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Oscillation of nonlinear neutral delay differential equations of

second-order with positive and negative coefficients

Mustafa Kemal Yildiz, Basak Karpuz, Ozkan Ocalan

Abstract

Some oscillation criteria for the following second-order neutral differential equation
[o(t) £ r(t) F(a(t — 1)) + pOg(a(t - a)) — ab)g(a(t - B)) = s(t)

where t > to, v,a,8 € RT with o > 3, r € C%([to,0),R™), p,q € C([to,0),RT) and f, g € C(B,R),

s € C([to,00), R) have been obtained. Our results are not restricted with boundedness of solutions.
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1. Introduction

In this paper, we consider the oscillation of the second-order nonlinear neutral delay differential equations

of the form
[2(t) + r(&) f(x(t — )] + p(t)g(z(t — @) — q(t)g(z(t — B)) = s(t), (1)
[z(t) — r(t) fla(t —))]" + p(B)g(a(t — @) — q(t)g(z(t - B)) = s(t), (2)

where t > tg, v >0, a>3>0,r € C?([tg,=),RT) and p,q € C([tg, ), RT). Furthermore, we suppose that
the following are satisfied:
(H1) liminf; .o h(t) > 0, where h(t) :=p(t) — q(t —a+ ) for t > ¢o.

(H2) f e C(R,R) is nondecreasing with f(u)/u > 0 for u # 0 and there exists positive constant M such that

O<%§M, u#0

holds.
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(H3) g € C(R,R) with g(u)/u > 0 for u # 0 and there exists positive constants N; and N such that

NlS#SN% u#0

holds.

(H4) s € C([to,),R) and there exists a function S € C?([tg,00),R) such that S” = s and S(t) — 0 as

t— 00.

Note that if S* € C?([to,00),R) is a function satisfying S*” = s and L := lim;_, S*(¢) exists and is
finite, then S := S* — L holds (H4).

For the case f and g are identity functions, we obtain better results than those in [3]. Also in this case
our results weaken assumptions on the coefficients. For the first-order case, see the results in [4]. Our results
improve results in the literature. We refer readers to [1, 2, 5, 6, 7] for further results.

We restrict our attention only to those solutions x that are not eventually trivial. By a solution, we
mean a function z identically satisfying the equation and [z(t) —7(t) f(z(t —))] € C?([to,00),R) for all t > ;.
A solution is called nonoscillatory if it is eventually of single sign; otherwise, the solution is called oscillatory.

Throughout the paper, we let x := max{vy, a}.

2. Oscillatory behavior of solutions of homogenous equations

We start this section by giving the following sufficient condition on (1).

Theorem 1 Assume that (H1)-(H3) hold and r € C([tg,00),R") is bounded. If

/OO /u q(v)dvdu < 0o (3)
to u—a+pB

holds, then every solution of (1) is oscillatory.

Proof. Suppose that z is an eventually positive solution of (1). The case where z is eventually negative is
similar and is omitted. Let ¢; > to such that 2(t — &) > 0 for ¢ > ¢;. Then, considering (3) there exists to > ¢,
such that

/ / q(v)dvdu < ﬁ (4)
to u—a+p
holds. Now, we set
w(t) :=x(t) +rt)f(z(t —7) =20 (5)

and
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for t > t5. Then, we have
2'(t) = w"(t) — q(t)g(x(t — B)) + q(t — a + B)g(z(t — a))
= —p(t)g(z(t — a)) +q(t —a+ B)g(x(t — a))

= —h(t)g(z(t — ) <0 (7)

for all ¢ > t5. Hence, 2/(t) and z(t) is strictly monotonic and constant of sign for all ¢ > t3, where t3 > to
is sufficiently large. To prove z’(t) > 0 holds for all ¢ > t2, we assume contrary that z'(¢) < 0 holds for all
t > to. In the present case, we see that

lim z(t) = —oc. (8)

t—o0

We also claim that z is bounded. For contrary assume x is unbounded. Thus, there is t4 > t3 such that
z(ts) <0, x(ts) =max{x(t) : t € [t3,t4]}. 9)

Then, considering (H3), (4) and (9), we obtain

tyq u

0> s(ts) =uits)~ [ [ atwlgtato ~ B)dvdu,
to u—a+p

u

ty
> x(ty) — Nz/ / qg(v)z(v — B)dvdu,
to u—a+pg

u

> x(tg)(1 — Nz/ / q(v)dvdu) > %x(m) > 0.
to u—a+p0

This contradiction shows that « must be bounded. There is a positive constant K such that z(t) < K holds
for all ¢ > ty. Accordingly, we see that

o0 u

z(t) > _KNQ/ / q(v)dvdu > —g > —00

to u—a+p

holds, which contradicts with (8) and proves that z'(¢) > 0 holds for all ¢ > ¢to. By (H1), there exists t3 > t2
and € > 0 such that A(t) > ¢ holds for all ¢ > ¢5. Integrating (7) from t3 to oo, we get

0o > 2 (t3) > a/g(x(u —a))du > eNy /x(u — a)du,
t3 t3

which implies € L'([tp,>0)). Since r is bounded and (H2) holds, we see from (5) that w € L!([t2,00)).
Hence,
liminfw(t) =0 (10)

t—o0
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is true. On the other hand, we see from (6) that

t

w'(t) = #(t) + /<mwww—mMu>o (11)

t—a+p

holds for all ¢ > t3. Note that w defined in (4) is positive and increasing by (11), hence (10) is impossible.

This is a contradiction. Thus, every solution is oscillatory. O

Theorem 2 Assume that (H1)-(H2) hold and r € C([tg,00), R™") satisfies

1
li t) < —. 12
ntfriilipr() i (12)

If (3) holds, then every solution of (2) is oscillatory or tending to zero as t tends to infinity.

Proof.  Suppose that z is a nonoscillatory solution of (2), then we have to show that lim; . (t) = 0 is
true. Without loss of generality, we suppose that x is an eventually positive solution. There exists t; > tg such
that x(t — k) > 0 holds for all ¢ > ¢;. Considering (12), there exists t2 > ¢; and 0 < § < 1/M such that

1

QOES-E) (13)

for all ¢ > t5. And (3) ensures existence of ¢35 > to such that

o0 u

/ / q(v)dvdu < %, (14)
ts u—a+p0
Now, we set
w(t) :==z(t) —r(t)f(z(t —7)) (15)
and
A =ul) - [ [ awglato - 8)dudu (16)
ts u—a+p

for t > t3. Then, we have
2'(t) = w"(t) — q(t)g(x(t — B)) + q(t — a + B)g(z(t — a))
= —p(t)g(z(t — a)) +q(t —a+ B)g(x(t — a))

= —h(t)g(z(t — ) <0 (17)

for all t > t3. Hence, 2/(t) and z(t) is strictly monotonic and constant of sign for all ¢ > t4, where t4 > t3 is
sufficiently large. To prove z'(t) > 0 for all ¢ > ¢4, we assume on the contrary that z'(t) < 0 holds all ¢ > 4.

In the present case, since 2’ is negative and nonincreasing, we see that

lim z(t) = —oc0 (18)

t—o0
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holds. We also claim that z is bounded. Again on the contrary, assume that x is unbounded. Thus, there
exists t5 > t4 such that

z(ts) <0, x(ts) = max{x(t) : t € [ta,ts5]} (19)
hold. Then, from (H2), (H3), (13), (14) and (19), we obtain
0> s(ts) =wits)— [ [ atw)glalo — 5))dva
ts u—a+p
> x(ts) (1 — Mr(ts) — Nz/ / q(v)dvdu)
ts u—a+p0
x(ts) (1 — M(% —9) — 5TM> = 57Mx(t5) > 0.

This contradiction implies that = is bounded. There is a positive K such that z(t) < K for all ¢t > .
Accordingly, for all ¢ > t4, we obtain

2(t) = —(KMr(t)—i—KNg / /u q(v)dvdu) OKM

> - 2 > —0Q,
ts u—a+p0

which contradicts with (18) and proves that 2’(¢) > 0 holds for ¢ > ¢5. By (H1), there exists t5 > t4 and € > 0
such that h(t) > ¢ holds for all ¢t > ¢5. Integrating (17) from t5 to oo, we get

o0 o0

00 > 2 (ts) > 2/ (t5) — 2/ (00) > a/g(x(u —a))du > eN; /x(u — a)du

t5 t5
which implies L = 0 and L < oo hold, where L := liminf; o () and L := limsup,_, . z(t). On the other
hand, we have from (15) and (14) that

t

() + / g()g(e(u— B))du > 0

t—a+p

w'(t)

holds for all ¢ > t5, which implies w is nondecreasing. Therefore, from (H2), (15) and L < co, we see that
—o00 < L < 00 holds, where L :=lim; o w(t).

Now we investigate the following three possible ranges of L as follows:

(i) 0 < L < co. Then, there exists a sufficiently large ¢t > ¢5 such that w(t) > L/2 holds for all ¢ > 5. So,
for all ¢t > tg, we obtain

L
w(t) =2(t) —r®)f(zt-7) 2 5,
which implies 2(¢t) > L/2 for all ¢ > tg. This contradicts with L =0
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(i) —oo < L < 0. Then, there exists a sufficiently large t¢ > t5 such that w(t) < L holds for all ¢ > ¢5. So,

for all t > tg, we see that
w(t) =x(t) —r@)f(z(t —v) < L
holds, and together with (H2) and (13), we have

—L < r(Of (@t =) < M(57 — 8)alt =),

which simply implies z(t —~y) > —L/(M(1/M —¢)) for all ¢t > t¢. This contradicts the fact that L = 0.

(iii) L = 0. Now, we claim that L =0. On the contrary, assume that L > 0. Therefore, from (H2) and (13),

we see that
w(t) > x(t) — dz(t — ).

holds for all ¢t > tg, where t > t5 is sufficiently large. Then, there is an increasing divergent sequence

{un}32, on [t7,00), where t7 >t + k such that L = lim, o (u,) and a sequence {v,} -, satisfying
z(vp) = max{x(t) : up, — k < t < u,} for all n € N Since, z(v,) > z(uy) for all n € N, we have

L =1lim, . x(v,) Therefore, from (H2) and (13), we obtain
w(up) > x(uy) — 6x(un — ),

for all n € N, taking limit as n — oo, we see that

L=02> lim [z(u,) — dz(un —7)]

n—oo

> lim z(u,) —9d lim z(v,)

n—oo n—oo

=L(1-4)>0,

which implies L = 0. This contradicts to the assumption that z is not tending to zero as t — oo.

The proof is complete.

3. Oscillatory behavior of solutions of forced equations

In this section, we shall consider (1) and (2) with forcing terms of the forms:
[2(t) + r(®)fx(t =" + pt)g(a(t — @) — qt)g(x(t - B)) = (),
[2(t) — r(®) f(a(t — 1)) + pO)g(a(t — a)) — a(B)g(alt - B)) = 5(t)

for t > tg.

Theorem 3 Assume that (H1)-(H}) hold and r € C([to,0),RT) is bounded. If (3) holds, then every solution

of (20) is oscillatory or tending to zero as t — 0.
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Proof.  Suppose that z is an eventually positive solution of (20). Let ¢; > o satisfy x(t — k) > 0 for all
t > ty. There exists ta > t; such that (4) holds.
Let w and z as in (5) and (6) respectively. And if we define

W (t) := w(t) — S(t) and Z(t) := z(t) — S(¢), (22)
from (20), we obtain
Z"(t) < =h(t)g(z(t —a)) <0, t>t. (23)

This shows that Z’ is an eventually nonincreasing function. We claim that Z’ can not be eventually negative
function. Suppose the contrary, i.e. Z(t) < 0 for all ¢ > t3, for some t3 > to. Then, we have lim; .o Z(t) =
—o0. We can come to the conclusion that x is bounded from above. As a matter of fact, if x is unbounded

from above, there exists an increasing divergent sequence {sn}flo:l satisfying

lim Z(s,) = —o0 and z(s,) = max{z(t) : t3 <t < s, } (24)

n—oo

for all n € N. Clearly, lim,,—o 2(s,) = 00 holds. Then, from (4) and (24), we have

Z(sa) = wsa) + (o) fatsn =) = [ [ gl — 9)dudu — 5(s.)

to u—a+p
> x(sp) — Nz/ / qg(v)z(v — B)dvdu — S(sy)
to u—a+p0

> —x(sn) — S(sn),

N~

and taking the limit as n — oo, leads the way to the contradiction lim;_,., Z(t) = oco. Since z is bounded

from above, there exists a constant K > 0 such that z(t) < K holds for all ¢ > ¢y. Hence, from (22), we have

Z(t) > ~KNo / / q(v)dvdu + S(t)

to u—a+p8

for all ¢ > t3, which according to (4) yields the following:

lim Z(t) > _KNQ/ / q(v)dvdu >

t—oo
to u—a+p0

This contradicts to the fact that lim;_,., Z(t) = —oc.

Therefore, we conclude that Z is an eventually nondecreasing function. Integrating (23) from ¢3 to oo,
we have that = € L!([tg, 00)) because of (H1), and accordingly from (5), this implies that w € L([t2,00)) holds
since (H2) holds and r is bounded. From (22), we obtain that

W) =20+ [ a0
t—a+p
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holds for all ¢ > t3, so that W is nondecreasing. Therefore, using the assumption (H4), we have

L := lim W(t) = lim w(t),

t—o0 t—oo

where 0 < L < c©.

(i) If 0 < L < 0o. Then, there exists a sufficiently large ¢4 > ¢35 such that w(t) > L/2 for all ¢ > t,. Hence,
w & LY([t2,00)), and this yields to a contradiction.

(ii) If L =0 is true, then since z(t) < w(t) holds for all ¢ > to, we have that lim;_,o z(t) = 0.

The proof is therefore completed. O

Theorem 4 Assume that (H1)-(Hj) hold and r € C([to,o0),RT) satisfies (12). If (3) holds, then every

solution of (21) is oscillatory or tending to zero as t — 0.

Proof. Suppose that z is a nonoscillatory solution of (21), which is not tending to zero as t — oco. Without
loss of generality, we suppose that x is eventually positive that is z(t — k) > 0 holds for all ¢ > ¢;, where
t1 > tog. Then, there exists to > t1 such that (13) holds. We have t3 > t2 such that (14) holds because of (3).
If we now define W and Z by considering (22) with w and z are defined as in (15) and (16) respectively, from
(21), we obtain

Z"(t) < =h(t)g(z(t —a)) <0, t>t. (25)
for all t > t3. We claim that
Z'(t) >0, t>ty (26)

holds for some ¢4 > t3. If this is not a case, then Z’(t) < 0 holds for all ¢ > ¢4, implies lim;_, Z(t) = —o0.
On the other hand,  must be bounded from above. Otherwise, there exists an increasing divergent sequence
{sn}52, satisfying (24). Clearly, we have lim, o 2(s,) = 0o and lim, . S(s,) = 0 from (H4). Since, we
have that

Z(su) = ws2) = r(su) fatsn =) = [ [ atw)glalo — 9)dudu — 5(s.)

t3 u—a+p
> 57Mx(sn) — S(sn),
by letting n — oo and considering (H4), we get
lim Z(t) = oo.

t—o0

This is a contradiction. Therefore, = is bounded from above, there exists a constant K > 0 such that z(t) < K
holds for all ¢ > ty. Then, we have
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Taking the limit of the above inequality as t — oo, we have lim;_, o Z(t) > —(6KM)/2 as in the proof of
Theorem 2. This is a contradiction. Consequently, we have that (26) holds.

From (H1), (H3) and (25), we obtain = € L!([t1,0)). Hence, (H2), (5) and boundedness of r implies
that w € L'([t1,00)). On the other hand, we see from (22) that

t

W(t) = Z'(t) + / q(Wg(a(u— B))du >0, >t
t—a+p

holds, so that —co < L < oo is true, where

L= lim W(t) = lim w(t).

t—oo t—oo

Now, we investigate possible ranges of L as follows:

(i) L # 0. In this case, we obtain contradiction as obtained in Theorem 2.

(i) L =0. In this case, we see that lim;_, . z(t) = 0 holds as in Theorem 2.

Proof is done. O

Remark 1 Letting f,g as the identity functions, we see that our results are still better than those in [3].

4. An Application

Example 1 Consider the forced neutral equation

"

z(t) — %x(t —27)

. Lt —am) ([t — 4m)* +2)
+ (e +§(1_ sinz(t)+2)) [2(t —4m)]* +1
et —2m) ([t —2m)* +2) 0 (27)

[z(t—2m)]2+1

for t > 1. For this equation, we have r(t) = 1/2, v = 2n, f(u) = u, p(t) = (=t + (1 — 1/(sin?(t) + 2))/2),
a =4m, q(t) = e, B =27, gu) = u(u® +2)/(u® +1). In this case, we may let M = 1, and since we
have g(u)/u =1+ 1/(u®+ 1) for all uw # 0, we may let Ny =1 and Ny = 2. On the other hand, we have
liminf; o h(t) = 1/4 > 0, where h(t) = e (1 — ™) + (1 — 1/(sin®(t) + 2))/2, and [, e vdvdu =
(e®™ —1)/e < oo. All the conditions of Theorem 4 are satisfied, thus every solution of (27) is oscillatory or

convergent to zero as t tends to infinity. One can see by direct substation that x(t) = sin(t) is an oscillatory

solution.
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