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Oscillation of nonlinear neutral delay differential equations of

second-order with positive and negative coefficients

Mustafa Kemal Yıldız, Başak Karpuz, Özkan Öcalan

Abstract

Some oscillation criteria for the following second-order neutral differential equation

�
x(t) ± r(t)f(x(t − γ))

�′′
+ p(t)g(x(t − α)) − q(t)g(x(t − β)) = s(t)

where t ≥ t0 , γ, α, β ∈ �+ with α ≥ β , r ∈ C2([t0,∞),�+) , p, q ∈ C([t0,∞),�+) and f, g ∈ C(�,�) ,

s ∈ C([t0,∞),�) have been obtained. Our results are not restricted with boundedness of solutions.
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1. Introduction

In this paper, we consider the oscillation of the second-order nonlinear neutral delay differential equations
of the form

[
x(t) + r(t)f(x(t − γ))

]′′ + p(t)g(x(t − α)) − q(t)g(x(t − β)) = s(t), (1)

[
x(t) − r(t)f(x(t − γ))

]′′
+ p(t)g(x(t − α)) − q(t)g(x(t − β)) = s(t), (2)

where t ≥ t0 , γ ≥ 0, α ≥ β ≥ 0, r ∈ C2([t0,∞), R+) and p, q ∈ C([t0,∞), R+). Furthermore, we suppose that
the following are satisfied:

(H1) lim inft→∞ h(t) > 0, where h(t) := p(t) − q(t − α + β) for t ≥ t0 .

(H2) f ∈ C(R, R) is nondecreasing with f(u)/u > 0 for u �= 0 and there exists positive constant M such that

0 <
f(u)

u
≤ M, u �= 0

holds.
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(H3) g ∈ C(R, R) with g(u)/u > 0 for u �= 0 and there exists positive constants N1 and N2 such that

N1 ≤ g(u)
u

≤ N2, u �= 0

holds.

(H4) s ∈ C([t0,∞), R) and there exists a function S ∈ C2([t0,∞), R) such that S′′ = s and S(t) → 0 as
t → ∞ .

Note that if S∗ ∈ C2([t0,∞), R) is a function satisfying S∗′′ = s and L := limt→∞ S∗(t) exists and is
finite, then S := S∗ − L holds (H4).

For the case f and g are identity functions, we obtain better results than those in [3]. Also in this case
our results weaken assumptions on the coefficients. For the first-order case, see the results in [4]. Our results
improve results in the literature. We refer readers to [1, 2, 5, 6, 7] for further results.

We restrict our attention only to those solutions x that are not eventually trivial. By a solution, we
mean a function x identically satisfying the equation and [x(t)−r(t)f(x(t−γ))] ∈ C2([t0,∞), R) for all t ≥ t0 .
A solution is called nonoscillatory if it is eventually of single sign; otherwise, the solution is called oscillatory.
Throughout the paper, we let κ := max{γ, α} .

2. Oscillatory behavior of solutions of homogenous equations

We start this section by giving the following sufficient condition on (1).

Theorem 1 Assume that (H1)–(H3) hold and r ∈ C([t0,∞), R+) is bounded. If

∞∫
t0

u∫
u−α+β

q(v)dvdu < ∞ (3)

holds, then every solution of (1) is oscillatory.

Proof. Suppose that x is an eventually positive solution of (1). The case where x is eventually negative is
similar and is omitted. Let t1 ≥ t0 such that x(t−κ) > 0 for t ≥ t1 . Then, considering (3) there exists t2 ≥ t1

such that
∞∫

t2

u∫
u−α+β

q(v)dvdu ≤ 1
2N2

(4)

holds. Now, we set
w(t) := x(t) + r(t)f(x(t − γ)) ≥ 0 (5)

and

z(t) := w(t) −
t∫

t2

u∫
u−α+β

q(v)g(x(v − β))dvdu (6)
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for t ≥ t2 . Then, we have

z′′(t) = w′′(t) − q(t)g(x(t − β)) + q(t − α + β)g(x(t − α))

= −p(t)g(x(t − α)) + q(t − α + β)g(x(t − α))

= −h(t)g(x(t − α)) ≤ 0 (7)

for all t ≥ t2 . Hence, z′(t) and z(t) is strictly monotonic and constant of sign for all t ≥ t3 , where t3 ≥ t2

is sufficiently large. To prove z′(t) > 0 holds for all t ≥ t2 , we assume contrary that z′(t) < 0 holds for all
t ≥ t2 . In the present case, we see that

lim
t→∞

z(t) = −∞. (8)

We also claim that x is bounded. For contrary assume x is unbounded. Thus, there is t4 ≥ t3 such that

z(t4) < 0, x(t4) = max {x(t) : t ∈ [t3, t4]} . (9)

Then, considering (H3), (4) and (9), we obtain

0 > z(t4) = w(t4) −
t4∫

t2

u∫
u−α+β

q(v)g(x(v − β))dvdu,

≥ x(t4) − N2

t4∫
t2

u∫
u−α+β

q(v)x(v − β)dvdu,

≥ x(t4)(1 − N2

t4∫
t2

u∫
u−α+β

q(v)dvdu) ≥ 1
2
x(t4) ≥ 0.

This contradiction shows that x must be bounded. There is a positive constant K such that x(t) ≤ K holds
for all t ≥ t0 . Accordingly, we see that

z(t) ≥ −KN2

∞∫
t2

u∫
u−α+β

q(v)dvdu ≥ −K

2
> −∞

holds, which contradicts with (8) and proves that z′(t) > 0 holds for all t ≥ t2 . By (H1), there exists t3 ≥ t2

and ε > 0 such that h(t) ≥ ε holds for all t ≥ t3 . Integrating (7) from t3 to ∞ , we get

∞ > z′(t3) ≥ ε

∞∫
t3

g(x(u − α))du ≥ εN1

∞∫
t3

x(u − α)du,

which implies x ∈ L1([t0,∞)). Since r is bounded and (H2) holds, we see from (5) that w ∈ L1([t2,∞)).
Hence,

lim inf
t→∞

w(t) = 0 (10)
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is true. On the other hand, we see from (6) that

w′(t) = z′(t) +

t∫
t−α+β

q(u)g(x(u − β))du > 0 (11)

holds for all t ≥ t3 . Note that w defined in (4) is positive and increasing by (11), hence (10) is impossible.
This is a contradiction. Thus, every solution is oscillatory. �

Theorem 2 Assume that (H1)–(H2) hold and r ∈ C([t0,∞), R+) satisfies

lim sup
t→∞

r(t) <
1
M

. (12)

If (3) holds, then every solution of (2) is oscillatory or tending to zero as t tends to infinity.

Proof. Suppose that x is a nonoscillatory solution of (2), then we have to show that limt→∞ x(t) = 0 is
true. Without loss of generality, we suppose that x is an eventually positive solution. There exists t1 ≥ t0 such
that x(t − κ) > 0 holds for all t ≥ t1 . Considering (12), there exists t2 ≥ t1 and 0 < δ < 1/M such that

r(t) ≤ 1
M

− δ (13)

for all t ≥ t2 . And (3) ensures existence of t3 ≥ t2 such that

∞∫
t3

u∫
u−α+β

q(v)dvdu <
δM

2N2
, (14)

Now, we set
w(t) := x(t) − r(t)f(x(t − γ)) (15)

and

z(t) := w(t) −
t∫

t3

u∫
u−α+β

q(v)g(x(v − β))dvdu (16)

for t ≥ t3 . Then, we have

z′′(t) = w′′(t) − q(t)g(x(t − β)) + q(t − α + β)g(x(t − α))

= −p(t)g(x(t − α)) + q(t − α + β)g(x(t − α))

= −h(t)g(x(t − α)) ≤ 0 (17)

for all t ≥ t3 . Hence, z′(t) and z(t) is strictly monotonic and constant of sign for all t ≥ t4 , where t4 ≥ t3 is
sufficiently large. To prove z′(t) > 0 for all t ≥ t4 , we assume on the contrary that z′(t) < 0 holds all t ≥ t4 .
In the present case, since z′ is negative and nonincreasing, we see that

lim
t→∞

z(t) = −∞ (18)
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holds. We also claim that x is bounded. Again on the contrary, assume that x is unbounded. Thus, there
exists t5 ≥ t4 such that

z(t5) < 0, x(t5) = max{x(t) : t ∈ [t4, t5]} (19)

hold. Then, from (H2), (H3), (13), (14) and (19), we obtain

0 > z(t5) = w(t5) −
t5∫

t3

u∫
u−α+β

q(v)g(x(v − β))dvdu

≥ x(t5)
(

1 − Mr(t5) − N2

t5∫
t3

u∫
u−α+β

q(v)dvdu

)

≥ x(t5)
(

1 − M(
1
M

− δ) − δM

2

)
=

δM

2
x(t5) ≥ 0.

This contradiction implies that x is bounded. There is a positive K such that x(t) ≤ K for all t ≥ t0 .
Accordingly, for all t ≥ t4 , we obtain

z(t) ≥ −
(

KMr(t) + KN2

t∫
t3

u∫
u−α+β

q(v)dvdu

)
≥ −δKM

2
> −∞,

which contradicts with (18) and proves that z′(t) > 0 holds for t ≥ t2 . By (H1), there exists t5 ≥ t4 and ε > 0
such that h(t) ≥ ε holds for all t ≥ t5 . Integrating (17) from t5 to ∞ , we get

∞ > z′(t5) ≥ z′(t5) − z′(∞) ≥ ε

∞∫
t5

g(x(u − α))du ≥ εN1

∞∫
t5

x(u − α)du

which implies L = 0 and L < ∞ hold, where L := lim inft→∞ x(t) and L := lim supt→∞ x(t). On the other
hand, we have from (15) and (14) that

w′(t) = z′(t) +

t∫
t−α+β

q(u)g(x(u − β))du ≥ 0

holds for all t ≥ t5 , which implies w is nondecreasing. Therefore, from (H2), (15) and L < ∞ , we see that
−∞ < L < ∞ holds, where L := limt→∞ w(t).

Now we investigate the following three possible ranges of L as follows:

(i) 0 < L < ∞ . Then, there exists a sufficiently large t6 ≥ t5 such that w(t) ≥ L/2 holds for all t ≥ t6 . So,
for all t ≥ t6 , we obtain

w(t) = x(t) − r(t)f(x(t − γ)) ≥ L

2
,

which implies x(t) ≥ L/2 for all t ≥ t6 . This contradicts with L = 0.
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(ii) −∞ < L < 0. Then, there exists a sufficiently large t6 ≥ t5 such that w(t) ≤ L holds for all t ≥ t6 . So,
for all t ≥ t6 , we see that

w(t) = x(t) − r(t)f(x(t − γ)) ≤ L

holds, and together with (H2) and (13), we have

−L ≤ r(t)f(x(t − γ)) ≤ M(
1
M

− δ)x(t − γ),

which simply implies x(t − γ) > −L/(M(1/M − δ)) for all t ≥ t6 . This contradicts the fact that L = 0.

(iii) L = 0. Now, we claim that L̄ = 0. On the contrary, assume that L > 0. Therefore, from (H2) and (13),
we see that

w(t) ≥ x(t) − δx(t − γ).

holds for all t ≥ t6 , where t ≥ t5 is sufficiently large. Then, there is an increasing divergent sequence

{un}∞n=1 on [t7,∞), where t7 ≥ t6 + κ such that L = limn→∞ x(un) and a sequence {vn}∞n=1 satisfying
x(vn) = max{x(t) : un − κ ≤ t ≤ un} for all n ∈ N Since, x(vn) ≥ x(un) for all n ∈ N , we have

L = limn→∞ x(vn) Therefore, from (H2) and (13), we obtain

w(un) ≥ x(un) − δx(un − γ),

for all n ∈ N , taking limit as n → ∞ , we see that

L = 0 ≥ lim
n→∞

[x(un) − δx(un − γ)]

≥ lim
n→∞

x(un) − δ lim
n→∞

x(vn)

= L(1 − δ) ≥ 0,

which implies L = 0. This contradicts to the assumption that x is not tending to zero as t → ∞ .

The proof is complete. �

3. Oscillatory behavior of solutions of forced equations

In this section, we shall consider (1) and (2) with forcing terms of the forms:

[x(t) + r(t)f(x(t − γ))]′′ + p(t)g(x(t − α)) − q(t)g(x(t − β)) = s(t), (20)

[x(t) − r(t)f(x(t − γ))]′′ + p(t)g(x(t − α)) − q(t)g(x(t − β)) = s(t) (21)

for t ≥ t0 .

Theorem 3 Assume that (H1)–(H4) hold and r ∈ C([t0,∞), R+) is bounded. If (3) holds, then every solution
of (20) is oscillatory or tending to zero as t → ∞ .
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Proof. Suppose that x is an eventually positive solution of (20). Let t1 ≥ t0 satisfy x(t − κ) > 0 for all
t ≥ t1 . There exists t2 ≥ t1 such that (4) holds.

Let w and z as in (5) and (6) respectively. And if we define

W (t) := w(t) − S(t) and Z(t) := z(t) − S(t), (22)

from (20), we obtain

Z′′(t) ≤ −h(t)g(x(t − α)) ≤ 0, t ≥ t1. (23)

This shows that Z′ is an eventually nonincreasing function. We claim that Z′ can not be eventually negative
function. Suppose the contrary, i.e. Z(t) < 0 for all t ≥ t3 , for some t3 ≥ t2 . Then, we have limt→∞ Z(t) =
−∞ . We can come to the conclusion that x is bounded from above. As a matter of fact, if x is unbounded
from above, there exists an increasing divergent sequence {sn}∞n=1 satisfying

lim
n→∞

Z(sn) = −∞ and x(sn) = max{x(t) : t3 ≤ t ≤ sn} (24)

for all n ∈ N . Clearly, limn→∞ x(sn) = ∞ holds. Then, from (4) and (24), we have

Z(sn) = x(sn) + r(sn)f(x(sn − γ)) −
sn∫

t2

u∫
u−α+β

q(v)g(x(v − β))dvdu − S(sn)

≥ x(sn) − N2

sn∫
t2

u∫
u−α+β

q(v)x(v − β)dvdu − S(sn)

≥ 1
2
x(sn) − S(sn),

and taking the limit as n → ∞ , leads the way to the contradiction limt→∞ Z(t) = ∞ . Since x is bounded
from above, there exists a constant K > 0 such that x(t) ≤ K holds for all t ≥ t0 . Hence, from (22), we have

Z(t) ≥ −KN2

t∫
t0

u∫
u−α+β

q(v)dvdu + S(t)

for all t ≥ t3 , which according to (4) yields the following:

lim
t→∞

Z(t) ≥ −KN2

∞∫
t2

u∫
u−α+β

q(v)dvdu ≥ K

2
.

This contradicts to the fact that limt→∞ Z(t) = −∞ .

Therefore, we conclude that Z is an eventually nondecreasing function. Integrating (23) from t3 to ∞ ,

we have that x ∈ L1([t0,∞)) because of (H1), and accordingly from (5), this implies that w ∈ L1([t2,∞)) holds
since (H2) holds and r is bounded. From (22), we obtain that

W ′(t) = Z′(t) +

t∫
t−α+β

q(u)g(x(u − β))du ≥ 0
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holds for all t ≥ t3 , so that W is nondecreasing. Therefore, using the assumption (H4), we have

L := lim
t→∞

W (t) = lim
t→∞

w(t),

where 0 ≤ L < ∞ .

(i) If 0 < L < ∞ . Then, there exists a sufficiently large t4 ≥ t3 such that w(t) > L/2 for all t ≥ t4 . Hence,

w �∈ L1([t2,∞)), and this yields to a contradiction.

(ii) If L = 0 is true, then since x(t) ≤ w(t) holds for all t ≥ t2 , we have that limt→∞ x(t) = 0.

The proof is therefore completed. �

Theorem 4 Assume that (H1)–(H4) hold and r ∈ C([t0,∞), R+) satisfies (12). If (3) holds, then every
solution of (21) is oscillatory or tending to zero as t → ∞ .

Proof. Suppose that x is a nonoscillatory solution of (21), which is not tending to zero as t → ∞ . Without
loss of generality, we suppose that x is eventually positive that is x(t − κ) > 0 holds for all t ≥ t1 , where
t1 ≥ t0 . Then, there exists t2 ≥ t1 such that (13) holds. We have t3 ≥ t2 such that (14) holds because of (3).
If we now define W and Z by considering (22) with w and z are defined as in (15) and (16) respectively, from
(21), we obtain

Z′′(t) ≤ −h(t)g(x(t − α)) ≤ 0, t ≥ t1. (25)

for all t ≥ t3 . We claim that
Z′(t) ≥ 0, t ≥ t4 (26)

holds for some t4 ≥ t3 . If this is not a case, then Z′(t) < 0 holds for all t ≥ t4 , implies limt→∞ Z(t) = −∞ .
On the other hand, x must be bounded from above. Otherwise, there exists an increasing divergent sequence
{sn}∞n=1 satisfying (24). Clearly, we have limn→∞ x(sn) = ∞ and limn→∞ S(sn) = 0 from (H4). Since, we
have that

Z(sn) = x(sn) − r(sn)f(x(sn − γ)) −
sn∫

t3

u∫
u−α+β

q(v)g(x(v − β))dvdu − S(sn)

≥ δM

2
x(sn) − S(sn),

by letting n → ∞ and considering (H4), we get

lim
t→∞

Z(t) = ∞.

This is a contradiction. Therefore, x is bounded from above, there exists a constant K > 0 such that x(t) ≤ K

holds for all t ≥ t0 . Then, we have

Z(t) ≥ −δKM

2
+ S(t), t ≥ t4.
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Taking the limit of the above inequality as t → ∞ , we have limt→∞ Z(t) ≥ −(δKM)/2 as in the proof of
Theorem 2. This is a contradiction. Consequently, we have that (26) holds.

From (H1), (H3) and (25), we obtain x ∈ L1([t1,∞)). Hence, (H2), (5) and boundedness of r implies

that w ∈ L1([t1,∞)). On the other hand, we see from (22) that

W ′(t) = Z′(t) +

t∫
t−α+β

q(u)g(x(u − β))du ≥ 0, t ≥ t4,

holds, so that −∞ < L < ∞ is true, where

L := lim
t→∞

W (t) = lim
t→∞

w(t).

Now, we investigate possible ranges of L as follows:

(i) L �= 0. In this case, we obtain contradiction as obtained in Theorem 2.

(ii) L = 0. In this case, we see that limt→∞ x(t) = 0 holds as in Theorem 2.

Proof is done. �

Remark 1 Letting f, g as the identity functions, we see that our results are still better than those in [3].

4. An Application

Example 1 Consider the forced neutral equation

[
x(t) − 1

2
x(t − 2π)

]′′

+ (e−t +
1
2
(1 − 1

sin2(t) + 2
))

x(t − 4π)([x(t − 4π)]2 + 2)
[x(t − 4π)]2 + 1

− e−t x(t − 2π)([x(t − 2π)]2 + 2)
[x(t − 2π)]2 + 1

= 0 (27)

for t ≥ 1 . For this equation, we have r(t) = 1/2 , γ = 2π , f(u) = u , p(t) = (e−t + (1 − 1/(sin2(t) + 2))/2) ,

α = 4π , q(t) = e−t , β = 2π , g(u) = u(u2 + 2)/(u2 + 1) . In this case, we may let M = 1 , and since we

have g(u)/u = 1 + 1/(u2 + 1) for all u �= 0 , we may let N1 = 1 and N2 = 2 . On the other hand, we have

lim inft→∞ h(t) = 1/4 > 0 , where h(t) = e−t(1 − e2π) + (1 − 1/(sin2(t) + 2))/2 , and
∫ ∞
1

∫ u

u−2π
e−vdvdu =

(e2π − 1)/e < ∞ . All the conditions of Theorem 4 are satisfied, thus every solution of (27) is oscillatory or
convergent to zero as t tends to infinity. One can see by direct substation that x(t) = sin(t) is an oscillatory
solution.
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