C1 modules with respect to a hereditary torsion theory

Tahire Özen

Abstract

An R-module M is said to be a C1-module if every closed submodule of M is a direct summand. In this paper we introduce and investigate the concept of the τ-C1 module for a hereditary torsion theory τ on Mod-R. τ-C1 modules are a generalization of C1-modules.

Key word and phrases: Torsion theory, C1-module, closed submodule.

1. Introduction

Throughout the paper R will denote an associative ring with identity, Mod-R will be the category of unitary right R-modules, and all modules and module homomorphisms will belong to Mod-R. If $\tau=(\Gamma, \digamma)$ is a torsion theory on Mod-R, then τ is uniquely determined by its associated torsion class Γ of τ-torsion modules. Modules in Γ will be called τ-torsion and modules in \digamma will be called τ-torsionfree modules. Also, for any module $\mathrm{M}, \tau(M)$ denotes the sum of the τ-torsion submodules of M and so $\tau(M)$ is the unique largest τ-torsion submodule of M. For a torsion theory $\tau=(\Gamma, \digamma), \Gamma \cap \digamma=0$ and the torsion class Γ is closed under homomorphic images, direct sums and extensions. In this paper τ is assumed to be hereditary, that is, we assume that submodules of τ-torsion modules are τ-torsion. (See [1] and [2] for more details). An R-submodule K is called a τ-essential submodule of the R-module M if $K \cap A \neq 0$ for all nonzero submodules A of M such that $M / A \in \Gamma$, denoted by $K \subseteq^{\tau-e s s} M$. Then every essential submodule of M (see [3] and [4] for more details) is a τ-essential submodule. This is a generalization of essential submodules and it is of interest to know how far the old theories extend to the new situation. The following example shows that there is an example of τ-essential submodule but not essential submodule. And also if every nonzero submodule of $M \in$ Mod-R is τ-essential, then M is called a τ-uniform module. Moreover, modules satisfying condition C 1 are also called CS modules or extending modules. In this respect, the paper [5] has been also considered C1 modules with respect to a torsion theory (and in particular τ-essential submodules). However this paper's definitions are quite different.

Example 1.1 Let $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$, where $F=\mathbb{Z}_{2}$. The right nonzero R-submodules of R are $\left(\begin{array}{cc}0 & F \\ 0 & 0\end{array}\right)$,

[^0]$\left(\begin{array}{cc}0 & 0 \\ 0 & F\end{array}\right),\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}0 & F \\ 0 & F\end{array}\right),\left\{\left(\begin{array}{cc}0 & a \\ 0 & a\end{array}\right): a \in F\right\}$ and R itself. Let $\Gamma=\{A \in \operatorname{Mod}-R: A X=0\}$, where $X=\left(\begin{array}{cc}0 & F \\ 0 & F\end{array}\right)$. Since $\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & F\end{array}\right) \oplus\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right),\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$ is not an essential submodule of R. But since $R /\left(\begin{array}{cc}0 & 0 \\ 0 & F\end{array}\right) \notin \Gamma,\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$ is a τ-essential submodule of R. In fact R is a τ-uniform module but not a uniform module.

Lemma 1.2 Let $K \subseteq S \subseteq M \in$ Mod-R. The following are satisfied.
(1) If $K \subseteq^{\tau-e s s} M$ and $M / S \in \Gamma$, then $K \subseteq^{\tau-e s s} S$.
(2) If $K \subseteq^{\tau-e s s} M$, then $S \subseteq^{\tau-e s s} M$.
(3) If $K \subseteq^{\tau-e s s} S$ and $S \subseteq^{\tau-e s s} M$, then $K \subseteq^{\tau-e s s} M$.
(4)If $\alpha: M_{1} \rightarrow M_{2}$ is an epic R-linear morphism and $K \subseteq^{\tau-e s s} M_{2}$, then $\alpha^{-1}(K) \subseteq^{\tau-e s s} M_{1}$.
(5) Let $M=\oplus_{i \in I} M_{i}$. If $K_{i} \subseteq^{\tau-e s s} M_{i}$ for all $i \in I$, then $\oplus_{i \in I} K_{i} \subseteq^{\tau-e s s} M$.
(6) Let $M=\oplus_{i \in I} M_{i}$ and $\oplus_{i \in I} K_{i} \subseteq^{\tau-e s s} M$ where $K_{i} \subseteq M_{i}$ for all $i \in I$. If $M / M_{i} \in \Gamma$ for some $i \in I$, then $K_{i} \subseteq^{\tau-e s s} M_{i}$.

Proof. (1),(2),(3) are routine verifications.
(4) Let $M_{1} / Y \in \Gamma$ and $\beta: M_{1} / Y \rightarrow M_{2} / \alpha(Y)$ be a function such that $\beta(a+Y)=\alpha(a)+\alpha(Y)$ for all $a \in M_{1}$. Then β is an R-module epimorphism and so $M_{2} / \alpha(Y) \in \Gamma$. Then $K \cap \alpha(Y) \neq 0$, and so $\alpha^{-1}(K) \cap Y \neq 0$.
(5) Let $M / Y \in \Gamma$. If $M_{i} \cap Y=0$ for every $i \in I$, then $M \in \Gamma$ and by Lemma 1.1(4) in [4] $\oplus_{i \in I} K_{i} \subseteq^{\tau-e s s} M$. If not, there is at least one $i \in I$ such that $K_{i} \cap Y \neq 0$ and so $\oplus_{i \in I} K_{i} \cap Y \neq 0$.
(6) Let $M_{i} / S \in \Gamma$ where $S \neq 0$. Then $M / M_{i} \cong \frac{M / S}{M_{i} / S}$ implies $M / S \in \Gamma$. Since $\oplus_{i \in I} K_{i} \subseteq^{\tau-e s s} M$, $\oplus_{i \in I} K_{i} \cap S \neq 0$ and so $K_{i} \cap S \neq 0$.

A module U is called τ-essentially M injective if every diagram in R -mod with exact row $0 \rightarrow K \rightarrow M$ and $g: K \rightarrow U$ and $\operatorname{Ker}(g) \subseteq^{\tau-e s s} K$ can be extended commutatively by some homomorphism $M \rightarrow U$.

Lemma 1.3 Let M and U be R-modules.
(1) Any product $\Pi_{\lambda} U_{\lambda}$ is τ-essentially M injective if and only if every U_{λ} is τ-essentially M injective.
(2) If $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ is an exact sequence of R-modules and U is τ-essentially M injective then U is τ-essentially M^{\prime} injective and τ-essentially $M^{\prime \prime}$ injective.

Proof. (1) Follow the proof of [8] 16.1. (2)Using Lemma 1.2(4) follow the proof of [3] 2.15.

2. τ-closed submodules

Let $M \in \operatorname{Mod}-\mathrm{R}$. A submodule A of M is called a τ-closed submodule of M , if there is no submodule B of M such that $A \subset^{\tau-e s s} B \subseteq M$. We denote this by $A \subset^{\tau-\text { closed }} M$. Note that if A is a τ-closed submodule of M, then A is a closed submodule of M. But a closed submodule may not be a τ-closed submodule by Example 1.1. And also if A is a τ-closed submodule of M , then $A \subseteq \tau(M)$, i.e. A is τ-torsion. Because there is a submodule H such that $A \cap H=0$ and $M / H \in \Gamma$ and since τ is a hereditary torsion theory $A+H / H \in \Gamma$ and so $A \in \Gamma$.

Lemma 2.1 Let M be a module in Mod-R. Then the following are satisfied.
i) If A is τ-closed submodule in M, then $A \subseteq K \subseteq^{\tau-e s s} M$ implies $K / A \subset^{\tau-e s s} M / A$. But the converse may not be true.
ii) If $L \subset^{\tau-\text { closed }} M$, then $L / K \subset^{\tau-\text { closed }} M / K$ for all submodules K of L. If $L / K \subset^{\tau-\text { closed } ~} M / K$ and $K \subset^{\tau-\text { closed }} M$, then $L \subset^{\tau-\text { closed }} M$.

Proof. i) Let $A \subseteq K \subseteq^{\tau-e s s} M$. Assume that there exists a nonzero submodule S / A such that $\frac{M / A}{S / A} \in \Gamma$ and $K / A \cap S / A=0$. Then $A=K \cap S \subseteq^{\tau-e s s} S$ since $K \subseteq^{\tau-e s s} M$ and $M / S \in \Gamma$. Since $A \subset^{\tau-\text { closed }} M, S=A$. But this is a contradiction. So $K / A \subset^{\tau-e s s} M / A$. For the converse we can give the following counterexample:

Let $R=\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ where $F=\mathbb{Z}_{2}$. Let $\Gamma=\{A \in \operatorname{Mod}-\mathrm{R}: A X=0\}$ where $X=\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)$.
Then $\left(\begin{array}{cc}0 & F \\ 0 & 0\end{array}\right) \subset^{\tau-e s s}\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right) \subset^{\tau-e s s}\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$ and also $\frac{\left(\begin{array}{cc}F & F \\ 0 & 0\end{array}\right)}{\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)} \subset^{\tau-e s s} \frac{\left(\begin{array}{ll}F & F \\ 0 & F\end{array}\right)}{\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)}$ but $\left(\begin{array}{cc}0 & F \\ 0 & 0\end{array}\right) \not \Phi^{\tau-\text { closed }}\left(\begin{array}{cc}F & F \\ 0 & F\end{array}\right)$.
ii) Let $L \subset^{\tau-\text { closed }} M$. Assume that there exists a submodule S / K of M / K such that $L / K \subset^{\tau-e s s} S / K \subseteq$ M / K. By Lemma 1.2 (4) $L \subset^{\tau-e s s} S$ which is a contradiction.

Now let $L / K \subset^{\tau-\text { closed }} M / K$. Assume that there exists a submodule S of M such that $L \subset^{\tau-\text { ess }} S \subseteq M$. Since $K \subset^{\tau-\text { closed }} M, K \subset^{\tau-\text { closed }} S$ and by the part (i) we can write $L / K \subset^{\tau-e s s} S / K$ which is a contradiction.

Proposition 2.2 If $A \subset^{\tau-\text { closed }} B \subset^{\tau-\text { closed }} M$, then $A \subset^{\tau-\text { closed }} M$.
Proof. Assume that there is a submodule K such that $A \subset^{\tau-\text { ess }} K \subseteq M$. Since $A \subset^{\tau-\text { closed }} B, K \nsubseteq B$. Then $B+K \neq B$ and $B \subset B+K \subseteq M$. If $S \cap K \neq 0$ for all nonzero S such that $B+K / S \in \Gamma$, then
$A \subset^{\tau-e s s} B+K$ since $A \subset^{\tau-e s s} K$ and so $B \subset^{\tau-e s s} B+K$. This is a contradiction. Then there is a nonzero submodule S of $\mathrm{B}+\mathrm{K}$ such that $S \cap K=0$ and $B+K / S \in \Gamma$. Then by $K+S / S \in \Gamma, K \in \Gamma$ and so $B+K \in \Gamma$ since $B \subset^{\tau-\text { closed }} M$ and so $B \in \Gamma$. Since $A \subset^{\text {closed }} B \subset^{\text {closed }} B+K$, we can write that $A \subset^{\text {closed }} B+K$, that is $A \subset^{\tau-\text { closed }} B+K$. But this contradicts $A \subset^{\tau-e s s} K \subseteq B+K$.

Remark: By Zorn's Lemma for every non τ-essential submodule N of a module M , we can find a submodule A of M which is maximal with respect to the property that $N \subseteq^{\tau-e s s} A$ and, in this case, A is a τ-closed submodule of M. Therefore if $\tau(M) \nVdash^{\tau-e s s} M$, then there is a submodule A of M such that $\tau(M) \subseteq^{\tau-e s s} A \subset^{\tau-\text { closed }} M$ and we obtain $\tau(M) \subset^{\tau-\text { closed }} M$ since $A \in \Gamma$. That is, it is either $\tau(M) \subseteq^{\tau-\text { ess }} M$ or $\tau(M) \subset^{\tau-\text { closed }} M$.

Remark: Let $N \nVdash^{\tau-e s s} M$. Then by Zorn's Lemma we can find that a maximal submodule A such that $M / A \in \Gamma$ and $A \cap N=0$. Then $N \oplus A \subseteq^{\tau-e s s} M$. If $M \notin \Gamma$, then also $A \subset^{\tau-e s s} M$.

Lemma 2.3 Let $A \subset^{\text {closed }} M$ and $A \nVdash^{\tau-e s s} M$. Then $A \subset^{\tau-\text { closed }} M$.
Proof. Assume that $A \not \Phi^{\tau-\text { closed }} M$. Then there is a submodule B such that $A \subset^{\tau-\text { ess }} B \subset^{\tau-\text { closed }} M$ since $A \nVdash^{\tau-e s s} M$. Then $B \in \tau(M)$ and so $A \subset^{\text {ess }} B \subset^{\tau-\text { closed }} M$ and this is a contradiction.

We call a module M a τ-C1 module if every τ-closed submodule of M is a direct summand of M .
Lemma 2.4 Let M be a τ-torsionfree module. Then M is a τ-C1 module.
Proof. Since M is a τ-torsionfree module, any τ-closed submodule of M is zero.

Lemma 2.5 Let M be a τ-C1 module. Then every τ-torsion direct summand of M is a τ-C1 module.
Proof. Let B be a τ-torsion direct summand of M . First we prove $B \subset^{\tau-\text { closed }} M$. Assume that $B \subset^{\tau-e s s}$ $X \subseteq M$. Since there is a submodule $B^{\prime} \subseteq M$ such that $M=B \oplus B^{\prime}, X=B \oplus\left(X \cap B^{\prime}\right)$ and so $B \subset^{\tau-e s s} B \oplus\left(X \cap B^{\prime}\right) \subseteq M$ where $X \cap B^{\prime} \neq 0$. Then $\frac{B \oplus\left(X \cap B^{\prime}\right)}{X \cap B^{\prime}} \in \Gamma$ and $X \cap B^{\prime} \cap B=0$, but this is a contradiction. If $A \subset^{\tau-\text { closed }} B$, then since $B \subset^{\tau-\text { closed }} M, A \subset^{\tau-c l o s e d} M$ by Proposition 2.2. Since M is a τ - C 1 module, A is a direct summand of M and so A is a direct summand of B .

Lemma 2.6 Let M be a τ-C1 module and $\tau(M) \not \not^{\tau-e s s} M$. Then every direct summand of M is also a τ-C1 module.
Proof. Since $\tau(M) \subset^{\tau-\text { closed }} M$ and M is a τ-C1 module, $\tau(M)$ is a direct summand of M , it is denoted by $\tau(M) \subseteq \subseteq^{\oplus} M$. Let $A \subset^{\tau-\text { closed }} M_{1} \subseteq^{\oplus} M$ and $M=M_{1} \oplus M_{2}$. Then $A \in \Gamma$.
i) If $\tau\left(M_{2}\right)=0$, then $\tau\left(M_{1}\right) \subseteq \subseteq^{\oplus} M$ since $\tau(M)=\tau\left(M_{1}\right) \oplus \tau\left(M_{2}\right)$. Then $A \subset^{\tau-\text { closed }} \tau\left(M_{1}\right) \subset{ }^{\oplus} M$ and by Lemma 2.5 A is a direct summand of M and so a direct summand of M_{1}.
ii) If $\tau\left(M_{2}\right) \neq 0$, then $A \subset^{\tau-\text { closed }} \tau\left(M_{1}\right) \subset^{\tau-\text { closed }} \tau(M) \subseteq{ }^{\oplus} M$ and so $A \subset^{\tau-\text { closed }} \tau(M) \subseteq{ }^{\oplus} M$. By Lemma 2.5 A is a direct summand of M and so a direct summand of M_{1}.

Example 2.7 Let τ_{G} be the Goldie torsion theory. Let M be a $\tau_{G}-C 1 \operatorname{module}$. Then $\tau_{G}(M)=\mathbb{Z}_{2}(M)$ and if there is a torsionfree submodule N of M such that $\mathbb{Z}_{2}(M / N)=M / N$, then $\mathbb{Z}_{2}(M)$ is a τ-closed submodule of M and every direct summand of M is a $\tau_{G}-C 1$ module.

Lemma 2.8 Let M be a τ-C1 module and M_{1} be a closed submodule of M such that $M / M_{1} \in \Gamma$. Then M_{1} is also a τ-C1 module.
Proof. Let $A \subset^{\tau-\text { closed }} M_{1}$. Therefore $A \subset^{\text {closed }} M_{1} \subset^{\text {closed }} M$ and so $A \subset^{\text {closed }} M$. If $A \not \not^{\tau-e s s} M$, then $A \subset^{\tau-\text { closed }} M$ and so A is a direct summand of M_{1}.
If $A \subset^{\tau-e s s} M$, then by Lemma $1.2(1) A \subset^{\tau-e s s} M_{1}$ since $M / M_{1} \in \Gamma$. This is a contradiction.

By Lemma 2.5 and 2.8 every direct summand M_{1} of a τ - C 1 module M such that $M_{1} \in \Gamma$ or $M / M_{1} \in \Gamma$ is also a τ - C 1 module. But we don't know whether or not any direct summand M_{1} of a τ - C 1 module M with $\tau(M) \subset^{\tau-\text { ess }} M$ is also a τ-C1 module.

Example 2.9 Every C1-module is a τ-C1 module since every τ-closed submodule is a closed submodule. But the converse may not hold.
Proof. Let $R=\left(\begin{array}{cc}F & V \\ 0 & F\end{array}\right)$ where F is a field and $V=F \oplus F$. If we take $\Gamma=\left\{A \in \operatorname{Mod}-\mathrm{R}: A\left(\begin{array}{cc}0 & V \\ 0 & F\end{array}\right)=\right.$ $0\}$, then R is τ-uniform and so R is a τ - C 1 module. If $e=\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$, then $e R=\left(\begin{array}{cc}F & V \\ 0 & 0\end{array}\right)$ is indecomposable (in fact $e R e \cong F$). Assume that R is a C1-module. Then $e R$ is also a C1-module. Since $e R$ is indecomposable, it is a uniform module. But since $\left(\begin{array}{cc}0 & F \oplus 0 \\ 0 & 0\end{array}\right) \cap\left(\begin{array}{cc}0 & 0 \oplus F \\ 0 & 0\end{array}\right)=0$, it cannot be a uniform module. (See [4] for more details). Thus R is a τ - C 1 module, but not a C1-module.

Lemma 2.10 If N is a τ-closed submodule of a τ-C1 module M, then M / N is also a τ-C1 module.
Proof. Let $A / N \subseteq^{\tau-\text { closed }} M / N$. Then $A \subseteq^{\tau-\text { closed }} M$. Otherwise there is a submodule B such that $A \subset^{\tau-e s s} B \subseteq M$ and by Lemma $2.1 A / N \subseteq^{\tau-e s s} B / N \subseteq M / N$. But this is a contradiction. Since $A \subseteq{ }^{\tau-\text { closed }} M$ and M is a τ - C 1 module, A is a direct summand of M and so A / N is a direct summand of M / N.

Lemma 2.11 If $\tau(M)$ is a C1-module and a direct summand of M, then M is a τ-C1 module.

Proof. Let $A \subset^{\tau-\text { closed }} M$. Then $A \in \tau(M)$ and $A \subset^{\text {closed }} \tau(M)$. Therefore A is a direct summand of $\tau(M)$ and A is a direct summand of M .

Let $\tau \operatorname{soc}(M)=\bigcap\left\{A: A \subseteq^{\tau-e s s} M\right\}$. Then $\tau \operatorname{soc}(M) \subseteq \operatorname{soc}(M)$ and $\tau \operatorname{soc}(M)$ is a direct summand of $\operatorname{soc}(M)$ and so a semisimple submodule of M.

Example 2.12 We give examples such that
i) $\tau \operatorname{soc}(M) \subset \operatorname{soc}(M)$
ii) if $A \subset B$, then $\tau \operatorname{soc}(B) \subset \tau \operatorname{soc}(A)$
iii) if $A=B \oplus C$, then $\tau \operatorname{soc}(A) \neq \tau \operatorname{soc}(B) \oplus \tau \operatorname{soc}(C)$ and $B \bigcap \tau \operatorname{soc}(A) \neq \tau \operatorname{soc}(B)$.

Proof. i) Let R and Γ be as in Example 1.1. Then
$\tau \operatorname{soc}\left(\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right)\right)=\left(\begin{array}{cc}0 & 0 \\ 0 & 0\end{array}\right)$, but $\operatorname{soc}\left(\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right)\right)=\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right)$.
ii) Let $A=\left(\begin{array}{cc}0 & 0 \\ 0 & F\end{array}\right) \subset B=\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right)$. Then

$$
\tau \operatorname{soc}(A)=A \supset \tau \operatorname{soc}(B)=0
$$

iii) Let $A=\left(\begin{array}{ll}0 & F \\ 0 & F\end{array}\right), B=\left(\begin{array}{cc}0 & F \\ 0 & 0\end{array}\right)$ and $C=\left(\begin{array}{cc}0 & 0 \\ 0 & F\end{array}\right)$. Then $A=B \oplus C$ but $\tau \operatorname{soc}(A) \neq$ $\tau \operatorname{soc}(B) \oplus \tau \operatorname{soc}(C)$ and $B \bigcap \tau \operatorname{soc}(A) \neq \tau \operatorname{soc}(B)$.

Note that if there is a simple submodule A of M such that $M / A \in \Gamma$, then $A \subseteq \tau \operatorname{soc}(M)$. Also if there is a simple submodule A of M such that A is not in Γ, then $A \subseteq^{\tau-e s s} M$ and therefore $\tau \operatorname{soc}(M)$ is either A or 0 . Otherwise $\operatorname{soc}(M)=\operatorname{soc}(\tau(M))$ and $\tau \operatorname{soc}(M)=\bigcap\left\{\tau(A): A \subseteq^{\tau-e s s} M\right\}$.

Note that if $m R \not \not^{\tau-e s s} M$ for all $m \in M$, then $m R \in \Gamma$ for all $m \in M$, and so $M \in \Gamma$. If $M \notin \Gamma$, then there is at least one $m \in M$ such that $m R \subseteq^{\tau-e s s} M$ and hence $\tau \operatorname{soc}(M) \subseteq m R$.
(C3-condition): A module M is said to satisfy condition $C 3$ if, whenever A and B are direct summands of M with $A \cap B=0$, then $A \oplus B$ is also a direct summand of M .

Proposition 2.13 If $M=K \oplus N$ is a τ-C1 module satisfying condition $C 3$ and $N \in \Gamma$, then K is an N-injective module.

Proof. If $X \subseteq N$ and $\alpha: X \rightarrow K$ is R-linear, we must extend α to $N \rightarrow K$. Put $Y=\{x-\alpha(x): x \in X\}$. Then $Y \cap K=0$, so let $C \supseteq Y$ be a complement of K in M . Then C is a τ-closed submodule of M. Otherwise there is a submodule A such that $C \subset^{\tau-e s s} A \subseteq M$. Since $M / K \in \Gamma$ and so $(A+K) / K \cong A /(A \cap K) \in \Gamma$ and also C is a maximal submodule satisfying $C \cap K=0, A \cap K \neq 0$ and so $A \cap K \cap C \neq 0$ since $C \subset^{\tau-e s s} A$.

But this is a contradiction.
Thus C is a τ-closed submodule in M. Since M is a τ-C1 module, $C \subseteq{ }^{\oplus} M$. Since M satisfies condition-C3, $C \oplus K$ is a direct summand of M , that is there is a submodule D such that $M=C \oplus K \oplus D$. Let $\pi: M \rightarrow K$ be a projection with $\operatorname{Ker}(\pi)=C \oplus D$. Then $Y \subseteq \operatorname{Ker}(\pi)$ and so $\pi(x)=\pi(\alpha(x))=\alpha(x)$ for any $x \in X$. Thus the restriction of π to N extends α.

Proposition 2.14 If $M=\tau(M) \oplus N$ is a τ-C1 module, then N is a $\tau(M)$-injective module.
Proof. Let $\varphi: X \rightarrow N$ be a module homomorphism such that $0 \neq X \subseteq \tau(M)$. Take $X^{\prime}=\{x-\varphi(x): x \in X\}$. Since $M / N \in \Gamma$ and $N \cap X^{\prime}=0, X^{\prime} \not \mathbb{I}^{\tau-\text { ess }} M$. Therefore there is a submodule K of M such that $X^{\prime} \subseteq^{\tau-\text { ess }} K \subset^{\tau-\text { closed }} M$, and then $M=K \oplus K^{\prime}$ for some submodule K^{\prime}. Let $\pi: K \oplus \tau\left(K^{\prime}\right) \oplus N \rightarrow N$ be the projection. Then the restriction of π to X extends φ since $\tau(M)=\tau(K) \oplus \tau\left(K^{\prime}\right)$ and $K \subseteq \tau(M)$, $\tau(M)=K \oplus \tau\left(K^{\prime}\right)$.

We know that it is not necessary that the direct sum of two C 1 modules is a C 1 module by the \mathbb{Z}-module example $\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$. So under arbitrary hereditary torsion theory we can say that it is not necessary that the direct sum of two τ - C 1 modules is a $\tau-\mathrm{C} 1$ module. Now we investigate when this case is possible.

Lemma 2.15 Let $M=M_{1} \oplus M_{2}$ where M_{1} and M_{2} are both τ-C1 modules and $M_{2} \in \Gamma$. Then M is a τ-C1 module if and only if every τ-closed submodule K of M with $K \cap M_{1}=0$ or $K \cap M_{2}=0$ is a direct summand of M.
Proof. The necessity is clear. Conversely, let $K \subset^{\tau-\text { closed }} M$ and $K \cap M_{2} \neq 0$. Then there is a submodule H such that $K \cap M_{2} \subseteq H \subset^{\tau-\text { closed }} K$ since $K \cap M_{2} \not \AA^{\tau-\text { ess }} M$. By Proposition $2.2 H \subset^{\tau-\text { closed }} M$. Clearly $H \cap M_{1}=0$ since $H+M_{1} / M_{1} \in \Gamma$. By hypothesis $M=H \oplus H^{\prime}$ for some submodule H^{\prime} of M, and so $K=H \oplus\left(K \cap H^{\prime}\right)$. Since $K \in \Gamma, K \cap H^{\prime} \subset^{\tau-\text { closed }} K \subset^{\tau-\text { closed }} M$ and hence $K \cap H^{\prime} \subset^{\tau-\text { closed }} M$. Also $K \cap H^{\prime} \cap M_{2}=0$ and by hypothesis $K \cap H^{\prime}$ is a direct summand of M and hence also of H^{\prime}. It follows that K is a direct summand of M . Thus M is a τ - C 1 module.

Proposition 2.16 Let $M=M_{1} \oplus M_{2}$ and M_{1} and M_{2} be relatively injective modules and $M_{2} \in \Gamma$. Then M is a τ-C1 module if and only if M_{1} and M_{2} are $\tau-C 1$ modules.
Proof. The necessity is clear by Lemma 2.5 and Lemma 2.8. Let $K \subset^{\tau-\text { closed }} M$ and $K \cap M_{1}=0$. By [6] there exists a submodule M_{1}^{\prime} such that $M=M_{1} \oplus M_{1}^{\prime}$ and $K \subseteq M_{1}^{\prime}$. Then $M_{1}^{\prime} \cong M_{2}$ and so M_{1}^{\prime} is also a τ-C1 module. Therefore K is a direct summand of M_{1}^{\prime} and so of M since $K \subset^{\tau-\text { closed }} M_{1}^{\prime}$. Similarly if $K \cap M_{2}=0$, then K is a direct summand of M . By Lemma 2.15 M is a τ - C 1 module.

Proposition 2.17 Let M be a module containing a τ-essential submodule of the form $U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}$ where each U_{i} is a τ-uniform submodule of M. If N is a submodule of M with $N \cap U_{i} \neq 0$ for every $i=1, \cdots, n$, then
$N \subseteq{ }^{\tau-e s s} M$. Also any direct sum of non-zero submodules of M which is not τ-essential in M has at most n summands.
Proof. Let $\frac{U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}}{K} \in \Gamma$. If $U_{i} \cap K=0$ for every $i=1, \cdots, n$, then $U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n} \in \Gamma$. By the same proof of 5.6 in [3] we can obtain that $N \subseteq^{\tau-e s s} M$. Otherwise there is at least one U_{i} with $U_{i} \cap K \neq 0$. Thus $N \cap U_{i} \cap K \neq 0$ since U_{i} is τ-uniform and hence $N \cap\left(U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}\right) \subseteq^{\tau-e s s} U_{1} \oplus U_{2} \oplus \cdots \oplus U_{n}$ and the proof is completed by Lemma 1.2(3). The last part of the lemma can be seen using 5.7 in [3].

We say that a module M a $\tau \pi$-injective module if there exist submodules $A_{1} \supseteq A$ and $A_{2} \supseteq B$ such that $M=A_{1} \oplus A_{2}$ whenever there exist submodules A and B such that $A \cap B=0$ and $M / A \in \Gamma$.

Proposition 2.18 Let M be a τ-C1 module such that whenever $M=M_{1} \oplus M_{2}$ then M_{1} and M_{2} are relatively injective. Then M is $\tau \pi$-injective.
Proof. Let L_{1} and L_{2} be submodules of M such that $L_{1} \cap L_{2}=0$ and $M / L_{2} \in \Gamma$. There exists a submodule A such that $L_{1} \subseteq^{\tau-e s s} A \subset^{\tau-\text { closed }} M$ since $M / L_{2} \in \Gamma$, so there exists a submodule B such that $M=A \oplus B$. And also $A \cap L_{2}=0$. Otherwise $A \cap L_{2} \neq 0$ and so $L_{1} \cap A \cap L_{2} \neq 0$ since $L_{1} \subseteq^{\tau-e s s} A$. But this is a contradiction. By [3] 7.5 there exists a submodule B^{\prime} such that $M=A \oplus B^{\prime}$ such that $L_{2} \subseteq B^{\prime}$.

We say that a R-module M is a τ-nonsingular module if $\alpha=0$ whenever $r_{M}(\alpha)=\{m \in M: \alpha(m)=0\}$ $\subseteq^{\tau-e s s} M$ where $\alpha \in \operatorname{End}_{R}(M)$.

Lemma 2.19 Let M be a τ-nonsingular module. If $X \subseteq^{\tau-e s s} N \subset^{\oplus} M$, then N is unique.
Proof. Assume $X \subseteq^{\tau-e s s} N_{1} \subset{ }^{\oplus} M$ and $X \subseteq^{\tau-e s s} N_{2} \subset{ }^{\oplus} M$ such that $M=N_{1} \oplus M_{1}=N_{2} \oplus M_{2}$ and $N_{1} \neq N_{2}$. Then there exists either $x \in N_{1}-N_{2}$ or $x \in N_{2}-N_{1}$. Assume that $x \in N_{1}-N_{2}$. Take $\alpha=\pi_{M_{2}}\left(\pi_{N_{1}}\right)$. Then $\alpha \neq 0$. Now we show that $\operatorname{Ker}(\alpha) \subseteq{ }^{\tau-e s s} M$. Let $M / K \in \Gamma$. Then $\left(N_{1}+K\right) / K \in \Gamma$. If $N_{1} \cap K=0$, then $N_{1} \in \Gamma$ and the proof is the same as [7] Proposition 2.27. Otherwise $N_{1} \cap K \neq 0$ and there exists $k \in N_{1} \cap K \cap X$. Therefore $\alpha(k)=0$. Therefore $k \in K \cap \operatorname{Ker}(\alpha)$. Then $\operatorname{Ker}(\alpha) \subseteq^{\tau-e s s} M$ and $\alpha \neq 0$. This is a contradiction.

An R-module M is called a Baer module if for all submodules N of M we have $l_{S}(N)=\{f \in S: f(n)=0$ for all $\mathrm{n} \in N\}=S e$ where $\operatorname{End}_{R}(M)=S$ and $e^{2}=e$. (See [7] for more details). If also $l_{S}(N)=S e$ and $e M \in \Gamma$ for all submodules N of M , then a Baer module M is called $a \tau$-Baer module .

Lemma 2.20 $A \tau$-Baer module M is a τ-nonsingular module.
Proof. This is trivial.

Lemma 2.21 Every τ-nonsingular τ-C1 module is a Baer module.
Proof. This is proved in the same way as [7] Lemma 2.14 using the property of a τ-C1 module and particularly Lemma 1.2(6).

An R-module M is called $a \tau$-cononsingular module if $N \subseteq^{\tau-e s s} M$ whenever $l_{S}(N)=0$ for all submodule N of M where $S=\operatorname{End}_{R}(M)$. (See [7] for more details).

Lemma 2.22 Let M be a τ-cononsingular and τ-Baer module. Then M is a τ-C1 module.
Proof. Let $0 \neq N \subset^{\tau-\text { closed }} M$. Since M is a τ-Baer module there exists an idempotent $e \in S$ such that $l_{S}(N)=S e$ and $e M \in \Gamma$. Since $l_{S}(N)=S e$ we can write that $N \subseteq(1-e) M$. Assume that $N \neq(1-e) M$. Since $N \subset{ }^{\tau-\text { closed }}(1-e) M$ there exists a submodule K such that $(1-e) M / K \in \Gamma$ and $N \cap K=0$. Also we can find a submodule $N_{1} \supseteq N$ maximal with respect to the property of having zero intersection with K. By $e M \in \Gamma, M / K \in \Gamma$ and hence $N_{1} \not \not^{\tau-e s s} M$ and by the τ-cononsingularity of M there exists an $0 \neq \alpha \in S$ such that $\alpha\left(N_{1}\right)=0$ and hence $\alpha\left(N_{1} \oplus K\right)=0$ and $N_{1} \oplus K \subseteq \subseteq^{e s s} M$. Since M is also a Baer module and so a nonsingular module by [7] and hence $\alpha=0$. But this is a contradiction.

Acknowledgement

The author would like to thank Professor Abdullah Harmancı for his useful advices while writing this paper.

References

[1] Stenström, B.: Rings of Quotients, Berlin, Springer-Verlag 1975.
[2] Golan, J.: Torsion Theories, Longman, Harlow 1986.
[3] Dung, N.V., Huynh, D.V., Smith, P.F. and Wisbauer, R.: Extending Modules, Longman, Harlow 1994.
[4] Nicholson, W.K. and Yousif, M.F.: Quasi-Frobenius rings, Cambridge Tracts in Mathematics 158. Cambridge University Press, Cambridge 2003.
[5] Clark, J. and Charalambides, S.: CS modules relative to a torsion theory, Mediterranean Journal of Mathematics 4, 291-308 (2007).
[6] Harmanci, A. and Smith, P.F.: Finite Direct Sums of CS-Modules, Houstan Journal of Mathematics 19, no. 4 (1993).
[7] Rizvi, S. Tariq and Roman, Cosmin S.: Baer and Quasi Baer Modules, Communications in Algebra 32, no. 1 (2004).
[8] Wisbauer, R.: Foundations of Module and Ring Theory, Gordon and Breach, Reading 1991.

Tahire ÖZEN
Abant İzzet Baysal University,
Department of Mathematics, Bolu-TURKEY
e-mail: tahireozen@gmail.com

[^0]: 2000 AMS Mathematics Subject Classification: 16S90.

