$

for any $X \in T M$ and $Z \in D$.
It is easy to see that $\hat{\phi}^{2}(X, 0)=-(X, 0)+\hat{\eta}(X, 0) \hat{\xi}$, and $\hat{\phi}^{2}(0, Z)=-(0, Z)$. Thus, $\hat{\phi}^{2}(X, Z)=-(X, Z)+\hat{\eta}(X, Z) \hat{\xi}$, for any $X \in T M$ and $Z \in D$.

Now, using (3.2), (3.3) and (3.9) it can readily be seen that $(\hat{\varphi}, \hat{\xi}, \hat{\eta}, \hat{g})$ is an almost contact metric structure on $T M \oplus D$.

Now we can take A, h and ∇^{\perp} as following:

$$
\begin{gather*}
A_{Z^{*}} X=\csc \theta\left\{\left(\nabla_{X} P\right) Z-\delta(X, Z)-g(Z, P X) \xi\right\} \tag{3.10}\\
h(X, Y)=-\csc \theta \delta^{*}(X, Y) \tag{3.11}\\
\nabla_{X}^{\perp} Z^{*}=\left(\nabla_{X} Z-\eta\left(\nabla_{X} Z\right) \xi\right)^{*}+\csc ^{2} \theta\left\{(P \delta(X, Z))^{*}+\delta^{*}(X, P Z)\right\} \tag{3.12}
\end{gather*}
$$

for any $X, Y \in T M$ and $Z \in D$. It is easy to check that A is an endomorphism on $T M, \quad h$ is a $(D)^{*}$-valued symmetric bilinear form on $T M$ and ∇^{\perp} is a metric connection of the vector bundle $(D)^{*}$ over M.

PANDEY, GUPTA

Let $\hat{\nabla}$ denote the connection on $T M \oplus D$ induced from equations (3.10)-(3.12). Then from (3.1), (3.2), (3.4) and (3.9), we have

$$
\left.\left(\hat{\nabla}_{(X, 0)}^{\hat{\varphi}} \hat{\varphi}\right)(Y, 0)=g(\hat{\varphi}(X, 0),(Y, 0)) \hat{\xi}-\hat{\eta}(Y, 0) \hat{\varphi}(X, 0), \quad \underset{(X, 0)}{(\hat{\nabla}} \hat{\varphi}\right)(0, Z)=0
$$

for any $X, Y \in T M$ and $Z \in D$.
Let R^{\perp} denote the curvature tensor associated with the connection ∇^{\perp} on $(D)^{*}$, that is $R^{\perp}(X, Y) Z^{*}=$ $\nabla{ }_{X}^{\perp} \nabla_{Y}^{\perp} Z^{*}-\nabla_{Y}^{\perp} \nabla \stackrel{\perp}{X} Z^{*}-\nabla_{[X, Y]}^{\perp} Z^{*}$, for any $X, Y \in T M$ and $Z \in D$. Then by virtue of (3.1), (3.2), (3.3), (3.4), (3.7) and (3.12), a straightforward computation yields

$$
\left.\left.\begin{array}{rl}
R^{\perp}(X, Y) Z^{*} & =\{R(X, Y) Z-\eta(R(X, Y) Z) \xi\}^{*} \\
+\frac{c+1}{4}\left[\begin{array}{l}
P\{g(Y, P Z) X+2 g(Y, P X) Z-g(X, P Z) Y\} \\
+\left\{g\left(Y, P^{2} Z\right)(X-\eta(X) \xi)+2 g(Y, P X) P Z-g\left(X, P^{2} Z\right)(Y-\eta(Y) \xi)\right\}
\end{array}\right] \\
+\csc ^{2} \theta\left\{\begin{array}{l}
\left(\nabla_{X} P\right) \delta(Y, Z)-\left(\nabla_{Y} P\right) \delta(X, Z)-\eta\left(\nabla_{X}(P \delta(Y, Z))\right) \xi+\eta\left(\nabla_{Y}(P \delta(X, Z))\right) \xi \\
+\delta\left(Y,\left(\nabla_{X} P\right) Z\right)-\delta\left(X,\left(\nabla_{Y} P\right) Z\right)-\eta\left(\nabla_{X}(\delta(Y, P Z))\right) \xi+\eta\left(\nabla_{Y}(\delta(X, P Z))\right) \xi
\end{array}\right\}
\end{array}\right\}^{*}\right\}
$$

Also, from (3.1), (3.5), (3.10), and (3.11), we have

$$
\begin{align*}
\sin ^{2} \theta g & \left(\left[A_{Z^{*}}, A_{W^{*}}\right] X, Y\right)=g\left(\left(\nabla_{Y} P\right) Z,\left(\nabla_{X} P\right) W\right)-g\left(\left(\nabla_{Y} P\right) Z, \delta(X, W)\right) \\
& -g(W, P X) \eta\left(\left(\nabla_{Y} P\right) Z\right)-g\left(\delta(Y, Z),\left(\nabla_{X} P\right) W\right)+g(\delta(Y, Z), \delta(X, W)) \\
& -g(Z, P Y) \eta\left(\left(\nabla_{X} P\right) W\right)+g(Z, P Y) g(W, P X)-g\left(\left(\nabla_{Y} P\right) W,\left(\nabla_{X} P\right) Z\right) \tag{3.14}\\
& +g\left(\left(\nabla_{Y} P\right) W, \delta(X, Z)\right)+g(Z, P X) \eta\left(\left(\nabla_{Y} P\right) W\right)+g\left(\delta(Y, W),\left(\nabla_{X} P\right) Z\right) \\
& -g(\delta(Y, W), \delta(X, Z))+\eta\left(\left(\nabla_{X} P\right) Z\right) g(W, P Y)-g(W, P Y) g(Z, P X)
\end{align*}
$$

From (3.3), we have

$$
\begin{equation*}
g(\delta(Y, Z), P W)+g(P \delta(Y, Z), W)=0 \tag{3.15}
\end{equation*}
$$

Taking covariant derivative of (3.15) with respect to X and using (3.3), we get

$$
\begin{equation*}
g\left(\delta(Y, Z),\left(\nabla_{X} P\right) W\right)+g\left(\left(\nabla_{X} P\right) \delta(Y, Z), W\right)=0 \tag{3.16}
\end{equation*}
$$

Moreover, by virtue of (3.5), we get

$$
\begin{gather*}
g\left(\left(\nabla_{Y} P\right) W,\left(\nabla_{X} P\right) Z\right)=g\left(\delta(Y, W),\left(\nabla_{X} P\right) Z\right)-g\left(\delta\left(Y,\left(\nabla_{X} P\right) Z\right), W\right)+ \tag{3.17}\\
+g(P Y, W) \eta\left(\left(\nabla_{X} P\right) Z\right)+g\left(Y, P\left(\left(\nabla_{X} P\right) Z\right)\right) \eta(W)
\end{gather*}
$$

PANDEY, GUPTA

Also,

$$
\begin{aligned}
& g\left(\left(\nabla_{Y} P\right) Z,\left(\nabla_{X} P\right) W\right)=g\left(\left(\nabla_{X} P\right) W,\left(\nabla_{Y} P\right) Z\right) \\
& \quad=g\left(\delta(X, W),\left(\nabla_{Y} P\right) Z\right)-g\left(\delta\left(X,\left(\nabla_{Y} P\right) Z\right), W\right)+g(P X, W) \eta\left(\left(\nabla_{Y} P\right) Z\right)
\end{aligned}
$$

Using this in equations (2.3), (3.2), (3.3) and (3.18), we get

$$
\begin{align*}
& g\left(R^{\perp}(X, Y) Z^{*}, W^{*}\right)-g\left(\left[A_{Z *}, A_{W *}\right] X, Y\right) \\
& =\left(\frac{c+1}{4}\right)\left[\sin ^{2} \theta\{g(Y, Z) g(X, W)-g(X, Z) g(Y, W)\}+2 g(Y, P X) g(P Z, W)\right] \tag{3.18}
\end{align*}
$$

Equations (2.3), (3.2), (3.3) and (3.18) imply that (M, A, ∇^{\perp}) satisfies the Ricci equation for an ($\mathrm{m}+1$)dimensional θ-slant submanifold in $\bar{M}^{2 m+1}(c)$. Moreover, (2.28) and (2.31) imply that (M, h) satisfies the equations of Gauss and Codazzi for a θ-slant submanifold. Thus, we have a vector bundle $(T M \oplus D)$ over M equipped with product metric \hat{g}, the shape operator A, the second fundamental form h and the connections ∇^{\perp} and $\hat{\nabla}$ satisfying the structure equations of (m+1)-dimensional θ-slant submanifold in $\bar{M}^{2 m+1}(c)$. Therefore, from theorem A, there exists a θ-slant isometric immersion of M in $\bar{M}^{2 m+1}(c)$ with h as its second fundamental form, A as its shape operator and ∇^{\perp} as its normal connection.

4. Uniqueness theorem for slant immersions into Kenmotsu space form

Theorem 4.1 (Uniqueness). Let $x^{1}, x^{2}: M \rightarrow \bar{M}(c)$ be two slant immersions with slant angle $\theta(0<\theta \leq$ $\pi / 2)$, of a connected Riemannian manifold M^{m+1} into a Kenmotsu space-form $\bar{M}^{2 m+1}(c)$. Let h^{1}, h^{2} denote the second fundamental forms of x^{1} and x^{2}, respectively. Suppose that there is a vector field $\hat{\xi}$ on M such that $x_{* p}^{i}\left(\hat{\xi}_{p}\right)=\xi_{x^{i}(p)}$ for any $i=1,2$ and $p \in M$; and

$$
\begin{equation*}
g\left(h^{1}(X, Y), \varphi x_{*}^{1} Z\right)=g\left(h^{2}(X, Y), \varphi x_{*}^{2} Z\right) \tag{4.1}
\end{equation*}
$$

for all vector fields X, Y, Z tangent to M. Moreover, we also assume that one of the following conditions hold:
(i) $\theta=\pi / 2$
(ii) There exists a point p of M such that $P_{1}=P_{2}$.
(iii) $c \neq-1$.

Then, there exists an isometry ϕ of $\bar{M}^{2 m+1}(c)$ such that $x^{1}=\phi \circ x^{2}$.
Proof. Let us take any point p of M. We may assume that $x^{1}(p)=x^{2}(p)$ and $x_{*}^{1}(p)=x_{*}^{2}(p)$. Take a geodesic γ through $p=\gamma(0)$. Now, we define $\gamma_{1}=x^{1}(\gamma)$ and $\gamma_{2}=x^{2}(\gamma)$. To prove the theorem it is sufficient to show that γ_{1} and γ_{2} coincide. It is known that $\gamma_{1}(0)=\gamma_{2}(0)$ and $\gamma_{1}^{\prime}(0)=\gamma_{2}^{\prime}(0)$. Let $E_{1}, E_{2}, \ldots, E_{m}, \hat{\xi}$ be any orthonormal frame along γ. We can define a frame along γ_{1} and γ_{2} as follows:

$$
a_{i}=x_{*}^{1}\left(E_{i}\right), B_{i}=x_{*}^{2}\left(E_{i}\right), A_{n+i}=\left(x_{*}^{1}\left(E_{i}\right)\right)^{*}, B_{n+i}=\left(x_{*}^{2}\left(E_{i}\right)\right)^{*}, \text { where, } X^{*}=\frac{F X}{\sin \theta}
$$

PANDEY, GUPTA

for any $X \in D$.
From (3.11), $h(X, Y)=-\csc \theta \delta^{*}(X, Y)$, and therefore $h^{i}=-\csc \theta\left(\delta^{i}\right)^{*}$ for any $i=1,2$.
From (4.1), we have

$$
\begin{aligned}
g\left(\csc \theta\left(\delta^{1}\right)^{*}(X, Y), \varphi x_{*}^{1} Z\right) & =g\left(\csc \theta\left(\delta^{2}\right)^{*}(X, Y), \varphi x_{*}^{2} Z\right) \\
g\left(\left(\delta^{1}\right)^{*}(X, Y), F x_{*}^{1} Z\right) & =g\left(\left(\delta^{2}\right)^{*}(X, Y), F x_{*}^{2} Z\right) \\
g\left(\delta^{1}(X, Y), x_{*}^{1} Z\right) & =g\left(\delta^{2}(X, Y), x_{*}^{2} Z\right)
\end{aligned}
$$

Since, $x_{*}^{1}(p)=x_{*}^{2}(p)$ and Z is arbitrary, we conclude that $\delta^{1}=\delta^{2}$.
Now, we have to show that $P_{1}=P_{2}$.
If (i) is satisfied then we see that $P_{1}=P_{2}=0$.
And if (ii) is satisfied, it follows from (3.5) that,

$$
g\left(\nabla_{X}\left(P_{1}-P_{2}\right) Y, Z\right)=g\left(\left(P_{1}-P_{2}\right) X, Y\right) \eta(Z)+g\left(X,\left(P_{1}-P_{2}\right) Z\right) \eta(Y)
$$

Since it is true for any X, Y, Z and we have $P_{1}=P_{2}$ at any point $p \in M$, therefore we have $P_{1}=P_{2}$ everywhere.

Now suppose that (iii) is satisfied and assume that $P_{1} \neq P_{2}$ and (i) and (ii) are not satisfied. First we want to show that $P_{1}=-P_{2}$.

From (3.6), we find that

$$
\begin{align*}
& g\left(P_{1} X, W\right) g\left(P_{1} Y, Z\right)-g\left(P_{1} X, Z\right) g\left(P_{1} Y, W\right)+2 g\left(P_{1} Z, W\right) g\left(P_{1} Y, X\right) \tag{4.2}\\
& \quad=g\left(P_{2} X, W\right) g\left(P_{2} Y, Z\right)-g\left(P_{2} X, Z\right) g\left(P_{2} Y, W\right)+2 g\left(P_{2} Z, W\right) g\left(P_{2} Y, X\right)
\end{align*}
$$

Putting $X=W, Y=Z$, and using skew symmetric property of P_{1} and P_{2}, equation (4.2) reduces to

$$
\begin{equation*}
g\left(P_{1} Y, X\right)^{2}=g\left(P_{2} Y, X\right)^{2} \tag{4.3}
\end{equation*}
$$

Now putting $e_{1}=X$ and $e_{2}=P_{1} X$, and letting that $P_{2} e_{1}$ has a component in the direction of vector e_{3} which is orthogonal to both e_{1} and e_{2}, a contradiction follows from (4.3) which states that

$$
g\left(P_{2} e_{1}, e_{3}\right)^{2}=g\left(P_{1} e_{1}, e_{3}\right)^{2}=g\left(e_{2}, e_{3}\right)^{2}=0
$$

Now using (3.2) and (3.3), we have $P_{1} \nu= \pm P_{2} \nu$ for any tangent vector ν.
We choose a basis $\left\{e_{1}, \ldots, e_{m}, e_{m+1}\right\}$ of the tangent space at a point $p \in M$. Then there exists a number $\varepsilon_{i} \in\{-1,1\}$ such that $P_{1} e_{i}=\varepsilon_{i} P_{2} e_{i}$. Hence we have

$$
\pm P_{1}\left(e_{i}+e_{j}\right)=P_{2}\left(e_{i}+e_{j}\right)=\varepsilon_{i} P_{1} e_{i}+\varepsilon_{j} P_{1} e_{j}
$$

Thus the above formula shows that all ε_{i} have to be same, and so either $P_{1} \nu=P_{2} \nu$ or $P_{1} \nu=-P_{2} \nu$ for all $\nu \in T_{p} M$.

Since M is connected, we have either $P_{1}=P_{2}$ or $P_{1}=-P_{2}$ in case (iii).

PANDEY, GUPTA

Now, assume that we have two immersions with $P_{1}=-P_{2}$. From (3.5) it follows that

$$
g\left(\left(\nabla_{X} P_{1}\right) Y, Z\right)=g\left(\delta^{1}(X, Y), Z\right)-g\left(\delta^{1}(X, Z), Y\right)+g\left(P_{1} X, Y\right) \eta(Z)+g\left(X, P_{1} Z\right) \eta(Y)
$$

and

$$
\begin{aligned}
g\left(\left(\nabla_{X} P_{2}\right) Y, Z\right) & =-g\left(\left(\nabla_{X} P_{1}\right) Y, Z\right) \\
& =g\left(\delta^{2}(X, Y), Z\right)-g\left(\delta^{2}(X, Z), Y\right)+g\left(P_{2} X, Y\right) \eta(Z)+g\left(X, P_{2} Z\right) \eta(Y)
\end{aligned}
$$

Since $\delta^{1}=\delta^{2}=\delta$, we get

$$
\begin{equation*}
g(\delta(X, Y), Z)=g(\delta(X, Z), Y) \tag{4.4}
\end{equation*}
$$

Writing equation (3.7) for both the immersions, we get

$$
\begin{aligned}
& \left\{\left(\nabla_{X} \delta^{1}\right)(Y, Z)-\left(\nabla_{Y} \delta^{1}\right)(X, Z)\right\}=\csc ^{2} \theta\left\{P_{1} \delta^{1}\left(Y, \delta^{1}(X, Z)\right)+\delta^{1}\left(Y, P_{1} \delta^{1}(X, Z)\right)\right. \\
& \left.\quad-P_{1} \delta^{1}\left(X, \delta^{1}(Y, Z)\right)-\delta^{1}\left(X, P_{1} \delta^{1}(Y, Z)\right)\right\}+\frac{c+1}{4} \sin ^{2} \theta\left\{g\left(Y, P_{1} Z\right)(X-\eta(X) \xi)\right. \\
& \left.\quad-g\left(X, P_{1} Z\right)(Y-\eta(Y) \xi)-2 g\left(X, P_{1} Y\right)(Z-\eta(Z) \xi)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\left\{\nabla_{X} \delta^{2}\right)(Y, Z)-\left(\nabla_{Y} \delta^{2}\right)(X, Z)\right\}=\csc ^{2} \theta\left\{P_{2} \delta^{2}\left(Y, \delta^{2}(X, Z)\right)+\delta^{2}\left(Y, P_{2} \delta^{2}(X, Z)\right)\right. \\
& \left.\quad-P_{2} \delta^{2}\left(X, \delta^{2}(Y, Z)\right)-\delta^{2}\left(X, P_{2} \delta^{2}(Y, Z)\right)\right\}+\frac{c+1}{4} \sin ^{2} \theta\left\{g\left(Y, P_{2} Z\right)(X-\eta(X) \xi)\right. \\
& \left.\quad-g\left(X, P_{2} Z\right)(Y-\eta(Y) \xi)-2 g\left(X, P_{2} Y\right)(Z-\eta(Z) \xi)\right\}
\end{aligned}
$$

Now using $P_{1}=-P_{2}=P$ in the above equations, and subtracting the two, we get

$$
\begin{aligned}
0 & =2 \csc ^{2} \theta\{P \delta(Y, \delta(X, Z))+\delta(Y, P \delta(X, Z))-P \delta(X, \delta(Y, Z))-\delta(X, P \delta(Y, Z))\} \\
& +2 \frac{c+1}{4} \sin ^{2} \theta\{g(Y, P Z)(X-\eta(X) \xi)-g(X, P Z)(Y-\eta(Y) \xi)-2 g(X, P Y)(Z-\eta(Z) \xi)\}
\end{aligned}
$$

or

$$
\begin{aligned}
& \{P \delta(Y, \delta(X, Z))+\delta(Y, P \delta(X, Z))-P \delta(X, \delta(Y, Z))-\delta(X, P \delta(Y, Z))\} \\
& +\frac{c+1}{4} \sin ^{4} \theta\{g(Y, P Z)(X-\eta(X) \xi)-g(X, P Z)(Y-\eta(Y) \xi)-2 g(X, P Y)(Z-\eta(Z) \xi)\}=0
\end{aligned}
$$

or

$$
\begin{align*}
& P \delta(X, \delta(Y, Z))+\delta(X, P \delta(Y, Z))-P \delta(Y, \delta(X, Z))-\delta(Y, P \delta(X, Z)) \\
& +\frac{c+1}{4} \sin ^{4} \theta\{g(X, P Z)(Y-\eta(Y) \xi)-g(Y, P Z)(X-\eta(X) \xi)+ \tag{4.5}\\
& +2 g(X, P Y)(Z-\eta(Z) \xi)\}=0
\end{align*}
$$

Taking inner product of equation (4.5) with a vector W, we get

$$
\begin{aligned}
& g(P \delta(X, \delta(Y, Z)), W)+g(\delta(X, P \delta(Y, Z)), W)-g(P \delta(Y, \delta(X, Z)), W)-g(\delta(Y, P \delta(X, Z)), W) \\
& +\frac{c+1}{4} \sin ^{4} \theta\{g(X, P Z) g(Y, W)-g(X, P Z) \eta(Y) \eta(W)-g(Y, P Z) g(X, W)+g(Y, P Z) \eta(X) \eta(W) \\
& +2 g(X, P Y) g(Z, W)-2 g(X, P Y) \eta(Z) \eta(W)\}=0
\end{aligned}
$$

PANDEY, GUPTA

or

$$
\begin{align*}
& -g(\delta(X, P W), \delta(Y, Z))+g(\delta(Y, P W), \delta(X, Z))+g(\delta(X, W), P \delta(Y, Z))- \\
& -g(\delta(Y, W), P \delta(X, Z))+\frac{c+1}{4} \sin ^{4} \theta\{g(X, P Z) g(Y, W)-g(X, P Z) \eta(Y) \eta(W)- \tag{4.6}\\
& -g(Y, P Z) g(X, W)+g(Y, P Z) \eta(X) \eta(W)+ \\
& +2 g(X, P Y) g(Z, W)-2 g(X, P Y) \eta(Z) \eta(W)\}=0 .
\end{align*}
$$

If δ vanishes identically at a point, then a contradiction follows from (4.6) since $c \neq-1$.
Now we take a fixed point p of M and consider a function f defined on the set of all unit tangent vectors $U M_{p}$ by
$f(\nu)=g(\delta(\nu, \nu), \nu)$, for all $\nu \in U M_{p}$.
Since $U M_{p}$ is compact there exists a vector u such that f attains an absolute maximum at u. Let w be a unit vector orthogonal to u. Then the function $f(t)=f(g(t))$, where the relation $g(t)=(\cos t) u+(\sin t) w$ satisfies the conditions $f^{\prime}(0)=0$ and $f^{\prime \prime}(0) \leq 0$. The first condition implies that $g(\delta(u, u), w)=0$, whereas the second condition implies $g(\delta(u, w), w) \leq \frac{1}{2} g(\delta(u, u), u)$.

Using the total symmetry of δ, it follows that we can choose an orthonormal basis $e_{1}=u, e_{2}, e_{3} \ldots, e_{m}, e_{m+1}$ such that

$$
\begin{equation*}
\delta\left(e_{1}, e_{1}\right)=\lambda_{1} e_{1}, \quad \delta\left(e_{1}, e_{i}\right)=\lambda_{i} e_{i} \tag{4.7}
\end{equation*}
$$

with $i>1$ and $\lambda_{i} \leq \frac{1}{2} \lambda_{1}$. Since δ is not identically 0 , it follows from total symmetry of (4.4) that $\lambda_{1}>0$.
Using (4.4) and (4.7) in (4.6), with $X=Z=W=e_{1}$ and $Y=e_{i}$, we find

$$
\begin{aligned}
& -g\left(\delta\left(e_{1}, P e_{1}\right), \delta\left(e_{i}, e_{1}\right)\right)+g\left(\delta\left(e_{i}, P e_{1}\right), \delta\left(e_{1}, e_{1}\right)\right)+g\left(\delta\left(e_{1}, e_{1}\right), P \delta\left(e_{i}, e_{1}\right)\right) \\
& -g\left(\delta\left(e_{i}, e_{1}\right), P \delta\left(e_{1}, e_{1}\right)\right)+\frac{c+1}{4} \sin ^{4} \theta\left\{g\left(e_{1}, P e_{1}\right) g\left(e_{i}, e_{1}\right)-g\left(e_{1}, P e_{1}\right) \eta\left(e_{i}\right) \eta\left(e_{1}\right)\right. \\
& \left.-g\left(e_{i}, P e_{1}\right) g\left(e_{1}, e_{1}\right)+g\left(e_{i}, P e_{1}\right) \eta\left(e_{1}\right) \eta\left(e_{1}\right)+2 g\left(e_{1}, P e_{i}\right) g\left(e_{1}, e_{1}\right)-2 g\left(e_{1}, P e_{i}\right) \eta\left(e_{1}\right) \eta\left(e_{1}\right)\right\}=0
\end{aligned}
$$

or

$$
\begin{gathered}
-g\left(\delta\left(e_{1}, P e_{1}\right), \lambda_{i} e_{i}\right)+g\left(\delta\left(e_{i}, P e_{1}\right), \lambda_{1} e_{1}\right)+g\left(\lambda_{1} e_{1}, P \lambda_{i} e_{i}\right)-g\left(\lambda_{i} e_{i}, P \delta\left(e_{1}, e_{1}\right)\right. \\
\quad \frac{c+1}{4} \sin ^{4} \theta\left\{-g\left(e_{i}, p e_{1}\right) g\left(e_{1}, e_{1}\right)+2 g\left(e_{1}, P e_{i}\right) g\left(e_{1}, e_{1}\right)\right\}=0
\end{gathered}
$$

or

$$
\begin{equation*}
\left(\lambda_{i}^{2}+\lambda_{i} \lambda_{1}+3 \frac{c+1}{4} \sin ^{4} \theta\right) g\left(P e_{1}, e_{i}\right)=0 \tag{4.8}
\end{equation*}
$$

Now, we show that $P e_{1}$ is an eigen vector of $\delta\left(e_{1},.\right)$. In order to do so, we put $X=Z=W=e_{1}, W=e_{j}$ and $Y=e_{i}$ for $i, j>1$. Then, we get

$$
\begin{aligned}
& -g\left(\delta\left(e_{1}, P e_{j}\right), \delta\left(e_{i}, e_{1}\right)\right)+g\left(\delta\left(e_{i}, P e_{j}\right), \delta\left(e_{1}, e_{1}\right)\right)+g\left(\delta\left(e_{1}, e_{j}\right), P \delta\left(e_{i}, e_{1}\right)\right) \\
& -g\left(\delta\left(e_{i}, e_{j}\right), P \delta\left(e_{1}, e_{1}\right)\right)+\frac{c+1}{4} \sin ^{4} \theta\left\{g\left(e_{1}, P e_{1}\right) g\left(e_{i}, e_{j}\right)-g\left(e_{1}, P e_{1}\right) \eta\left(e_{i}\right) \eta\left(e_{j}\right)\right. \\
& \left.-g\left(e_{i}, P e_{1}\right) g\left(e_{1}, e_{j}\right)+g\left(e_{i}, P e_{1}\right) \eta\left(e_{1}\right) \eta\left(e_{j}\right)+2 g\left(e_{1}, P e_{i}\right) g\left(e_{1}, e_{j}\right)-2 g\left(e_{1}, P e_{i}\right) \eta\left(e_{1}\right) \eta\left(e_{j}\right)\right\}=0
\end{aligned}
$$

or

$$
\begin{equation*}
\left(\lambda_{i}^{2}-\lambda_{i} \lambda_{1}+\lambda_{i} \lambda_{j}\right) g\left(P e_{j}, e_{i}\right)+\lambda_{1} g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)=0 \tag{4.9}
\end{equation*}
$$

Interchanging the indices i and j in (4.9), we get

$$
\begin{equation*}
\left(\lambda_{j}^{2}-\lambda_{j} \lambda_{1}+\lambda_{i} \lambda_{j}\right) g\left(P e_{i}, e_{j}\right)+\lambda_{1} g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)=0 . \tag{4.10}
\end{equation*}
$$

Combining (4.9) and (4.10), we obtain

$$
\left(\lambda_{i}^{2}-\lambda_{i} \lambda_{1}+\lambda_{j}^{2}-\lambda_{j} \lambda_{1}+2 \lambda_{i} \lambda_{j}\right) g\left(P e_{j}, e_{i}\right)=0
$$

or

$$
\begin{equation*}
\left(\lambda_{i}+\lambda_{j}\right)\left(\lambda_{1}-\lambda_{i}-\lambda_{j}\right) g\left(P e_{j}, e_{i}\right)=0 \tag{4.11}
\end{equation*}
$$

Since, $\lambda_{1} \geq 2 \lambda_{i}$, we get that $\lambda_{1}-\lambda_{i}-\lambda_{j}=0$ only if $\lambda_{i}=\lambda_{j}=\frac{1}{2} \lambda_{1}$.
Now if we put $X=W=e_{1}, Z=e_{j}$ and $Y=e_{i}$ for $i, j>1$ in (4.6), we find that

$$
\begin{aligned}
& -g\left(\delta\left(e_{1}, P e_{1}\right), \delta\left(e_{i}, e_{j}\right)\right)+\lambda_{j} g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)-\lambda_{i} \lambda_{j} g\left(e_{i}, P e_{j}\right)- \\
& \quad-\lambda_{1} g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)-\frac{c+1}{4} \sin ^{4} \theta\left\{g\left(e_{i}, P e_{j}\right)\right\}=0,
\end{aligned}
$$

or

$$
\begin{align*}
& g\left(\delta\left(e_{1}, P e_{1}\right), \delta\left(e_{i}, e_{j}\right)\right)-\lambda_{j} g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)+\lambda_{i} \lambda_{j} g\left(e_{i}, P e_{j}\right) \\
& +\lambda_{1} g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)+\frac{c+1}{4} \sin ^{4} \theta\left\{g\left(e_{i}, P e_{j}\right)\right\}=0 . \tag{4.12}
\end{align*}
$$

Interchanging the indices i and j in (4.12), we get

$$
\begin{align*}
& g\left(\delta\left(e_{1}, P e_{1}\right), \delta\left(e_{i}, e_{j}\right)\right)-\lambda_{i} g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)+\lambda_{i} \lambda_{j} g\left(e_{j}, P e_{i}\right)+ \\
& +\lambda_{1} g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)+\frac{c+1}{4} \sin ^{4} \theta\left\{g\left(e_{j}, P e_{i}\right)\right\}=0 \tag{4.13}
\end{align*}
$$

Combining (4.12) and (4.13), we get

$$
\begin{equation*}
\left(\lambda_{i}-\lambda_{j}\right) g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)+2 \lambda_{i} \lambda_{j} g\left(e_{i}, P e_{j}\right)+\frac{c+1}{2} \sin ^{4} \theta g\left(e_{i}, P e_{j}\right)=0 \tag{4.14}
\end{equation*}
$$

Now, we summarize the previous equations in the following manner. First, by taking $i=j$ in (4.9), we get

$$
\begin{equation*}
g\left(\delta\left(e_{i}, e_{i}\right), P e_{1}\right)=0 \tag{4.15}
\end{equation*}
$$

Hence, we have $g\left(\delta(\nu, \nu), P e_{1}\right)=0$ if ν is an eigenvector of $\delta\left(e_{1},.\right)$. Moreover, the symmetry of δ then implies that $g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)=0$, whenever $\lambda_{i}=\lambda_{j}$.

We now consider the following four different cases.
(1) $\lambda_{i}+\lambda_{j} \neq 0$, but not $\lambda_{i}=\lambda_{j}=\frac{1}{2} \lambda_{1}$. In this case (4.11) implies $g\left(P e_{i}, e_{j}\right)=0$.
(2) $\lambda_{i}+\lambda_{j}=0$, and $\lambda_{i} \neq 0$. In this case, (4.9) implies $g\left(\delta\left(e_{i}, e_{j}\right), P e_{1}\right)=\lambda_{i} g\left(P e_{j}, e_{i}\right)$.

Using the consequence of case (2) in (4.14), we get $g\left(P e_{j}, e_{i}\right)=0$.

PANDEY, GUPTA

(3) $\lambda_{i}=\lambda_{j}=0$. In this case it follows from (4.14) that $g\left(e_{i}, P e_{j}\right)=0$;
(4) $\lambda_{i}=\lambda_{j}=\frac{1}{2} \lambda_{1}$.

If $e_{i_{1}}, e_{i_{2}}, \ldots ., e_{i_{k}}$ are eigenvectors belonging to an eigenvalue different from $\frac{1}{2} \lambda_{1}$, then each $P e_{i_{l}}$, $l=1, \ldots ., k$, can only have a component in the direction of e_{1}, say $P e_{i_{l}}=\mu_{l} e_{1}$. Thus $\mu_{l} P e_{1}=-\cos ^{2} \theta e_{i_{l}}$. Consequently, either $k=1$ or there does not exist an eigenvector with eigenvalue different from $\frac{1}{2} \lambda_{1}$. If $k=1$, then obviously $P e_{1}$ is an eigenvector. In the latter case $\delta\left(e_{1},.\right)$, restricted to the space e_{1}^{\perp}, only has one eigenvalue, namely $\frac{1}{2} \lambda_{1}$. Since, $P e_{1}$ is always orthogonal to $e_{1}, P e_{1}$ is also an eigenvector in this case. Hence $P e_{1}$ is always an eigenvector of $\delta\left(e_{1},.\right)$.

Without any loss of generality, we may assume that e_{2} is in the direction of $P e_{1}$. Then it follows immediately that $\delta\left(e_{1}, P e_{1}\right)=\lambda_{2} P e_{1}$, where λ_{2} satisfies the equation

$$
\begin{equation*}
\lambda_{2}^{2}+\lambda_{2} \lambda_{1}+\frac{3(c+1)}{4} \sin ^{4} \theta=0 \tag{4.16}
\end{equation*}
$$

by virtue of (4.8).
If we choose $X=Z=e_{1}, W=P e_{1}$ and $Y=e_{i}$ for $i>2$ in (4.6), then

$$
g\left(\delta\left(e_{1}, P e_{1}\right), \lambda_{i} P e_{i}\right)-\lambda_{1} g\left(\delta\left(e_{i}, P e_{1}\right), P e_{1}\right)=0
$$

or, $g\left(\lambda_{2} P e_{1}, \lambda_{i} P e_{i}\right)-\lambda_{1} g\left(\delta\left(e_{i}, P e_{1}\right), P e_{1}\right)=0$
or, $\lambda_{i} \lambda_{2} \cos ^{2} \theta g\left(e_{1}, e_{i}\right)-\lambda_{1} g\left(\delta\left(e_{i}, P e_{1}\right), P e_{1}\right)=0$
or, $\lambda_{1} g\left(\delta\left(e_{i}, P e_{1}\right), P e_{1}\right)=\lambda_{1} g\left(\delta\left(P e_{1}, P e_{1}\right), e_{i}\right)=0$.
Thus $\delta\left(P e_{1}, P e_{1}\right)=\lambda_{2} \cos ^{2} \theta e_{1}$.
Putting $X=Z=W=P e_{1}$ and $Y=e_{1}$ in (4.6), we get

$$
\begin{equation*}
-\lambda_{2}^{2}-\lambda_{2} \lambda_{1}+\frac{3(c+1)}{4} \sin ^{4} \theta=0 \tag{4.17}
\end{equation*}
$$

Now from (4.16) and (4.17) we get $\frac{3(c+1)}{4} \sin ^{4} \theta=0$, which is a contradiction since $c \neq-1$. Therefore $P_{1}=P_{2}$. It can be easily seen from relations (3.10)-(3.12) that
$g\left(\gamma_{1}^{\prime}, A_{k}\right)=g\left(\gamma_{2}^{\prime}, B_{k}\right)$ and $g\left({\underset{\gamma}{\gamma}}^{A_{k}}, A_{l}\right)=g\left({\underset{\gamma}{\gamma}} B_{k}, B_{l}\right)$ for $k, l=1, \ldots, 2 m$
such that, by [16, Proposition 3], $\gamma_{1}=\gamma_{2}$.

5. Applications and examples

Let $\psi=\psi(x), \psi_{i}=\psi_{i}(x), i=1,2,3$ be four functions defined on an open interval containing 0 . Let c and θ be two constants with $0<\theta \leq \pi / 2$ and M be a simply connected open neighbourhood of the origin $(0,0,0) \in R^{3}$. Now we suppose that

$$
\begin{equation*}
f(x)=\exp \int \phi_{3}(x) d x \tag{5.1}
\end{equation*}
$$

PANDEY, GUPTA

$$
\begin{equation*}
\eta=d z \tag{5.2}
\end{equation*}
$$

Let the warped metric on M be defined by

$$
\begin{equation*}
g=\eta \otimes \eta+e^{2 z}\left(d x \otimes d x+f^{2}(x) d y \otimes d y\right) \tag{5.3}
\end{equation*}
$$

Now, we consider the vectors

$$
e_{1}=\frac{1}{e^{z}} \frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{f e^{z}} \frac{\partial}{\partial y} \quad, \quad e_{3}=\xi=\frac{\partial}{\partial z}
$$

Then it can be readily seen that $\left\{e_{1}, e_{2}, e_{3}\right\}$ is a local orthonormal frame of $T M$ and that η is a dual 1-form of ξ. Moreover, we have

$$
\begin{gathered}
\nabla_{e_{1}} e_{1}=-e_{3} \quad \nabla_{e_{1}} e_{2}=0 \quad \nabla_{e_{1}} e_{3}=e_{1} \\
\nabla_{e_{2}} e_{1}=\frac{\psi_{3}}{e^{z}} e_{2} \quad \nabla_{e_{2}} e_{2}=-\frac{\psi_{3}}{e^{z}} e_{1}-e_{3} \quad \nabla_{e_{2}} e_{3}=e_{2} \\
\nabla_{e_{3}} e_{1}=0 \quad \nabla_{e_{3}} e_{2}=0 \quad \nabla_{e_{3}} e_{3}=0 .
\end{gathered}
$$

Let us define a tensor field φ such that

$$
\varphi e_{1}=e_{2}, \quad \varphi e_{2}=-e_{1}, \quad \varphi \xi=0
$$

and a symmetric bilinear $T M$-valued form δ on M given by

$$
\begin{gather*}
\delta\left(e_{1}, e_{1}\right)=\psi e_{1}+\psi_{1} e_{2}, \quad \delta\left(e_{1}, e_{2}\right)=\psi_{1} e_{1}+\psi_{2} e_{2}, \quad \delta\left(e_{2}, e_{2}\right)=\psi_{2} e_{1}-\psi_{1} e_{2} \tag{5.4}\\
\delta\left(e_{1}, \xi\right)=0, \quad \delta\left(e_{2}, \xi\right)=0, \quad \delta(\xi, \xi)=0 \tag{5.5}
\end{gather*}
$$

It is easy to show that $(M, \varphi, \xi, \eta, g)$ is an almost contact metric manifold with $\left(\nabla_{X} \varphi\right) Y=g(\varphi X, Y) \xi-\eta(Y) \varphi X$ for any $X, Y \in T M$. By putting $P=\cos \theta \varphi$, we can see that (M, g, ξ, P, δ) satisfy equations (3.1), (3.2), (3.3), (3.4) and (3.5). In addition, we can prove that M satisfy conditions (3.6) and (3.7) if we have the following:

$$
\begin{gather*}
\psi_{3}^{\prime}=-\psi_{3}^{2}-e^{2 z} \csc ^{2} \theta\left\{\psi \psi_{2}-2 \psi_{1}^{2}-\psi_{2}^{2}\right\}-e^{2 z} \frac{(c+1)}{4}\left(1+3 \cos ^{2} \theta\right) \tag{5.6}\\
\psi_{2}^{\prime}=\left(-2 \psi_{2}+\psi\right) \psi_{3}-e^{z} \csc \theta \cot \theta\left(\psi_{2}+\psi\right) \psi_{1} \tag{5.7}\\
\psi_{1}^{\prime}=-3 \psi_{1} \psi_{3}+e^{z} \csc \theta \cot \theta\left(\psi_{2}+\psi\right) \psi_{2}+3 e^{z} \frac{(c+1)}{4} \sin ^{2} \theta \cos \theta \tag{5.8}\\
\psi_{1}^{\prime}=-3 \psi_{1} \psi_{3}+e^{z} \csc \theta \cot \theta\left(\psi_{2}+\psi\right) \psi_{2}-3 e^{z} \frac{(c+1)}{4} \sin ^{2} \theta \cos \theta \tag{5.9}
\end{gather*}
$$

But we see that (5.8) and (5.9) hold simultaneously if and only if
$e^{z} \frac{(c+1)}{4} \sin ^{2} \theta \cos \theta=0$. Since, $0<\theta \leq \frac{\pi}{2}$, we know that $\sin ^{2} \theta \neq 0$, and $e^{z} \neq 0$ for any $z \in R$. Hence, it must be either $c=-1$ or $\theta=\frac{\pi}{2}$.

By applying theorem (4.1), we have the following result.

PANDEY, GUPTA

Theorem 5.1 Let $\psi=\psi(x)$ be a function defined on an open interval containing 0 and c_{1}, c_{2}, c_{3}, c and θ be the five constants with $0<\theta \leq \frac{\pi}{2}$. Consider the following set of first order differential equations in $y_{i}=y_{i}(x)$, for $i=1,2,3$

$$
\begin{aligned}
& y_{1}^{\prime}=-3 y_{1} y_{3}+e^{z} \csc \theta \cot \theta\left(y_{2}+\psi\right) y_{2} \\
& y_{2}^{\prime}=\left(-2 y_{2}+\psi\right) y_{3}-e^{z} \csc \theta \cot \theta\left(y_{2}+\psi\right) y_{1} \\
& y_{3}^{\prime}=-y_{3}^{2}-e^{2 z} \csc ^{2} \theta\left(\psi y_{2}-2 y_{1}^{2}-y_{2}^{2}\right)-e^{2 z} \frac{(c+1)}{4}\left(1+3 \cos ^{2} \theta\right)
\end{aligned}
$$

with the initial conditions: $y_{1}(0)=c_{1}, y_{2}(0)=c_{2}, y_{3}(0)=c_{3}$. Let ψ_{1}, ψ_{2} and ψ_{3} be the components of the unique solution of this differentiable system on some open interval containing 0 . Let M be a simply connected open neighborhood of the origin $(0,0,0) \in R^{3}$, endowed with the metric given by (51)-(5.3). Let δ be the TM-valued form defined by (5.4) and (5.5). Then, we have

1. If $c=-1$, there exists a θ-slant isometric immersion from M into $\bar{M}^{5}(-1)$, whose second fundamental form is given by

$$
h(X, Y)=\csc ^{2} \theta(P \delta(X, Y)-\varphi \delta(X, Y))
$$

1. If $\theta=\frac{\pi}{2}$, then there exists an anti-invariant immersion from M into $\bar{M}^{5}(c)$, whose second fundamental form is given by

$$
h(X, Y)=-\varphi \delta(X, Y))
$$

From theorem 5.1, we have the following existence result for three dimensional submanifolds with prescribed scalar curvature parantez or mean curvature.

Corollary 5.2 For a given constant θ with $0<\theta<\pi / 2$ and a given function $F_{1}=F_{1}(x)$ (resp. $\left.F_{2}=F_{2}(x)\right)$, there exist infinitely many three dimensional θ slant submanifolds in Kenmotsu space form $\bar{M}^{5}(c)$ with F_{1} (resp. F_{2}) as the prescribed scalar curvature (resp., mean curvature) function for $c=-1$.

References

[1] Blair, D.E.: Contact manifolds in Riemannian geometry, Lect. Notes in Math. Springer Verlag, Berlin- New York, 509, (1976).
[2] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., and Fernandez, M.: Existence and uniqueness theorem for slant immersion in Sasakian manifolds, Publicationes Mathematicae Debrecen 58, 559-574 (2001).
[3] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., and Fernandez, M.: Slant submanifolds in Sasakian manifolds, Glasgow Math. J. 42, 125-138 (2000).
[4] Cabrerizo, J.L., Carriazo, A., Fernandez, L.M., and Fernandez, M.: Structure on a slant submanifold of a contact manifold, Indian J. Pure Appl. Math. 31 (7), 857-864 (2000).
[5] Chen, B.Y.: Geometry of slant submanifolds, Katholieke Universiteit Leuven, (1990).
[6] Chen, B.Y. and Vrancken, L.: Existence and uniqueness theorem for slant immersions and its applications, Result. Math. 31, 28-39 (1997).

PANDEY, GUPTA

[7] Chen, B.Y. and Vrancken, L.: (Addendum to) Existence and uniqueness theorem for slant immersions and its applications, Result. Math. 39, 18-22 (2001).
[8] Chen, B.Y. and Tazawa, Y.: Slant submanifolds in complex Euclidean spaces, Tokyo J. Math. 14, 101-120 (1991).
[9] Eschenburg, J. H., and Tribuzy, R.: Existence and uniqueness of maps into affine homogeneous spaces, Rend. Sem. Mat. Univ. Padova 89, 11-18 (1993).
[10] Gupta, R.S., Haider, S.M.K., and Sharfuddin, A.: Existence and uniqueness theorem for slant immersion in cosymplectic space forms, Publ. Math. Debrecen 67/1-2, 169-188 (2005).
[11] Gupta, R.S. and Pandey, P.K.: Structure on slant submanifold of a Kenmotsu manifold, Diff. Geometry- Dynamical Systems 10, 139-147 (2008).
[12] Kenmotsu, K.: A class of almost contact Riemannian manifolds, Tohoku Math J. 21, 93-103 (1972).
[13] Kobayashi, M.: Semi invariant submanifolds of a certain class of almost contact manifolds, Tensor (N.S.), 43, 28-36 (1986).
[14] Lotta, A.: Slant submanifolds in contact geometry, Bull. Math. Soc. Roumanie 39, 183-198 (1996).
[15] Lotta, A.: Three dimensional slant submanifolds of K-contact manifolds, Balkan J. Geom. Appl. 3 (1), 37-51 (1998).
[16] Reckziegel, H.: On the problem whether the image of a given differentiable map into a Riemannian manifold is contained in a submanifold with parallel second fundamental form, J. Reine. Angew. Math. 325, 87-104 (1981).

Pradeep Kumar PANDEY,

Received 24.04.2008
Department of Mathematics, Faculty of Natural Sciences
Jamia Millia Islamia, New Delhi-110025, INDIA
e-mail: pandeypkdelhi@gmail.com
Ram Shankar GUPTA
University School of Basic and Applied Sciences
Guru Gobind Singh Indraprastha University
Kashmere Gate, Delhi 110006, INDIA
e-mail: guptarsgupta@rediffmail.com

[^0]: 2000 AMS Mathematics Subject Classification: 53C25, 53C42.

