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Existence and uniqueness theorem for slant immersions in

Kenmotsu space forms
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Abstract

In this paper we have obtained a general existence as well as uniqueness theorem for slant immersions

into a Kenmotsu-space form.
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1. Introduction

B. Y. Chen has defined and studied slant immersions by generalizing the concept of holomorphic and
totally real immersions [5]. Latter, it was A. Lotta [14], who introduced the concept of slant immersion of a
Riemannian manifold into an almost contact metric manifold. B. Y. Chen and Y. Tazawa [8] have obtained
examples of n-dimensional proper slant submanifolds in the complex Euclidean n-space C'™. On the other hand,
Chen and Vrancken [6] have established the existence of n-dimensional proper slant submanifolds into a non-flat
complex space form M™(4c) and in contact geometry J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, and M.
A. Fernandez [2] have established the existence and uniqueness theorem in Sasakian space form. Later, R. S.
Gupta, S. M. K. Haider and A. Sharfuddin [10] have obtained the existence and uniqueness theorem into a
non-flat cosymplectic space form.

The purpose of the present paper is to establish a general existence and uniqueness theorem for slant
immersions in Kenmotsu-space forms.

In section 2, we review some basic formulae and results for our subsequent use.

2. Preliminaries

Let M be a (2m+1)-dimensional almost contact metric manifold with structure tensors (¢, &, 1, g),

where ¢ is a (1,1) tensor field, ¢ a vector field,  a 1-form and g is the Riemannian metric on M. These

tensors satisfy [1]
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$*X = =X +n(X)&, ¢€ =0,7(6) = 1,n(¢X) =0
and (2.1)

9(6X,9Y) = g(X,Y) = n(X)n(Y), n(X) = g(X, )
for any X, Y € TM, where TM denotes the Lie algebra of vector fields on M.
An almost contact metric manifold M is called a Kenmotsu manifold if [12],
(Vx9)Y = g(¢X,Y)§ — n(Y)dX, and Vx& =X —n(X)¢ (2.2)

where V denotes the Levi-Civita connection on M .

The curvature tensor R of Kenmotsu space form M (c) is given by [12],

n(Xn(2)Y —n(Y)n(2)X +n(Y)g(X, 2)§
—n(X)g(Y, Z)¢ — g(¢X, Z)pY (2.3)

+9(0Y, 2)pX +29(X, pY )pZ

— c—

ROXY)Z = S o, 2)X — (X, )V} +

c+1
4

forall X,Y,Z € TM.

Now, let M be an m-dimensional Riemannian manifold isometrically immersed in a Kenmotsu manifold
M. Denoting by TM the tangent bundle of M and by T-M the set of all vector fields normal to M, we
write,

pX=PX+FXandoN=tN+fN (2.4)

for any X € TM and N € T+M , where PX (resp. FX) denotes the tangential (resp. normal) component of
pX,and t N (resp. fN) denotes the tangential (resp. normal) component of ¢ N.

From now on, we assume that the structure vector field £ is tangent to M. We take the orthogonal
direct decomposition TM = D & {¢}.

A submanifold M is said to be slant if for any non zero X tangent to M at z such that X is not
proportional to &, , the angle (X)) between ¢ X and T, M is constant, i.e. §(X) is independent of the choice
of z € M and X € T, M —{&,;}. Sometime the angle §(X) is termed as Wirtinger angle of the slant immersion.

™
2
A slant immersion which is neither invariant nor anti-invariant is called a proper slant immersion.

Invariant and anti-invariant immersions are slant immersions with slant angle § =0 and 6 = respectively.

Let V (resp. V) denote the Riemannian connection on M (resp. M) and V* denote the connection

in the normal bundle T+M of M. Then the Gauss and Weingarten formulae are given by
VXY: VXY-i-h(X, Y) (2.5)

and
VxN=—-AyX + V%N (2.6)

for any X,Y € TM and N € T+ M.
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The second fundamental forms h and Ay are related by

Denote by R the curvature tensor of M and by R’ the curvature tensor of the normal connection. Then the

equations of Gauss, Ricci and Codazzi are given by

R(X, Y. Z, W) = R(Xu Y. Z, W) - g(h(X, W)v h(Y, Z)) + g(h(X, Z)v h(Y, W)) (2'8)
R(X,Y,U,V) = R*(X,Y,U,V) - g([Av, Av] X, Y) (2.9)

and
(R(X,Y)Z)" = (Vxh)(Y, Z) = (Vyh)(X, Z) (2.10a)

forall X,Y,Z, W € TM and U,V € T*+M, where (R(X,Y)Z)* denotes the normal component of R(X,Y)Z,
and (Vxh)(Y, Z) is given by

(Vxh)(Y, Z) = Vx(h(Y, Z)) = l(VxY, Z) = h(Y,Vx Z). (2.10b)
Now if P is the endomorphism given by (2.4), then we have
g(PX,)Y)+g(X,PY)=0. (2.11)
Thus, it is obvious that the operator P2, which is denoted by Q, is self adjoint. Also,
(VxP)Y =Vx(PY)—-P(VxY) (2.12)

(VxF)Y = V%(FY) — F(VxY) (2.13)

for any X, Y € TM.
Now, Gauss and Weingarten formulae together with (2.2) and (2.9) imply

(VxP)Y = Apy X +th(X,Y) + g(Y, PX)¢ — n(Y)PX (2.14)

VL(FY) = F(VxY) = fh(X,Y)— h(X,PY) - n(Y)FX (2.15)

for any X, Y € TM.
For each X € T'M, we denote
FX

X* = . 2.16
sin 0 ( )

Now, one can define a symmetric bilinear T'M-valued form § on M, given by
(X,Y) =th(X,Y). (2.17)

Moreover, using (2.2), we have
I(X,€)=0. (2.18)
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Also, from (2.4), (2.16) and (2.17), we get
Wd(X,Y)=Po(X,Y) +sinf 6*(X,Y).
Now using (2.4) and (2.17), we get

Oh(X,Y) =6(X,Y) +0*(X,Y),

(2.19)

(2.20)

where o is a symmetric bilinear D-valued form on M. Applying ¢ on (2.10) and using (2.19) with (1.4), we find

—h(X,Y) = P§(X,Y) +sin 06*(X,Y) + to*(X,Y) + fo* (X, Y).

Equating tangential as well as normal parts in the above equation, we have
(a) P(X,Y) =—to*(X,Y)
and
(b) —=h(X,Y)=sin 06*(X,Y) + fo*(X,Y).
Moreover, ¢?0(X,Y) = —0(X,Y) = P?0(X,Y) + FPo(X,Y) +tFo(X,Y) + fFo(X,Y)
Comparison of tangential and normal parts yields
(c) —sin?00(X,Y) =tFo(X,Y)
and
(d) FPo(X,Y)=—-fFo(X,Y).
Now from (a) and (c), we get

o(X,Y)=cscl P6(X,Y)

Also, (b) and (d) after making use of (2.22), give
h(X,Y) = —csch6"(X,Y)

Using (2.19), we get
R(X,Y) =csc? (PS(X,Y) — pd(X,Y)).

Now, from (2.14)

9(VxP)Y,Z) = =g(6(X, 2),Y) +g(6(X,Y), Z) + n(Z)g(PX,Y) + (Y )g(X, PZ).

From (2.3), we have

R(X,Y,Z,W) =<2 {g(Y, Z)g(X, W) — g(X, Z) g(Y, W)}

n(X)n(2)g(Y, W) —n(Y)n(Z)g(X, W)

+EE S H(Y)n(W)g(X, Z) = n(X)n(W)g(Y, Z) — g(¢ X, Z) g Y, W)

+9(eY, Z)g(p X, W) +29(X, 0 Y) g(p Z, W)

for X,Y, Z, W € TM.
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Using (2.1), (2.4) and (2.8) in (2.26), we find

R(X, Y7 Z7 W) - g(h(X, W)v h(Y, Z)) +g(h(X, Z)v h(Y, W)) = cZB{g(Y, Z)Q(Xv W)_

n(Xn(2)g(Y, W) —n(Y)n(Z)g(X, W)

9(X, 2)(Y, W)} + &L ¢ (Y )n(W)g(X, Z) = n(X)(W)g(Y, Z) — g(PX, Z)g(PY, W)

(2.27)

+9(PY, Z)g(PX, W) + 29(X, PY)g(PZ, W)
which in the view of (2.23) and the relation g(FX, FY) =sin?6 {g(X,Y) — n(X)n(Y)}, gives
R(X,Y, 2, W) = cse?0 {g(8(X, W), 8(Y; 2)) — g(8(X, Z), 6(v, W)}

+2{g(Y, 2)g(X, W) — g(X, Z)(Y, W)}

(2.28)
n(Xn(2)g(Y, W) —n(Y)n(Z)g(X, W)

+ 8 (Y )In(W)g(X, Z) — n(X)n(W)g(Y, Z)

Now taking normal part of equation (2.3), we get

[R(X,Y)Z)* = CZ L (—g(PX, 2)FY + g(PY, 2)F X + 24(X, PY)FZ} (2.29)

We have,
V(A(Y, 2)) = V& (~csc06°(Y, 2))

=—csc?2OVE(FO(Y, 2))

= —esc?0{(VxF)o(Y,Z) + F(Vxd(Y, Z))}
Using (2.15), we get

{ Jh(X.8(Y, Z)) = h(X, P3(Y, Z)) + F((Vx8)(Y. 2) }

Vx(h(Y,Z)) = —csc? 0 :
+0(VxY,2) +0(Y,Vx Z))

From (2.23), we obtain

h (VxY,Z) = —csc 05*(VxY,Z) = —csc? 0 F§(VxY, Z)

Also, h (Y,VxZ)=—csc20 F§(Y,VxZ).
Hence using (2.10) (b), we get

(Vxh)(Y, Z) = —esc? 0 { fh (X, (Y, Z)) — h(X, P§(Y, Z) + F((Vx6)(Y, Z)} .
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Since, fh (X,Y) = csc?20 FP§(X,Y), we have

(Vxh)(Y,Z) = —csc® 0 [esc> 0 FPO(X,0(Y, Z))+

(2.30)
+esc? O Fo(X, PO(Y, Z) + F(Vx0)(Y, Z)].
Now using (2.29) and (2.30) in Codazzi equation, we obtain
(Vx0)(Y, Z) + csc20 {P6(X,8(Y, Z)) + 6(X, PS(Y, Z))}+
+ept sin 0{g(X, PZ)(Y = n(Y)§) + g(X, PY)(Z —n(2)€)} 1)

= (Vy 0)(X, Z) + esc2 0 {P5(Y, 6(X, Z)) + 6(Y, P5(X, Z))}+

+ <L sin? 0 {g(Y, PZ)(X —n(X)&) + g(Y, PX)(Z —n(2)€)} -

3. Existence theorem for slant immersions into Kenmotsu space form

In this section we shall obtain a general existence theorem for slant immersions into Kenmotsu space

form. In order to prove the existence theorem, we need the following result.

Theorem A ([9]). Let us take a manifold S with complete connection D having parallel torsion and curvature
tensors. Let M be a simply connected manifold and E be a vector bundle with connection D over M having the

algebraic structure (R, T) of S. Let F: TM — E be a vector bundle homomorphism satisfying the equations

Dy F(W) — Dy F(V) - F([V, W)) = T(F(V), F(W)

Dy DwU — DwDyU — Dy, w)U = R(F(V), F(W))U
for any sections V, W of TM and U of E. Then there exists a smooth map f: M — S and a parallel bundle
isomorphism ® : E — f* TS preserving T and R such that df = ®o F.

Theorem 3.1 (Ezistence). Let ¢ and 0 be two constants with 0 < 0 < w/2 and M be a simply-connected
(m + 1) -dimensional Riemannian manifold with metric tensor g. Suppose that there exists a unit global vector
field & on M, an endomorphism P of the tangent bundle TM and a symmetric bilinear T M -valued form §
on M such that

PE) =0, g(6(X,Y),§) =0, Vx&=X-n(X)¢ (3.1)

P2X = —cos’0(X — n(X)¢) (3.2)

g(PX,Y) +g(X,PY) =0 (3.3)

5(X,6)=0 (3.4)

9(VxP)Y, Z) = g(6(X,Y), Z) = 9(6(X, 2),Y) + g(PX,Y)n(Z) + g(X, PZ) n(Y) (3.5)

414



PANDEY, GUPTA

R(X, Y, Z, W) = csc? 6 {9(5(X7 W)v 5(Y, Z)) - 9(5(X7 Z)v 5(Y, W))}

+2{g(Y, Z2)9(X, W) — g(X, Z)g(Y, W)}

n(Xn(2)g(Y, W) —n(Y)n(Z)g(X, W) +n(Y)n(W)g(X, Z) (3.6)

+
O

al
i

—n(X)n(W)g(Y. Z) — g(PX, Z)g(PY,W) + g(PY, Z)g(PX, W)
+29(X, PY)g(PZ, W)

and
(Vx0)(Y, Z) + csc20 {P8(X,8(Y, Z)) + 6(X, Po(Y, Z))}

+<tL sin® 0{g(X, PZ)(Y — n(Y)€) + 9(X, PY)(Z — n(Z)&)}
— (Vy 8)(X, Z) + csc2 0 {PS(Y,8(X, Z)) + 6(Y, P5(X, 7))}
+ <t sin 0 {g(Y, PZ)(X — 9(X)€) + g(Y, PX)(Z — n(Z)€)}

forall X, Y, Z € TM, where 1 denotes the dual 1-form of &. Then there exists a 0-slant immersion from M
into Kenmotsu space form M?>™+1(c) whose second fundamental form h(X,Y) = csc?0(PS(X,Y) — pd(X,Y))
is given by the relation

R(X,Y) =csc?O(PS(X,Y) — 06(X,Y)). (3.8)
Proof. Let ¢, 8, M, &, P and ¢ satisfy the conditions stated above. Suppose T'M & D be the Whitney
sum. We identify (X,0) with X for each X € TM, and (0,Z) by Z* for each Z € D. In particular, we
identify (&, 0)with 2 for £. We denote the product metric on TM & D by §. Hence, if we denote the dual

A
1-form of ¢ by 7 then, 7(X, Z) =n(X), forany X € TM and Z € D.
The endomorphism QAS on T'M & D can be defined as

$(X,0) = (PX, sinf (X —n(X)€)), (0,2) = (—sind Z, —PZ) (3.9)

forany X € TM and Z € D.
It is easy to see that ¢2(X,0) = —(X,0) + 7(X,0)¢, and $2(0,Z) = —(0, Z).
Thus, $*(X, Z) = —(X, Z) + (X, Z) €, for any X € TM and Z € D.
A
Now, using (3.2), (3.3) and (3.9) it can readily be seen that (Q?, &, 79, @) is an almost contact metric
structure on TM @& D.

Now we can take A, h and V* as following:

Az X = ¢csc0 {(VxP)Z - 6(X,Z) — g(Z,PX)¢} (3.10)
h(X,Y) = —cscho” (X,Y) (3.11)
VxZ* = (VxZ —n(VxZ2)E)* +csc? 0 {(PO(X, Z))* +6"(X,PZ)} (3.12)

forany X, Y € TM and Z € D. It is easy to check that A is an endomorphism on TM, h isa (D)*-valued

*

symmetric bilinear form on TM and V* is a metric connection of the vector bundle (D)* over M.
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A
Let V denote the connection on TM ¢ D induced from equations (3.10)-(3.12). Then from (3.1), (3.2),
(3.4) and (3.9), we have

(© 3,00 = g(B(X.0).(v.0) € — H(v.0) Bx,00.  (V $)(©0.2)=0
(X,0) (X,0)

forany X, Y € TM and Z € D.

Let Rt denote the curvature tensor associated with the connection V+ on(D)*, that is R+ (X,Y)Z* =
Vi Ve Z* = VsV 2% — V[JX y)£", for any X, Y € TM and Z € D. Then by virtue of (3.1), (3.2), (3.3),
(3.4), (3.7) and (3.12), a straightforward computation yields

RY(X,Y)Z* = {R(X,Y)Z —n(R(X,Y)Z)¢}"

P{g(Y,PZ)X +29(Y, PX)Z — g(X,PZ)Y}

c+1
T (g P22)(X — g(X)8) + 20(Y, PX)PZ — g(X, P2Z)(Y —n(Y)E)}

(VxP)(Y, Z) = (Vy P)3(X, Z) — n(Vx (PO(Y, Z)E +n(Vy(PS(X, Z))E )
CSC2
et (Y, (VxP)Z) = 6(X, (Vy P)Z) —=n(Vx(3(Y, P2)))E +1(Vy (6(X, PZ)))¢

+{n(X)(Vy2)é —n(Y)n(Vx2)§—n(VyZ)X +n(VxZ)Y}".

(3.13)
Also, from (3.1), (3.5), (3.10), and (3.11), we have
sin?0 g ([Az-, Aw-] X, Y) = g(Vy P)Z,(VxP)W) — g((Vy P)Z,8(X, W))
—g(W, PX)n((Vy P)Z) = g(6(Y, 2), (Vx P)W) + g(6(Y, 2), 6(X, W))
—g(Z, PY)n((Vx PYW) + g(Z, PY) g(W, PX) — g((Vy P)W, (Vx P)Z) (3.14)
+9(Vy PYW,6(X, Z)) + 9(Z, PX) n((Vy PYW) + g(6(Y, W), (Vx P)Z)
—g(0(Y, W), 8(X, 2)) + n((VxP)Z) g(W, PY) — g(W, PY) g(Z, PX).
From (3.3), we have
g(0(Y,Z),PW)+g(Ps(Y,Z),W) =0. (3.15)
Taking covariant derivative of (3.15) with respect to X and using (3.3), we get
9(0(Y, 2), (Vx P)W) +g(Vx P)o(Y, Z), W) = 0. (3.16)
Moreover, by virtue of (3.5), we get
9(Vy PYW, (VP)Z) = g(3(Y, W), (Vx P)Z) - g(3(Y, (VxP)Z), W)+ -

+9(PY,W)n((VxP)Z) + g(Y, P(Vx P) Z))n(W).
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Also,
9(VyP)Z,(VNxP)W) = g(Vx P)W,(VyP)Z)
=g9(6(X, W), (VyP)Z) — g(0(X,(Vy P)Z),W) + g(PX,W)n((Vy P)Z).

Using this in equations (2.3), (3.2), (3.3) and (3.18), we get

g(RHX,Y)Z*,W*) — g([Az«, Aw+] X, Y) (318)
= (<) [sin?0{g(Y, Z2) (X, W) — g(X, Z) g(Y, W)} + 29(Y, PX) g(PZ,W)] . '

Equations (2.3), (3.2), (3.3) and (3.18) imply that (M, A, V1) satisfies the Ricci equation for an (m+1)-
dimensional #-slant submanifold in M?2™+!(¢c). Moreover, (2.28) and (2.31) imply that (M, h) satisfies the
equations of Gauss and Codazzi for a 6-slant submanifold. Thus, we have a vector bundle (TM & D) over

M equipped with product metric g, the shape operator A, the second fundamental form h and the connec-

A _
tions V4 and V satisfying the structure equations of (m+1)-dimensional -slant submanifold in M?™*1(c).
Therefore, from theorem A, there exists a #-slant isometric immersion of M in M?™*!(c) with h as its second

fundamental form, A as its shape operator and V+ as its normal connection. a

4. Uniqueness theorem for slant immersions into Kenmotsu space form

Theorem 4.1 (Uniqueness). Let z', 22 : M — M(c) be two slant immersions with slant angle 6 (0 < 6 <
7/2), of a connected Riemannian manifold M™ ! into a Kenmotsu space-form M>™+1(c). Let h', h? denote
the second fundamental forms of ' and x2, respectively. Suppose that there is a vector field é on M such

that xip(ép) =E&ui(p) forany i=1,2 and p€ M; and

g(hl(X, Y)v cpxiZ) = g(h2(X7 Y)v QOCCEZ) (4'1)

for all vector fields X ,Y , Z tangent to M. Moreover, we also assume that one of the following conditions
hold:

(i) 6 =7/2
(ii) There exists a point p of M such that P = Ps.
(iii) ¢ # —1.
Then, there exists an isometry ¢ of M>™+1(c)such that ' = ¢ox?.

Proof. Let us take any point p of M. We may assume that x!(p) = 2?(p) and zl(p) = 2%(p). Take a

geodesic v through p = v(0). Now, we define v, = 2!(y) and v, = 2%(7). To prove the theorem it is sufficient
to show that v and 7, coincide. It is known that ~1(0) = 42(0) and ~}(0) = v4(0). Let Ey, Es, ..., Ep , &
be any orthonormal frame along . We can define a frame along v; and v, as follows:

a; =$1(EZ), Bi = l'z(Ez), An—i—i = (fi(Ez))*, Bn—i—i = (l'z(Ei))*, where, X* = FX

* sin 6
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for any X € D.
From (3.11),h(X,Y) = —cscf6*(X,Y), and therefore h' = —csc 0 (6°)* for any i =1, 2.

From (4.1), we have
g(cscﬁ(&l)*(X, Y), cpxiZ) = g(csc@(&z)*(X, Y), cprZ)

g((él)*(Xv Y)v Fle) = g((52)*(X7 Y)v szZ)

9(51(X7 Y)v x}FZ) = 9(52(X7 Y)v sz)

Since, xl(p) = 22(p) and Z is arbitrary, we conclude that ¢ = §2.

Now, we have to show that P, = P.
If (i) is satisfied then we see that P; = P, = 0.
And if (ii) is satisfied, it follows from (3.5) that,

9(Vx (P — RR)Y, Z) = g((P1 — P2)X, Y)n(Z) + 9(X, (Pr — ) Z)n(Y).

Since it is true for any X, Y, Z and we have P; = P, at any point p € M, therefore we have P} = P,
everywhere.

Now suppose that (iii) is satisfied and assume that P; # P, and (i) and (ii) are not satisfied. First we
want to show that P, = —PFs.

From (3.6), we find that

g(PX,W)g(P1Y, Z) —g(P1 X, Z) g(PLY, W) +29(P1Z, W) g(P1Y, X)

(4.2)
= g(RX, W) g(PY,Z) — (P2 X, Z) g(P2Y, W) + 29(P, Z, W) g(P2Y, X).
Putting X =W, Y = Z, and using skew symmetric property of P; and P, equation (4.2) reduces to
g(P1Y, X)? = g(PY, X)?. (4.3)

Now putting e; = X and e; = P; X, and letting that P>e; has a component in the direction of vector ez which

is orthogonal to both e; and ey, a contradiction follows from (4.3) which states that

Q(P2617 63)2 = Q(P161, 63)2 = 9(627 63)2 =0.

Now using (3.2) and (3.3), we have Pyv = £P,v for any tangent vector v.
We choose a basis {e1, ..., em, em+1} of the tangent space at a point p € M. Then there exists a number
g; € {—1, 1} such that Pie; = ¢;Pse;. Hence we have

:|:P1(6i + ej) = Pz(ei + ej) =¢;Pi1e; + EjPlej.

Thus the above formula shows that all ¢; have to be same, and so either Pjv = Pov or Piv = —Pov for all
vel,M.
Since M is connected, we have either P, = P> or P; = —P, in case (iii).
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Now, assume that we have two immersions with P; = —P,. From (3.5) it follows that
9(VxP)Y, Z) = g(0'(X,Y), Z) — g(6"(X, 2),Y) + g(PL X, Y) (Z) + 9(X, PLZ) n(Y')

and
9(VxP)Y,Z) = —g((Vx )Y, Z)

= g(8*(X,Y), Z) — g(6*(X, 2),Y) + g(Po X, Y) n(Z) + g(X, P2 Z) n(Y).

Since 6! =62 =6, we get
9(0(X,Y), Z) = g(6(X, Z),Y). (4.4)

Writing equation (3.7) for both the immersions, we get
{(Vx")(Y,Z) = (Vy§")(X,2)} = esc? 0 { P16 (Y, 6Y(X, Z)) + 61 (Y, P16' (X, Z))
—P5Y (X, §1(Y, Z)) = 61(X, PL6Y (Y, 2))} + < sin® 0 {g(Y, PLZ)(X — n(X)¢)

—9(X, PLZ)(Y —n(Y)E) — 29(X, PIY)(Z —n(Z)§)}

and
(Vx62)(Y, Z) — (Vv 82)(X, Z)} = csc? 0 { P32V, 82(X, Z)) + 62(Y, P3%(X, Z))
—Py0%(X,0%(Y, 2)) = 63(X, P6%(Y, 2))} + 5t sin® 0{g(Y, P22) (X = n(X)§)
—9(X, RZ)(Y = n(Y)§) —29(X, BaY)(Z = n(Z)8)}-
Now using P; = —P, = P in the above equations, and subtracting the two, we get

0 = 2csc2 0{PS(Y, 8(X, Z)) + 8(Y, PS(X, Z)) — PS(X, 8(Y, Z)) — 6(X, PS(Y, Z))}
+2 < sin® 0 {g(Y, PZ)(X —n(X)¢) — g(X, PZ)(Y —n(Y)§) —29(X, PY)(Z —n(Z)§)},

{PA(Y, §(X, 2)) + 8(Y, PS(X, Z)) — PS(X. 8(Y, Z)) — 6(X, PS(Y, 2))}

+ “sin® 0 {g(V, PZ)(X — n(X)§) — g(X, PZ)(Y —n(Y)¢) —29(X, PY)(Z —n(Z)€)} =0,
N P3(X, 8(Y, Z)) + 6(X, P6(Y, Z)) — P8(Y, (X, Z)) — 6(Y, P3(X, Z))
+ “sin® 0 {g(X, PZ)(Y —n(Y)¢) — g(Y, PZ)(X —n(X)&)+ (4.5)
+29(X, PY)(Z —n(Z)§)} = 0.
Taking inner product of equation (4.5) with a vector W, we get
g(PS(X, 6(Y,2)), W) + g(6(X, PE(Y, 2)), W) — g(P3(Y, (X, 2)), W) — g(8(Y, PS(X, Z)), W)
+hsint 0 {g(X, PZ) g(Y, W) — g(X, PZ)n(Y )n(W) — g(Y. PZ)g(X, W) + g(Y, PZ)(X)n(W)

+29(X, PY) 9(Z, W) — 29(X, PY)n(Z)n(W)} = 0,
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—g(6(X, PW),8(Y, 2)) + g(8(Y, PW),6(X, Z)) + g(6(X, W), PS(Y, Z))—
—g(6(Y, W), P6(X, Z)) + <tLsin' 0 {g(X, PZ) g(Y, W) — g(X, PZ)n(Y )n(W)—

(4.6)
—g9(Y, PZ)g(X, W) + g(Y, PZ)n(X)n(W)+

+29(X, PY) g(Z, W) — 29(X, PY)n(Z)n(W)} = 0.

If 6 vanishes identically at a point, then a contradiction follows from (4.6) since ¢ # —1.

Now we take a fixed point p of M and consider a function fdefined on the set of all unit tangent vectors
UM, by

fw) =g((v,v),v), for all v € UM,.

Since UM, is compact there exists a vector u such that f attains an absolute maximum at u. Let w be
a unit vector orthogonal to u. Then the function f(t) = f(g(¢)), where the relation g¢(t) = (cos t) u + (sin t) w
satisfies the conditions f/(0) = 0 and f”/(0) < 0. The first condition implies that g(é(u,u),w) = 0, whereas
the second condition implies g(d(u, w), w) < & g(6(u,u),u).

Using the total symmetry of §, it follows that we can choose an orthonormal basis e; = u, ea, €3..., €m, €m+1
such that

d(er, e1) = Aer, d(er, e) =Nie; (4.7)

with ¢ > 1 and \; < %)\1. Since 4 is not identically 0, it follows from total symmetry of (4.4) that A1 > 0.
Using (4.4) and (4.7) in (4.6), with X =Z =W =e; and Y = ¢;, we find

—g(5(61,P61), 5(61', 61)) +g(5(ei, Pel), 5(61, 61)) +g(5(61, 61), P5(ei, 61))
—g(d(e;, e1), Pd(e1, e1)) + ci—l sin? @ {g(e1, Pe1) g(ei, e1) — gler, Per) n(e;) nler)
—g(ei, Per) g(er, e1) + g(es, Pex)m(er) nler) +2g(e1, Pe;) gler, e1) — 2g(ex, Pe;) n(ex) n(er)} =0,

or
—g(d(e1, Pe1), Aie;) +g(6(ei, Per), Aer) + g(Aier, Phie;) — g(Aies, Pé(er, er)
<t sin® 0 {—g(ei, pe1) g(e1, e1) + 2g(e1, Pe;) gler,e1)} =0,

or
c+1
4

(A2 + XA +3 sin® 0) g(Pey, e;) = 0. (4.8)

Now, we show that Pe; is an eigen vector of d(eq, .). In order to do so, weput X =Z =W =¢;, W =¢;

and Y =e¢; for 4, j > 1. Then, we get

—g(d(e1, Pej), 6(eiye1)) + g(d(ei, Pej),0(e1,e1)) + g(d(er, e5), Po(e;, e1))
—g(8(ei, €5), Pé(er, e1)) + St sin 0 {g(e1, Pe1)g(es, e;) — gler, Pex) n(e;) nle;)

—g(ei, Pe1)g(er,e;) + gles, Per)ner) n(e;) +2g(er, Pe;) gler, ej) — 2 g(e1, Pe;)ner) n(e;)} =0,
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or
()\2Z — A A1+ )\i)\j)g(Pej,ei) + A1 9(5(61‘, ej), Pel) =0. (49)

Interchanging the indices ¢ and j in (4.9), we get
(X% = A3 A1+ XiAg) g(Peises) + A g(d(es, e5), Per) = 0. (4.10)
Combining (4.9) and (4.10), we obtain
(A2 = Xid1+ A% = A A1+ 2X 0 ;) g(Pej,e;) =0,

or
()\i-l—)\j)()\l—)\i—)\j)g(Pej,ei)zo. (411)

Since, A1 > 2X;, weget that Ay —A; —A; =0onlyif \;=X; = %)\1.
Now if weput X =W =e;, Z=¢; and Y =¢; for ¢, j > 1 in (4.6), we find that
—9(5(61, Pel), 5(61', ej)) + )\j 9(5(61‘, ej), Pel) — )\i)\j g(ei, Pej)—

—X1g(8(ei,e;), Per) — 01—1 sin 0 {g(e;, Pe;)} =0,

or
g(&(el,Pel), 5(6i,6j)) —)\j g(5(ei,ej), P61)+)\i)\j g(ei,Pej) (4 )
12
+A19(0(ei,e5), Per) + 01—1 sin® 0 {g(e;, Pe;)} = 0.
Interchanging the indices ¢ and j in (4.12), we get
g(0(er, Pex), 6(ei,€5)) — Ai g(d(es, €5), Pex) +AiXjglej, Pei)+ (413
.13
+A19(0(ei,e5), Per) + % sin? 0{g(ej, Pe;)} =0.
Combining (4.12) and (4.13), we get
C+1 .4
(A —Aj)g(0(ei, e5), Per) +2X; A jglei, Pej) + sin® 0 g(e;, Pe;) = 0. (4.14)

Now, we summarize the previous equations in the following manner. First, by taking i = j in (4.9), we get
g(d(e;,e;), Pey) =0. (4.15)

Hence, we have g(0(v,v), Pe1) =0 if v is an eigenvector of d(eq, .). Moreover, the symmetry of Jthen implies
that g(6(e;,e;), Per) =0, whenever\; = A;.

We now consider the following four different cases.

(1) A+ Aj # 0, but notA; = A; = $A1. In this case (4.11) implies g(Pe;,e;) = 0.

(2) i+ A; =0,and A\; #0. In this case, (4.9) implies g(d(e;, €5), Pe1) = Aig(Pej, €;).
Using the consequence of case (2) in (4.14), we get g(Pej,e;) =0.
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(3) \i = A; =0. In this case it follows from (4.14) that g(e;, Pe;) = 0;

(4) X=X = 1A

If ey, €iyyeene , €, are eigenvectors belonging to an eigenvalue different from %)\1, then each Pe;,,
l=1,....k, can only have a component in the direction of e;, say Pe; = we1. ThuspPe; = —coszﬁeil.
Consequently, either £k =1 or there does not exist an eigenvector with eigenvalue different from%)\l LI k=1,
then obviously Pe; is an eigenvector. In the latter case d(e1, .), restricted to the space ei, only has one
eigenvalue, namely %)\1 . Since, Pe; is always orthogonal to ej, Pe; is also an eigenvector in this case. Hence
Pe; is always an eigenvector of d(eq, .).

Without any loss of generality, we may assume that e, is in the direction of Pe;. Then it follows

immediately that 0(e1, Pe1) = AaPe;, where o satisfies the equation

3(c+1
A2+ XA + (C: ) gint0 = 0 (4.16)

by virtue of (4.8).
If we choose X =Z =e¢1, W =Pe; and Y =¢; for i > 2 in (4.6), then

9(5(61, Pel), )\i Pei) — )\19(5(61', Pel), Pel) =0

or, g(AePey, N\;iPe;) — A1g(d(e;, Per),Per) =0
or, A\i dacos?fg(er, e;) — A\g(6(e;, Per), Per) =0
or, \g(d(e;, Pe1),Per) = A1 g(6(Pey, Pey), e;) =0.
Thus 6(Pey, Pey) = Ay cos®fe; .
Putting X =Z =W = Pe; and Y =¢; in (4.6), we get

3(c+1)

—A2 = o)y F sin 0 = 0. (4.17)

Now from (4.16) and (4.17) we get w sin?@ = 0, which is a contradiction since ¢ # —1. Therefore P, = P;.

It can be easily seen from relations (3.10)-(3.12) that
A A
g(v1, Ax) = g(+%, Bi) and g(y A, A) = g(y By, B)) for k, 1 =1,..., 2m

such that, by [16, Proposition 3],v1 = 2. 0

5. Applications and examples

Lety = ¥(x),¢; = ¢¥i(x),i =1, 2, 3 be four functions defined on an open interval containing 0. Let ¢
and 6 be two constants with 0 < # < T/9 and M be a simply connected open neighbourhood of the origin

(0,0,0) € R?. Now we suppose that

f(z) =exp /(bg(x) dx (5.1)
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n=dz. (5.2)
Let the warped metric on M be defined by
g=n@n+e* (dr®dr+ f*(r)dy ® dy). (5.3)
Now, we consider the vectors
10 1 0 0
6126—2% ez:fez(?_y , 632525.

Then it can be readily seen that {ej, e, e3} is a local orthonormal frame of TM and that 7 is a dual 1-form

of £. Moreover, we have

Velel = —€3 Veleg =0 Veleg = €1
Y3 Y3
Ve,e1 = el Ve,e2 = — 261 €3 Ve, €3 = €2

Vese1 =0 Ve,ea =0 Vee3=0.
Let us define a tensor field ¢ such that
pel =ex, pey=—er, p&=0,
and a symmetric bilinear T'M-valued form § on M given by
o(e1,e1) =ther +hres, d(er,e2) =11er+ e, d(ex,e2) =1h2e1 —hrez (5.4)

Ser &) =0,  d(e2) =0, (€. €)=0. (5.5)

It is easy to show that (M, ¢, &, n, g) is an almost contact metric manifold with (Vx¢)Y = g(p X, Y)E—n(Y) o X
forany X, Y € TM. By putting P = cos 6 ¢, we can see that (M, g, &, P, §) satisfy equations (3.1), (3.2), (3.3),
(3.4) and (3.5). In addition, we can prove that M satisfy conditions (3.6) and (3.7) if we have the following:

Yy = —1b3 — e** csc? 0 {hnhy — 2007 — 3} — %7 (CI D) (1+ 3 cos 26); (5.6)

P = (=292 + )¢z — € csc 0 cot O (P2 +Y)¢n; (5.7)
) = —3th11bs + € csc 0 cot 0 (Yo +)hs + 3 ezw sin? 0 cos 6; (5.8)
Py = —311b3 + €® csc 0 cot O (1hy +1h)he — 3 €7 (et 1) sin? 6 cos 6. (5.9)

4
But we see that (5.8) and (5.9) hold simultaneously if and only if

e? (CZ—U sin? 0 cosf = 0. Since,0 < 0 < 5, we know that sin?0 # 0, and e* # 0 for any z € R. Hence,

it must be either c= —1 or 0 = 3.

By applying theorem (4.1), we have the following result.
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Theorem 5.1 Let v = 1)(x) be a function defined on an open interval containing 0 and c1, c2, c3, ¢ and 6 be
the five constants with 0 < 0 < . Consider the following set of first order differential equations in y; = y;(x),
fori=1,2,3

yi = —3y1ys + e* csc 0 cot 0 (y2 +)y2

Yo = (—2y2 +1b)ys — € csc 0 cot 0 (y2 + )y

vh = —1y3 —e*csc? 0 (Yy2 — 2957 —y3) — 62Z(CZ—1)(1 + 3 cos 20)
with the initial conditions: y1(0) = c1, y2(0) = co, y3(0) = c3. Let Yn, 2 and 3 be the components of the
unique solution of this differentiable system on some open interval containing 0. Let M be a simply connected

open neighborhood of the origin (0,0,0) € R, endowed with the metric given by (51)-(5.3). Let Sbe the
T M -valued form defined by (5.4) and (5.5). Then, we have

1. If c = —1, there exists a 0-slant isometric immersion from M into M5(—1), whose second fundamental

form is given by
R(X,Y) =csc?0 (P3(X,Y) — d(X,Y)).

1. If 0 = 5, then there exists an anti-invariant immersion from M into M?(c), whose second fundamental
form is given by

From theorem 5.1, we have the following existence result for three dimensional submanifolds with prescribed

scalar curvature parantez or mean curvature.

Corollary 5.2 For a given constant 0 with 0 < 6 < w/2 and a given function F1 = Fy(x) (resp. Fy = Fy(z)),
there exist infinitely many three dimensional 0 slant submanifolds in Kenmotsu space form M?(c) with Fy

(resp. Fs) as the prescribed scalar curvature (resp., mean curvature) function for ¢ = —1.
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