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C1 modules with respect to a hereditary torsion theory

Tahire Özen

Abstract

An R-module M is said to be a C1-module if every closed submodule of M is a direct summand. In this

paper we introduce and investigate the concept of the τ -C1 module for a hereditary torsion theory τ on

Mod-R. τ -C1 modules are a generalization of C1-modules.
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1. Introduction

Throughout the paper R will denote an associative ring with identity, Mod-R will be the category of
unitary right R-modules, and all modules and module homomorphisms will belong to Mod-R. If τ = (Γ, �)
is a torsion theory on Mod-R, then τ is uniquely determined by its associated torsion class Γ of τ -torsion
modules. Modules in Γ will be called τ -torsion and modules in � will be called τ -torsionfree modules. Also,
for any module M, τ (M) denotes the sum of the τ -torsion submodules of M and so τ (M) is the unique largest
τ -torsion submodule of M. For a torsion theory τ = (Γ, �), Γ ∩ � = 0 and the torsion class Γ is closed
under homomorphic images, direct sums and extensions. In this paper τ is assumed to be hereditary, that
is, we assume that submodules of τ -torsion modules are τ -torsion. (See [1] and [2] for more details ). An
R -submodule K is called a τ -essential submodule of the R -module M if K ∩A �= 0 for all nonzero submodules
A of M such that M/A ∈ Γ, denoted by K ⊆τ−ess M . Then every essential submodule of M (see [3] and [4] for
more details) is a τ -essential submodule. This is a generalization of essential submodules and it is of interest
to know how far the old theories extend to the new situation. The following example shows that there is an
example of τ -essential submodule but not essential submodule. And also if every nonzero submodule of M ∈
Mod-R is τ -essential, then M is called a τ -uniform module. Moreover, modules satisfying condition C1 are also
called CS modules or extending modules. In this respect, the paper [5] has been also considered C1 modules
with respect to a torsion theory (and in particular τ−essential submodules). However this paper’s definitions
are quite different.

Example 1.1 Let R =

(
F F

0 F

)
, where F = Z2 . The right nonzero R-submodules of R are

(
0 F

0 0

)
,
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(
0 0
0 F

)
,

(
F F

0 0

)
,

(
0 F

0 F

)
,{

(
0 a

0 a

)
: a ∈ F } and R itself. Let Γ = {A ∈Mod-R : AX = 0} ,

where X =

(
0 F

0 F

)
. Since

(
F F

0 F

)
=

(
0 0
0 F

) ⊕(
F F

0 0

)
,

(
F F

0 0

)
is not an essential

submodule of R. But since R/

(
0 0
0 F

)
/∈ Γ ,

(
F F

0 0

)
is a τ -essential submodule of R. In fact R is a

τ -uniform module but not a uniform module.

Lemma 1.2 Let K ⊆ S ⊆ M ∈Mod-R. The following are satisfied.
(1) If K ⊆τ−ess M and M/S ∈ Γ , then K ⊆τ−ess S .
(2) If K ⊆τ−ess M , then S ⊆τ−ess M .
(3) If K ⊆τ−ess S and S ⊆τ−ess M , then K ⊆τ−ess M .

(4)If α : M1 → M2 is an epic R-linear morphism and K ⊆τ−ess M2 , then α−1(K) ⊆τ−ess M1 .
(5) Let M = ⊕i∈IMi . If Ki ⊆τ−ess Mi for all i ∈ I , then ⊕i∈IKi ⊆τ−ess M .
(6) Let M = ⊕i∈IMi and ⊕i∈IKi ⊆τ−ess M where Ki ⊆ Mi for all i ∈ I . If M/Mi ∈ Γ for some i ∈ I , then
Ki ⊆τ−ess Mi .

Proof. (1),(2),(3) are routine verifications.

(4) Let M1/Y ∈ Γ and β : M1/Y → M2/α(Y ) be a function such that β(a+Y ) = α(a)+α(Y ) for all a ∈ M1 .

Then β is an R-module epimorphism and so M2/α(Y ) ∈ Γ. Then K ∩ α(Y ) �= 0, and so α−1(K) ∩ Y �= 0.

(5) Let M/Y ∈ Γ. If Mi ∩ Y = 0 for every i ∈ I , then M ∈ Γ and by Lemma 1.1(4) in [4] ⊕i∈IKi ⊆τ−ess M .
If not, there is at least one i ∈ I such that Ki ∩ Y �= 0 and so ⊕i∈IKi ∩ Y �= 0.

(6) Let Mi/S ∈ Γ where S �= 0. Then M/Mi
∼= M/S

Mi/S implies M/S ∈ Γ. Since ⊕i∈IKi ⊆τ−ess M ,

⊕i∈IKi ∩ S �= 0 and so Ki ∩ S �= 0. �

A module U is called τ -essentially M injective if every diagram in R-mod with exact row 0 → K → M and
g : K → U and Ker(g) ⊆τ−ess K can be extended commutatively by some homomorphism M → U .

Lemma 1.3 Let M and U be R-modules.

(1) Any product ΠλUλ is τ -essentially M injective if and only if every Uλ is τ -essentially M injective.

(2) If 0 → M ′ → M → M ′′ → 0 is an exact sequence of R-modules and U is τ -essentially M injective then U
is τ -essentially M ′ injective and τ -essentially M ′′ injective.

Proof. (1) Follow the proof of [8] 16.1. (2)Using Lemma 1.2(4) follow the proof of [3] 2.15. �
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2. τ -closed submodules

Let M ∈Mod-R. A submodule A of M is called a τ -closed submodule of M, if there is no submodule B of
M such that A ⊂τ−ess B ⊆ M . We denote this by A ⊂τ−closed M . Note that if A is a τ -closed submodule of
M, then A is a closed submodule of M. But a closed submodule may not be a τ -closed submodule by Example
1.1. And also if A is a τ -closed submodule of M, then A ⊆ τ (M), i.e. A is τ -torsion. Because there is a
submodule H such that A ∩ H = 0 and M/H ∈ Γ and since τ is a hereditary torsion theory A + H/H ∈ Γ
and so A ∈ Γ.

Lemma 2.1 Let M be a module in Mod-R. Then the following are satisfied.

i) If A is τ -closed submodule in M, then A ⊆ K ⊆τ−ess M implies K/A ⊂τ−ess M/A . But the converse may
not be true.

ii) If L ⊂τ−closed M , then L/K ⊂τ−closed M/K for all submodules K of L. If L/K ⊂τ−closed M/K and

K ⊂τ−closed M , then L ⊂τ−closed M .

Proof. i) Let A ⊆ K ⊆τ−ess M . Assume that there exists a nonzero submodule S/A such that M/A
S/A ∈ Γ and

K/A∩ S/A = 0. Then A = K ∩ S ⊆τ−ess S since K ⊆τ−ess M and M/S ∈ Γ. Since A ⊂τ−closed M , S = A .
But this is a contradiction. So K/A ⊂τ−ess M/A . For the converse we can give the following counterexample:

Let R =

(
F F

0 F

)
where F = Z2 . Let Γ = {A ∈Mod-R: AX = 0} where X =

(
F F

0 0

)
.

Then

(
0 F

0 0

)
⊂τ−ess

(
F F

0 0

)
⊂τ−ess

(
F F

0 F

)
and also

�
��

F F

0 0

�
��

�
��

0 F

0 0

�
��

⊂τ−ess

�
��

F F

0 F

�
��

�
��

0 F

0 0

�
��

but

(
0 F

0 0

)
�τ−closed

(
F F

0 F

)
.

ii) Let L ⊂τ−closed M . Assume that there exists a submodule S/K of M/K such that L/K ⊂τ−ess S/K ⊆
M/K . By Lemma 1.2 (4) L ⊂τ−ess S which is a contradiction.

Now let L/K ⊂τ−closed M/K . Assume that there exists a submodule S of M such that L ⊂τ−ess S ⊆ M . Since

K ⊂τ−closed M , K ⊂τ−closed S and by the part (i) we can write L/K ⊂τ−ess S/K which is a contradiction.

�

Proposition 2.2 If A ⊂τ−closed B ⊂τ−closed M , then A ⊂τ−closed M .

Proof. Assume that there is a submodule K such that A ⊂τ−ess K ⊆ M . Since A ⊂τ−closed B , K � B .

Then B + K �= B and B ⊂ B + K ⊆ M . If S ∩ K �= 0 for all nonzero S such that B + K/S ∈ Γ, then
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A ⊂τ−ess B + K since A ⊂τ−ess K and so B ⊂τ−ess B + K . This is a contradiction. Then there is a nonzero
submodule S of B+K such that S∩K = 0 and B+K/S ∈ Γ. Then by K +S/S ∈ Γ, K ∈ Γ and so B +K ∈ Γ

since B ⊂τ−closed M and so B ∈ Γ. Since A ⊂closed B ⊂closed B + K , we can write that A ⊂closed B + K ,
that is A ⊂τ−closed B + K . But this contradicts A ⊂τ−ess K ⊆ B + K . �

Remark: By Zorn’s Lemma for every non τ -essential submodule N of a module M, we can find a submodule A of
M which is maximal with respect to the property that N ⊆τ−ess A and, in this case, A is a τ -closed submodule
of M. Therefore if τ (M) �τ−ess M , then there is a submodule A of M such that τ (M) ⊆τ−ess A ⊂τ−closed M

and we obtain τ (M) ⊂τ−closed M since A ∈ Γ. That is, it is either τ (M) ⊆τ−ess M or τ (M) ⊂τ−closed M .

Remark: Let N �τ−ess M . Then by Zorn’s Lemma we can find that a maximal submodule A such that

M/A ∈ Γ and A ∩ N = 0. Then N ⊕ A ⊆τ−ess M . If M /∈ Γ, then also A ⊂τ−ess M .

Lemma 2.3 Let A ⊂closed M and A �τ−ess M . Then A ⊂τ−closed M .

Proof. Assume that A �τ−closed M . Then there is a submodule B such that A ⊂τ−ess B ⊂τ−closed M since

A �τ−ess M . Then B ∈ τ (M) and so A ⊂ess B ⊂τ−closed M and this is a contradiction. �

We call a module M a τ -C1 module if every τ -closed submodule of M is a direct summand of M.

Lemma 2.4 Let M be a τ -torsionfree module. Then M is a τ -C1 module.

Proof. Since M is a τ -torsionfree module, any τ -closed submodule of M is zero. �

Lemma 2.5 Let M be a τ -C1 module. Then every τ -torsion direct summand of M is a τ -C1 module.

Proof. Let B be a τ -torsion direct summand of M. First we prove B ⊂τ−closed M . Assume that B ⊂τ−ess

X ⊆ M . Since there is a submodule B′ ⊆ M such that M = B ⊕ B′ , X = B ⊕ (X ∩ B′) and so

B ⊂τ−ess B ⊕ (X ∩ B′) ⊆ M where X ∩ B′ �= 0. Then B⊕(X∩B′)
X∩B′ ∈ Γ and X ∩ B′ ∩ B = 0, but this is

a contradiction. If A ⊂τ−closed B , then since B ⊂τ−closed M , A ⊂τ−closed M by Proposition 2.2 . Since M is
a τ -C1 module, A is a direct summand of M and so A is a direct summand of B. �

Lemma 2.6 Let M be a τ -C1 module and τ (M) �τ−ess M . Then every direct summand of M is also a τ -C1
module.

Proof. Since τ (M) ⊂τ−closed M and M is a τ -C1 module, τ (M) is a direct summand of M, it is denoted by

τ (M) ⊆⊕ M . Let A ⊂τ−closed M1 ⊆⊕ M and M = M1 ⊕ M2 . Then A ∈ Γ.

i) If τ (M2) = 0, then τ (M1) ⊆⊕ M since τ (M) = τ (M1) ⊕ τ (M2). Then A ⊂τ−closed τ (M1) ⊂⊕ M and by
Lemma 2.5 A is a direct summand of M and so a direct summand of M1 .
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ii) If τ (M2) �= 0, then A ⊂τ−closed τ (M1) ⊂τ−closed τ (M) ⊆⊕ M and so A ⊂τ−closed τ (M) ⊆⊕ M . By Lemma
2.5 A is a direct summand of M and so a direct summand of M1 . �

Example 2.7 Let τG be the Goldie torsion theory. Let M be a τG -C1 module. Then τG(M) = Z2(M) and if
there is a torsionfree submodule N of M such that Z2(M/N) = M/N , then Z2(M) is a τ -closed submodule of
M and every direct summand of M is a τG -C1 module.

Lemma 2.8 Let M be a τ -C1 module and M1 be a closed submodule of M such that M/M1 ∈ Γ . Then M1 is
also a τ -C1 module.

Proof. Let A ⊂τ−closed M1 . Therefore A ⊂closed M1 ⊂closed M and so A ⊂closed M . If A �τ−ess M , then

A ⊂τ−closed M and so A is a direct summand of M1 .
If A ⊂τ−ess M , then by Lemma 1.2(1) A ⊂τ−ess M1 since M/M1 ∈ Γ. This is a contradiction. �

By Lemma 2.5 and 2.8 every direct summand M1 of a τ -C1 module M such that M1 ∈ Γ or M/M1 ∈ Γ is
also a τ -C1 module. But we don’t know whether or not any direct summand M1 of a τ -C1 module M with
τ (M) ⊂τ−ess M is also a τ -C1 module.

Example 2.9 Every C1- module is a τ -C1 module since every τ -closed submodule is a closed submodule. But
the converse may not hold.

Proof. Let R =

(
F V

0 F

)
where F is a field and V = F ⊕F . If we take Γ = {A ∈Mod-R: A

(
0 V

0 F

)
=

0} , then R is τ -uniform and so R is a τ -C1 module. If e =

(
1 0
0 0

)
, then eR =

(
F V

0 0

)
is inde-

composable (in fact eRe ∼= F ). Assume that R is a C1-module. Then eR is also a C1-module. Since eR is

indecomposable, it is a uniform module. But since

(
0 F ⊕ 0
0 0

)
∩

(
0 0 ⊕ F

0 0

)
= 0, it cannot be a uniform

module. (See [4] for more details). Thus R is a τ -C1 module, but not a C1-module. �

Lemma 2.10 If N is a τ -closed submodule of a τ -C1 module M, then M/N is also a τ -C1 module.

Proof. Let A/N ⊆τ−closed M/N . Then A ⊆τ−closed M . Otherwise there is a submodule B such that
A ⊂τ−ess B ⊆ M and by Lemma 2.1 A/N ⊆τ−ess B/N ⊆ M/N . But this is a contradiction. Since

A ⊆τ−closed M and M is a τ -C1 module, A is a direct summand of M and so A/N is a direct summand
of M/N . �

Lemma 2.11 If τ (M) is a C1-module and a direct summand of M, then M is a τ -C1 module.
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Proof. Let A ⊂τ−closed M . Then A ∈ τ (M) and A ⊂closed τ (M). Therefore A is a direct summand of τ (M)
and A is a direct summand of M. �

Let τsoc(M) =
⋂{A : A ⊆τ−ess M} . Then τsoc(M) ⊆ soc(M) and τsoc(M) is a direct summand of soc(M)

and so a semisimple submodule of M.

Example 2.12 We give examples such that

i) τsoc(M) ⊂ soc(M)

ii) if A ⊂ B , then τsoc(B) ⊂ τsoc(A)

iii) if A = B ⊕ C , then τsoc(A) �= τsoc(B) ⊕ τsoc(C) and B
⋂

τsoc(A) �= τsoc(B) .

Proof. i) Let R and Γ be as in Example 1.1. Then

τsoc

((
0 F

0 F

))
=

(
0 0
0 0

)
, but soc

((
0 F

0 F

))
=

(
0 F

0 F

)
.

ii) Let A =

(
0 0
0 F

)
⊂ B =

(
0 F

0 F

)
. Then

τsoc(A) = A ⊃ τsoc(B) = 0

iii) Let A =

(
0 F

0 F

)
, B =

(
0 F

0 0

)
and C =

(
0 0
0 F

)
. Then A = B ⊕ C but τsoc(A) �=

τsoc(B) ⊕ τsoc(C) and B
⋂

τsoc(A) �= τsoc(B). �

Note that if there is a simple submodule A of M such that M/A ∈ Γ, then A ⊆ τsoc(M). Also if there is a
simple submodule A of M such that A is not in Γ, then A ⊆τ−ess M and therefore τsoc(M) is either A or 0.
Otherwise soc(M) = soc(τ (M)) and τsoc(M) =

⋂{τ (A) : A ⊆τ−ess M} .

Note that if mR �τ−ess M for all m ∈ M , then mR ∈ Γ for all m ∈ M , and so M ∈ Γ. If M /∈ Γ, then there

is at least one m ∈ M such that mR ⊆τ−ess M and hence τsoc(M) ⊆ mR .

(C3-condition): A module M is said to satisfy condition C3 if, whenever A and B are direct summands of M
with A ∩ B = 0, then A ⊕ B is also a direct summand of M.

Proposition 2.13 If M = K ⊕ N is a τ -C1 module satisfying condition C3 and N ∈ Γ , then K is an
N-injective module.

Proof. If X ⊆ N and α : X → K is R-linear, we must extend α to N → K . Put Y = {x − α(x) : x ∈ X} .
Then Y ∩K = 0, so let C ⊇ Y be a complement of K in M. Then C is a τ -closed submodule of M. Otherwise
there is a submodule A such that C ⊂τ−ess A ⊆ M .Since M/K ∈ Γ and so (A +K)/K ∼= A/(A∩K) ∈ Γ and
also C is a maximal submodule satisfying C ∩ K = 0, A ∩ K �= 0 and so A ∩ K ∩ C �= 0 since C ⊂τ−ess A .
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But this is a contradiction.
Thus C is a τ -closed submodule in M. Since M is a τ -C1 module, C ⊆⊕ M . Since M satisfies condition-C3,
C ⊕ K is a direct summand of M, that is there is a submodule D such that M = C ⊕ K ⊕ D . Let π : M → K

be a projection with Ker(π) = C ⊕D . Then Y ⊆ Ker(π) and so π(x) = π(α(x)) = α(x) for any x ∈ X . Thus
the restriction of π to N extends α . �

Proposition 2.14 If M = τ (M) ⊕ N is a τ -C1 module , then N is a τ (M)-injective module.

Proof. Let ϕ : X → N be a module homomorphism such that 0 �= X ⊆ τ (M). Take X′ = {x−ϕ(x) : x ∈ X} .
Since M/N ∈ Γ and N ∩ X′ = 0, X′ �τ−ess M . Therefore there is a submodule K of M such that

X′ ⊆τ−ess K ⊂τ−closed M , and then M = K ⊕ K′ for some submodule K′ . Let π : K ⊕ τ (K′) ⊕ N → N

be the projection. Then the restriction of π to X extends ϕ since τ (M) = τ (K) ⊕ τ (K′) and K ⊆ τ (M),
τ (M) = K ⊕ τ (K′) . �

We know that it is not necessary that the direct sum of two C1 modules is a C1 module by the Z−module
example Z2 ⊕ Z8 . So under arbitrary hereditary torsion theory we can say that it is not necessary that the
direct sum of two τ -C1 modules is a τ -C1 module. Now we investigate when this case is possible.

Lemma 2.15 Let M = M1 ⊕M2 where M1 and M2 are both τ -C1 modules and M2 ∈ Γ . Then M is a τ -C1
module if and only if every τ -closed submodule K of M with K ∩M1 = 0 or K ∩ M2 = 0 is a direct summand
of M.

Proof. The necessity is clear. Conversely, let K ⊂τ−closed M and K ∩ M2 �= 0. Then there is a submodule
H such that K ∩ M2 ⊆ H ⊂τ−closed K since K ∩ M2 �τ−ess M . By Proposition 2.2 H ⊂τ−closed M . Clearly

H ∩ M1 = 0 since H + M1/M1 ∈ Γ. By hypothesis M = H ⊕ H ′ for some submodule H ′ of M, and so

K = H ⊕ (K ∩ H ′). Since K ∈ Γ, K ∩ H ′ ⊂τ−closed K ⊂τ−closed M and hence K ∩ H ′ ⊂τ−closed M . Also
K ∩ H ′ ∩ M2 = 0 and by hypothesis K ∩ H ′ is a direct summand of M and hence also of H ′ . It follows that
K is a direct summand of M. Thus M is a τ -C1 module. �

Proposition 2.16 Let M = M1 ⊕ M2 and M1 and M2 be relatively injective modules and M2 ∈ Γ . Then M
is a τ -C1 module if and only if M1 and M2 are τ -C1 modules.

Proof. The necessity is clear by Lemma 2.5 and Lemma 2.8. Let K ⊂τ−closed M and K ∩ M1 = 0. By [6]
there exists a submodule M ′

1 such that M = M1⊕M ′
1 and K ⊆ M ′

1 . Then M ′
1
∼= M2 and so M ′

1 is also a τ -C1

module. Therefore K is a direct summand of M ′
1 and so of M since K ⊂τ−closed M ′

1 . Similarly if K ∩M2 = 0,
then K is a direct summand of M. By Lemma 2.15 M is a τ -C1 module. �

Proposition 2.17 Let M be a module containing a τ -essential submodule of the form U1⊕U2⊕· · ·⊕Un where
each Ui is a τ -uniform submodule of M. If N is a submodule of M with N ∩Ui �= 0 for every i = 1, · · · , n , then
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N ⊆τ−ess M . Also any direct sum of non-zero submodules of M which is not τ -essential in M has at most n
summands.

Proof. Let U1⊕U2⊕···⊕Un

K
∈ Γ. If Ui ∩ K = 0 for every i = 1, · · · , n , then U1 ⊕ U2 ⊕ · · · ⊕ Un ∈ Γ. By the

same proof of 5.6 in [3] we can obtain that N ⊆τ−ess M . Otherwise there is at least one Ui with Ui ∩ K �= 0.
Thus N ∩ Ui ∩ K �= 0 since Ui is τ -uniform and hence N ∩ (U1 ⊕ U2 ⊕ · · · ⊕ Un) ⊆τ−ess U1 ⊕ U2 ⊕ · · · ⊕ Un

and the proof is completed by Lemma 1.2(3) . The last part of the lemma can be seen using 5.7 in [3]. �

We say that a module M a τπ -injective module if there exist submodules A1 ⊇ A and A2 ⊇ B such that
M = A1 ⊕ A2 whenever there exist submodules A and B such that A ∩ B = 0 and M/A ∈ Γ.

Proposition 2.18 Let M be a τ -C1 module such that whenever M = M1⊕M2 then M1 and M2 are relatively
injective. Then M is τπ -injective .

Proof. Let L1 and L2 be submodules of M such that L1 ∩ L2 = 0 and M/L2 ∈ Γ. There exists a

submodule A such that L1 ⊆τ−ess A ⊂τ−closed M since M/L2 ∈ Γ, so there exists a submodule B such
that M = A ⊕ B . And also A ∩ L2 = 0. Otherwise A ∩ L2 �= 0 and so L1 ∩ A ∩ L2 �= 0 since L1 ⊆τ−ess A .
But this is a contradiction. By [3] 7.5 there exists a submodule B′ such that M = A⊕B′ such that L2 ⊆ B′ . �

We say that a R-module M is a τ -nonsingular module if α = 0 whenever rM (α) = {m ∈ M : α(m) = 0}
⊆τ−ess M where α ∈ EndR(M) .

Lemma 2.19 Let M be a τ -nonsingular module. If X ⊆τ−ess N ⊂⊕ M , then N is unique.

Proof. Assume X ⊆τ−ess N1 ⊂⊕ M and X ⊆τ−ess N2 ⊂⊕ M such that M = N1 ⊕ M1 = N2 ⊕ M2 and
N1 �= N2 . Then there exists either x ∈ N1−N2 or x ∈ N2−N1 . Assume that x ∈ N1−N2 . Take α = πM2(πN1).
Then α �= 0. Now we show that Ker(α) ⊆τ−ess M . Let M/K ∈ Γ. Then (N1+K)/K ∈ Γ. If N1∩K = 0, then
N1 ∈ Γ and the proof is the same as [7] Proposition 2.27. Otherwise N1∩K �= 0 and there exists k ∈ N1∩K∩X .
Therefore α(k) = 0. Therefore k ∈ K∩Ker(α). Then Ker(α) ⊆τ−ess M and α �= 0. This is a contradiction. �

An R-module M is called a Baer module if for all submodules N of M we have lS(N) = {f ∈ S : f(n) = 0 for

all n∈ N} = Se where EndR(M) = S and e2 = e . (See [7] for more details). If also lS(N) = Se and eM ∈ Γ
for all submodules N of M , then a Baer module M is called a τ -Baer module .

Lemma 2.20 A τ -Baer module M is a τ -nonsingular module.

Proof. This is trivial. �

Lemma 2.21 Every τ -nonsingular τ -C1 module is a Baer module.

Proof. This is proved in the same way as [7] Lemma 2.14 using the property of a τ -C1 module and particu-
larly Lemma 1.2(6). �
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An R-module M is called a τ -cononsingular module if N ⊆τ−ess M whenever lS(N) = 0 for all
submodule N of M where S = EndR(M). (See [7] for more details).

Lemma 2.22 Let M be a τ -cononsingular and τ -Baer module. Then M is a τ -C1 module.

Proof. Let 0 �= N ⊂τ−closed M . Since M is a τ -Baer module there exists an idempotent e ∈ S such that
lS(N) = Se and eM ∈ Γ. Since lS(N) = Se we can write that N ⊆ (1 − e)M . Assume that N �= (1 − e)M .

Since N ⊂τ−closed (1 − e)M there exists a submodule K such that (1 − e)M/K ∈ Γ and N ∩ K = 0. Also we
can find a submodule N1 ⊇ N maximal with respect to the property of having zero intersection with K. By
eM ∈ Γ, M/K ∈ Γ and hence N1 �τ−ess M and by the τ -cononsingularity of M there exists an 0 �= α ∈ S

such that α(N1) = 0 and hence α(N1 ⊕ K) = 0 and N1 ⊕ K ⊆ess M . Since M is also a Baer module and so
a nonsingular module by [7] and hence α = 0. But this is a contradiction. �
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