TÜBİTAK

Oscillation of nonlinear neutral delay differential equations of second-order with positive and negative coefficients

Mustafa Kemal Yıldız, Başak Karpuz, Özkan Öcalan

Abstract

Some oscillation criteria for the following second-order neutral differential equation $$
[x(t) \pm r(t) f(x(t-\gamma))]^{\prime \prime}+p(t) g(x(t-\alpha))-q(t) g(x(t-\beta))=s(t)
$$

where $t \geq t_{0}, \gamma, \alpha, \beta \in \mathbb{R}^{+}$with $\alpha \geq \beta, r \in C^{2}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right), p, q \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$and $f, g \in C(\mathbb{R}, \mathbb{R})$, $s \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ have been obtained. Our results are not restricted with boundedness of solutions.

Key word and phrases: Delay differential equations, neutral, nonlinear, oscillation, second-order.

1. Introduction

In this paper, we consider the oscillation of the second-order nonlinear neutral delay differential equations of the form

$$
\begin{align*}
& {[x(t)+r(t) f(x(t-\gamma))]^{\prime \prime}+p(t) g(x(t-\alpha))-q(t) g(x(t-\beta))=s(t),} \tag{1}\\
& {[x(t)-r(t) f(x(t-\gamma))]^{\prime \prime}+p(t) g(x(t-\alpha))-q(t) g(x(t-\beta))=s(t),} \tag{2}
\end{align*}
$$

where $t \geq t_{0}, \gamma \geq 0, \alpha \geq \beta \geq 0, r \in C^{2}\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$and $p, q \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$. Furthermore, we suppose that the following are satisfied:
(H1) $\liminf _{t \rightarrow \infty} h(t)>0$, where $h(t):=p(t)-q(t-\alpha+\beta)$ for $t \geq t_{0}$.
(H2) $f \in C(\mathbb{R}, \mathbb{R})$ is nondecreasing with $f(u) / u>0$ for $u \neq 0$ and there exists positive constant M such that

$$
0<\frac{f(u)}{u} \leq M, \quad u \neq 0
$$

holds.

[^0]
YILDIZ, KARPUZ, ÖCALAN

(H3) $g \in C(\mathbb{R}, \mathbb{R})$ with $g(u) / u>0$ for $u \neq 0$ and there exists positive constants N_{1} and N_{2} such that

$$
N_{1} \leq \frac{g(u)}{u} \leq N_{2}, \quad u \neq 0
$$

holds.
(H4) $s \in C\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ and there exists a function $S \in C^{2}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ such that $S^{\prime \prime}=s$ and $S(t) \rightarrow 0$ as $t \rightarrow \infty$.

Note that if $S^{*} \in C^{2}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ is a function satisfying $S^{* \prime \prime}=s$ and $L:=\lim _{t \rightarrow \infty} S^{*}(t)$ exists and is finite, then $S:=S^{*}-L$ holds (H4).

For the case f and g are identity functions, we obtain better results than those in [3]. Also in this case our results weaken assumptions on the coefficients. For the first-order case, see the results in [4]. Our results improve results in the literature. We refer readers to $[1,2,5,6,7]$ for further results.

We restrict our attention only to those solutions x that are not eventually trivial. By a solution, we mean a function x identically satisfying the equation and $[x(t)-r(t) f(x(t-\gamma))] \in C^{2}\left(\left[t_{0}, \infty\right), \mathbb{R}\right)$ for all $t \geq t_{0}$. A solution is called nonoscillatory if it is eventually of single sign; otherwise, the solution is called oscillatory. Throughout the paper, we let $\kappa:=\max \{\gamma, \alpha\}$.

2. Oscillatory behavior of solutions of homogenous equations

We start this section by giving the following sufficient condition on (1).
Theorem 1 Assume that (H1)-(H3) hold and $r \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$is bounded. If

$$
\begin{equation*}
\int_{t_{0}}^{\infty} \int_{u-\alpha+\beta}^{u} q(v) d v d u<\infty \tag{3}
\end{equation*}
$$

holds, then every solution of (1) is oscillatory.
Proof. Suppose that x is an eventually positive solution of (1). The case where x is eventually negative is similar and is omitted. Let $t_{1} \geq t_{0}$ such that $x(t-\kappa)>0$ for $t \geq t_{1}$. Then, considering (3) there exists $t_{2} \geq t_{1}$ such that

$$
\begin{equation*}
\int_{t_{2}}^{\infty} \int_{u-\alpha+\beta}^{u} q(v) d v d u \leq \frac{1}{2 N_{2}} \tag{4}
\end{equation*}
$$

holds. Now, we set

$$
\begin{equation*}
w(t):=x(t)+r(t) f(x(t-\gamma)) \geq 0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
z(t):=w(t)-\int_{t_{2}}^{t} \int_{u-\alpha+\beta}^{u} q(v) g(x(v-\beta)) d v d u \tag{6}
\end{equation*}
$$

for $t \geq t_{2}$. Then, we have

$$
\begin{align*}
z^{\prime \prime}(t) & =w^{\prime \prime}(t)-q(t) g(x(t-\beta))+q(t-\alpha+\beta) g(x(t-\alpha)) \\
& =-p(t) g(x(t-\alpha))+q(t-\alpha+\beta) g(x(t-\alpha)) \\
& =-h(t) g(x(t-\alpha)) \leq 0 \tag{7}
\end{align*}
$$

for all $t \geq t_{2}$. Hence, $z^{\prime}(t)$ and $z(t)$ is strictly monotonic and constant of sign for all $t \geq t_{3}$, where $t_{3} \geq t_{2}$ is sufficiently large. To prove $z^{\prime}(t)>0$ holds for all $t \geq t_{2}$, we assume contrary that $z^{\prime}(t)<0$ holds for all $t \geq t_{2}$. In the present case, we see that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z(t)=-\infty \tag{8}
\end{equation*}
$$

We also claim that x is bounded. For contrary assume x is unbounded. Thus, there is $t_{4} \geq t_{3}$ such that

$$
\begin{equation*}
z\left(t_{4}\right)<0, \quad x\left(t_{4}\right)=\max \left\{x(t): t \in\left[t_{3}, t_{4}\right]\right\} . \tag{9}
\end{equation*}
$$

Then, considering (H3), (4) and (9), we obtain

$$
\begin{aligned}
0 & >z\left(t_{4}\right)=w\left(t_{4}\right)-\int_{t_{2}}^{t_{4}} \int_{u-\alpha+\beta}^{u} q(v) g(x(v-\beta)) d v d u \\
& \geq x\left(t_{4}\right)-N_{2} \int_{t_{2}}^{t_{4}} \int_{u-\alpha+\beta}^{u} q(v) x(v-\beta) d v d u \\
& \geq x\left(t_{4}\right)\left(1-N_{2} \int_{t_{2}}^{t_{4}} \int_{u-\alpha+\beta}^{u} q(v) d v d u\right) \geq \frac{1}{2} x\left(t_{4}\right) \geq 0
\end{aligned}
$$

This contradiction shows that x must be bounded. There is a positive constant K such that $x(t) \leq K$ holds for all $t \geq t_{0}$. Accordingly, we see that

$$
z(t) \geq-K N_{2} \int_{t_{2}}^{\infty} \int_{u-\alpha+\beta}^{u} q(v) d v d u \geq-\frac{K}{2}>-\infty
$$

holds, which contradicts with (8) and proves that $z^{\prime}(t)>0$ holds for all $t \geq t_{2}$. By (H1), there exists $t_{3} \geq t_{2}$ and $\varepsilon>0$ such that $h(t) \geq \varepsilon$ holds for all $t \geq t_{3}$. Integrating (7) from t_{3} to ∞, we get

$$
\infty>z^{\prime}\left(t_{3}\right) \geq \varepsilon \int_{t_{3}}^{\infty} g(x(u-\alpha)) d u \geq \varepsilon N_{1} \int_{t_{3}}^{\infty} x(u-\alpha) d u
$$

which implies $x \in L^{1}\left(\left[t_{0}, \infty\right)\right)$. Since r is bounded and (H2) holds, we see from (5) that $w \in L^{1}\left(\left[t_{2}, \infty\right)\right.$). Hence,

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} w(t)=0 \tag{10}
\end{equation*}
$$

YILDIZ, KARPUZ, ÖCALAN

is true. On the other hand, we see from (6) that

$$
\begin{equation*}
w^{\prime}(t)=z^{\prime}(t)+\int_{t-\alpha+\beta}^{t} q(u) g(x(u-\beta)) d u>0 \tag{11}
\end{equation*}
$$

holds for all $t \geq t_{3}$. Note that w defined in (4) is positive and increasing by (11), hence (10) is impossible. This is a contradiction. Thus, every solution is oscillatory.

Theorem 2 Assume that (H1)-(H2) hold and $r \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$satisfies

$$
\begin{equation*}
\limsup _{t \rightarrow \infty} r(t)<\frac{1}{M} \tag{12}
\end{equation*}
$$

If (3) holds, then every solution of (2) is oscillatory or tending to zero as tends to infinity.
Proof. Suppose that x is a nonoscillatory solution of (2), then we have to show that $\lim _{t \rightarrow \infty} x(t)=0$ is true. Without loss of generality, we suppose that x is an eventually positive solution. There exists $t_{1} \geq t_{0}$ such that $x(t-\kappa)>0$ holds for all $t \geq t_{1}$. Considering (12), there exists $t_{2} \geq t_{1}$ and $0<\delta<1 / M$ such that

$$
\begin{equation*}
r(t) \leq \frac{1}{M}-\delta \tag{13}
\end{equation*}
$$

for all $t \geq t_{2}$. And (3) ensures existence of $t_{3} \geq t_{2}$ such that

$$
\begin{equation*}
\int_{t_{3}}^{\infty} \int_{u-\alpha+\beta}^{u} q(v) d v d u<\frac{\delta M}{2 N_{2}} \tag{14}
\end{equation*}
$$

Now, we set

$$
\begin{equation*}
w(t):=x(t)-r(t) f(x(t-\gamma)) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
z(t):=w(t)-\int_{t_{3}}^{t} \int_{u-\alpha+\beta}^{u} q(v) g(x(v-\beta)) d v d u \tag{16}
\end{equation*}
$$

for $t \geq t_{3}$. Then, we have

$$
\begin{align*}
z^{\prime \prime}(t) & =w^{\prime \prime}(t)-q(t) g(x(t-\beta))+q(t-\alpha+\beta) g(x(t-\alpha)) \\
& =-p(t) g(x(t-\alpha))+q(t-\alpha+\beta) g(x(t-\alpha)) \\
& =-h(t) g(x(t-\alpha)) \leq 0 \tag{17}
\end{align*}
$$

for all $t \geq t_{3}$. Hence, $z^{\prime}(t)$ and $z(t)$ is strictly monotonic and constant of sign for all $t \geq t_{4}$, where $t_{4} \geq t_{3}$ is sufficiently large. To prove $z^{\prime}(t)>0$ for all $t \geq t_{4}$, we assume on the contrary that $z^{\prime}(t)<0$ holds all $t \geq t_{4}$. In the present case, since z^{\prime} is negative and nonincreasing, we see that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} z(t)=-\infty \tag{18}
\end{equation*}
$$

YILDIZ, KARPUZ, ÖCALAN

holds. We also claim that x is bounded. Again on the contrary, assume that x is unbounded. Thus, there exists $t_{5} \geq t_{4}$ such that

$$
\begin{equation*}
z\left(t_{5}\right)<0, \quad x\left(t_{5}\right)=\max \left\{x(t): t \in\left[t_{4}, t_{5}\right]\right\} \tag{19}
\end{equation*}
$$

hold. Then, from (H2), (H3), (13), (14) and (19), we obtain

$$
\begin{aligned}
0 & >z\left(t_{5}\right)=w\left(t_{5}\right)-\int_{t_{3}}^{t_{5}} \int_{u-\alpha+\beta}^{u} q(v) g(x(v-\beta)) d v d u \\
& \geq x\left(t_{5}\right)\left(1-M r\left(t_{5}\right)-N_{2} \int_{t_{3}}^{t_{5}} \int_{u-\alpha+\beta}^{u} q(v) d v d u\right) \\
& \geq x\left(t_{5}\right)\left(1-M\left(\frac{1}{M}-\delta\right)-\frac{\delta M}{2}\right)=\frac{\delta M}{2} x\left(t_{5}\right) \geq 0
\end{aligned}
$$

This contradiction implies that x is bounded. There is a positive K such that $x(t) \leq K$ for all $t \geq t_{0}$. Accordingly, for all $t \geq t_{4}$, we obtain

$$
z(t) \geq-\left(K M r(t)+K N_{2} \int_{t_{3}}^{t} \int_{u-\alpha+\beta}^{u} q(v) d v d u\right) \geq-\frac{\delta K M}{2}>-\infty
$$

which contradicts with (18) and proves that $z^{\prime}(t)>0$ holds for $t \geq t_{2}$. $\mathrm{By}(\mathrm{H} 1)$, there exists $t_{5} \geq t_{4}$ and $\varepsilon>0$ such that $h(t) \geq \varepsilon$ holds for all $t \geq t_{5}$. Integrating (17) from t_{5} to ∞, we get

$$
\infty>z^{\prime}\left(t_{5}\right) \geq z^{\prime}\left(t_{5}\right)-z^{\prime}(\infty) \geq \varepsilon \int_{t_{5}}^{\infty} g(x(u-\alpha)) d u \geq \varepsilon N_{1} \int_{t_{5}}^{\infty} x(u-\alpha) d u
$$

which implies $\underline{L}=0$ and $\bar{L}<\infty$ hold, where $\underline{L}:=\liminf _{t \rightarrow \infty} x(t)$ and $\bar{L}:=\limsup _{t \rightarrow \infty} x(t)$. On the other hand, we have from (15) and (14) that

$$
w^{\prime}(t)=z^{\prime}(t)+\int_{t-\alpha+\beta}^{t} q(u) g(x(u-\beta)) d u \geq 0
$$

holds for all $t \geq t_{5}$, which implies w is nondecreasing. Therefore, from (H2), (15) and $\bar{L}<\infty$, we see that $-\infty<L<\infty$ holds, where $L:=\lim _{t \rightarrow \infty} w(t)$.

Now we investigate the following three possible ranges of L as follows:
(i) $0<L<\infty$. Then, there exists a sufficiently large $t_{6} \geq t_{5}$ such that $w(t) \geq L / 2$ holds for all $t \geq t_{6}$. So, for all $t \geq t_{6}$, we obtain

$$
w(t)=x(t)-r(t) f(x(t-\gamma)) \geq \frac{L}{2}
$$

which implies $x(t) \geq L / 2$ for all $t \geq t_{6}$. This contradicts with $\underline{L}=0$.

YILDIZ, KARPUZ, ÖCALAN

(ii) $-\infty<L<0$. Then, there exists a sufficiently large $t_{6} \geq t_{5}$ such that $w(t) \leq L$ holds for all $t \geq t_{6}$. So, for all $t \geq t_{6}$, we see that

$$
w(t)=x(t)-r(t) f(x(t-\gamma)) \leq L
$$

holds, and together with (H2) and (13), we have

$$
-L \leq r(t) f(x(t-\gamma)) \leq M\left(\frac{1}{M}-\delta\right) x(t-\gamma)
$$

which simply implies $x(t-\gamma)>-L /(M(1 / M-\delta))$ for all $t \geq t_{6}$. This contradicts the fact that $\underline{L}=0$.
(iii) $L=0$. Now, we claim that $\bar{L}=0$. On the contrary, assume that $\bar{L}>0$. Therefore, from (H2) and (13), we see that

$$
w(t) \geq x(t)-\delta x(t-\gamma)
$$

holds for all $t \geq t_{6}$, where $t \geq t_{5}$ is sufficiently large. Then, there is an increasing divergent sequence $\left\{u_{n}\right\}_{n=1}^{\infty}$ on $\left[t_{7}, \infty\right)$, where $t_{7} \geq t_{6}+\kappa$ such that $\bar{L}=\lim _{n \rightarrow \infty} x\left(u_{n}\right)$ and a sequence $\left\{v_{n}\right\}_{n=1}^{\infty}$ satisfying $x\left(v_{n}\right)=\max \left\{x(t): u_{n}-\kappa \leq t \leq u_{n}\right\}$ for all $n \in \mathbb{N}$ Since, $x\left(v_{n}\right) \geq x\left(u_{n}\right)$ for all $n \in \mathbb{N}$, we have $\bar{L}=\lim _{n \rightarrow \infty} x\left(v_{n}\right)$ Therefore, from (H2) and (13), we obtain

$$
w\left(u_{n}\right) \geq x\left(u_{n}\right)-\delta x\left(u_{n}-\gamma\right)
$$

for all $n \in \mathbb{N}$, taking limit as $n \rightarrow \infty$, we see that

$$
\begin{aligned}
L & =0 \geq \lim _{n \rightarrow \infty}\left[x\left(u_{n}\right)-\delta x\left(u_{n}-\gamma\right)\right] \\
& \geq \lim _{n \rightarrow \infty} x\left(u_{n}\right)-\delta \lim _{n \rightarrow \infty} x\left(v_{n}\right) \\
& =\bar{L}(1-\delta) \geq 0
\end{aligned}
$$

which implies $\bar{L}=0$. This contradicts to the assumption that x is not tending to zero as $t \rightarrow \infty$.
The proof is complete.

3. Oscillatory behavior of solutions of forced equations

In this section, we shall consider (1) and (2) with forcing terms of the forms:

$$
\begin{align*}
& {[x(t)+r(t) f(x(t-\gamma))]^{\prime \prime}+p(t) g(x(t-\alpha))-q(t) g(x(t-\beta))=s(t)} \tag{20}\\
& {[x(t)-r(t) f(x(t-\gamma))]^{\prime \prime}+p(t) g(x(t-\alpha))-q(t) g(x(t-\beta))=s(t)} \tag{21}
\end{align*}
$$

for $t \geq t_{0}$.
Theorem 3 Assume that (H1)-(H4) hold and $r \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$is bounded. If (3) holds, then every solution of (20) is oscillatory or tending to zero as $t \rightarrow \infty$.

346

YILDIZ, KARPUZ, ÖCALAN

Proof. Suppose that x is an eventually positive solution of (20). Let $t_{1} \geq t_{0}$ satisfy $x(t-\kappa)>0$ for all $t \geq t_{1}$. There exists $t_{2} \geq t_{1}$ such that (4) holds.

Let w and z as in (5) and (6) respectively. And if we define

$$
\begin{equation*}
W(t):=w(t)-S(t) \text { and } Z(t):=z(t)-S(t) \tag{22}
\end{equation*}
$$

from (20), we obtain

$$
\begin{equation*}
Z^{\prime \prime}(t) \leq-h(t) g(x(t-\alpha)) \leq 0, \quad t \geq t_{1} \tag{23}
\end{equation*}
$$

This shows that Z^{\prime} is an eventually nonincreasing function. We claim that Z^{\prime} can not be eventually negative function. Suppose the contrary, i.e. $Z(t)<0$ for all $t \geq t_{3}$, for some $t_{3} \geq t_{2}$. Then, we have $\lim _{t \rightarrow \infty} Z(t)=$ $-\infty$. We can come to the conclusion that x is bounded from above. As a matter of fact, if x is unbounded from above, there exists an increasing divergent sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ satisfying

$$
\begin{equation*}
\lim _{n \rightarrow \infty} Z\left(s_{n}\right)=-\infty \text { and } x\left(s_{n}\right)=\max \left\{x(t): t_{3} \leq t \leq s_{n}\right\} \tag{24}
\end{equation*}
$$

for all $n \in \mathbb{N}$. Clearly, $\lim _{n \rightarrow \infty} x\left(s_{n}\right)=\infty$ holds. Then, from (4) and (24), we have

$$
\begin{aligned}
Z\left(s_{n}\right) & =x\left(s_{n}\right)+r\left(s_{n}\right) f\left(x\left(s_{n}-\gamma\right)\right)-\int_{t_{2}}^{s_{n}} \int_{u-\alpha+\beta}^{u} q(v) g(x(v-\beta)) d v d u-S\left(s_{n}\right) \\
& \geq x\left(s_{n}\right)-N_{2} \int_{t_{2}}^{s_{n}} \int_{u-\alpha+\beta}^{u} q(v) x(v-\beta) d v d u-S\left(s_{n}\right) \\
& \geq \frac{1}{2} x\left(s_{n}\right)-S\left(s_{n}\right)
\end{aligned}
$$

and taking the limit as $n \rightarrow \infty$, leads the way to the contradiction $\lim _{t \rightarrow \infty} Z(t)=\infty$. Since x is bounded from above, there exists a constant $K>0$ such that $x(t) \leq K$ holds for all $t \geq t_{0}$. Hence, from (22), we have

$$
Z(t) \geq-K N_{2} \int_{t_{0}}^{t} \int_{u-\alpha+\beta}^{u} q(v) d v d u+S(t)
$$

for all $t \geq t_{3}$, which according to (4) yields the following:

$$
\lim _{t \rightarrow \infty} Z(t) \geq-K N_{2} \int_{t_{2}}^{\infty} \int_{u-\alpha+\beta}^{u} q(v) d v d u \geq \frac{K}{2}
$$

This contradicts to the fact that $\lim _{t \rightarrow \infty} Z(t)=-\infty$.
Therefore, we conclude that Z is an eventually nondecreasing function. Integrating (23) from t_{3} to ∞, we have that $x \in L^{1}\left(\left[t_{0}, \infty\right)\right)$ because of (H1), and accordingly from (5), this implies that $w \in L^{1}\left(\left[t_{2}, \infty\right)\right)$ holds since (H2) holds and r is bounded. From (22), we obtain that

$$
W^{\prime}(t)=Z^{\prime}(t)+\int_{t-\alpha+\beta}^{t} q(u) g(x(u-\beta)) d u \geq 0
$$

YILDIZ, KARPUZ, ÖCALAN

holds for all $t \geq t_{3}$, so that W is nondecreasing. Therefore, using the assumption (H4), we have

$$
L:=\lim _{t \rightarrow \infty} W(t)=\lim _{t \rightarrow \infty} w(t)
$$

where $0 \leq L<\infty$.
(i) If $0<L<\infty$. Then, there exists a sufficiently large $t_{4} \geq t_{3}$ such that $w(t)>L / 2$ for all $t \geq t_{4}$. Hence, $w \notin L^{1}\left(\left[t_{2}, \infty\right)\right)$, and this yields to a contradiction.
(ii) If $L=0$ is true, then since $x(t) \leq w(t)$ holds for all $t \geq t_{2}$, we have that $\lim _{t \rightarrow \infty} x(t)=0$.

The proof is therefore completed.

Theorem 4 Assume that (H1)-(H4) hold and $r \in C\left(\left[t_{0}, \infty\right), \mathbb{R}^{+}\right)$satisfies (12). If (3) holds, then every solution of (21) is oscillatory or tending to zero as $t \rightarrow \infty$.
Proof. Suppose that x is a nonoscillatory solution of (21), which is not tending to zero as $t \rightarrow \infty$. Without loss of generality, we suppose that x is eventually positive that is $x(t-\kappa)>0$ holds for all $t \geq t_{1}$, where $t_{1} \geq t_{0}$. Then, there exists $t_{2} \geq t_{1}$ such that (13) holds. We have $t_{3} \geq t_{2}$ such that (14) holds because of (3). If we now define W and Z by considering (22) with w and z are defined as in (15) and (16) respectively, from (21), we obtain

$$
\begin{equation*}
Z^{\prime \prime}(t) \leq-h(t) g(x(t-\alpha)) \leq 0, \quad t \geq t_{1} \tag{25}
\end{equation*}
$$

for all $t \geq t_{3}$. We claim that

$$
\begin{equation*}
Z^{\prime}(t) \geq 0, \quad t \geq t_{4} \tag{26}
\end{equation*}
$$

holds for some $t_{4} \geq t_{3}$. If this is not a case, then $Z^{\prime}(t)<0$ holds for all $t \geq t_{4}, \operatorname{implies}^{\lim } \lim _{t \rightarrow \infty} Z(t)=-\infty$. On the other hand, x must be bounded from above. Otherwise, there exists an increasing divergent sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ satisfying (24). Clearly, we have $\lim _{n \rightarrow \infty} x\left(s_{n}\right)=\infty$ and $\lim _{n \rightarrow \infty} S\left(s_{n}\right)=0$ from (H4). Since, we have that

$$
\begin{aligned}
Z\left(s_{n}\right) & =x\left(s_{n}\right)-r\left(s_{n}\right) f\left(x\left(s_{n}-\gamma\right)\right)-\int_{t_{3}}^{s_{n}} \int_{u-\alpha+\beta}^{u} q(v) g(x(v-\beta)) d v d u-S\left(s_{n}\right) \\
& \geq \frac{\delta M}{2} x\left(s_{n}\right)-S\left(s_{n}\right)
\end{aligned}
$$

by letting $n \rightarrow \infty$ and considering (H4), we get

$$
\lim _{t \rightarrow \infty} Z(t)=\infty
$$

This is a contradiction. Therefore, x is bounded from above, there exists a constant $K>0$ such that $x(t) \leq K$ holds for all $t \geq t_{0}$. Then, we have

$$
Z(t) \geq-\frac{\delta K M}{2}+S(t), \quad t \geq t_{4}
$$

YILDIZ, KARPUZ, ÖCALAN

Taking the limit of the above inequality as $t \rightarrow \infty$, we have $\lim _{t \rightarrow \infty} Z(t) \geq-(\delta K M) / 2$ as in the proof of Theorem 2. This is a contradiction. Consequently, we have that (26) holds.

From (H1), (H3) and (25), we obtain $x \in L^{1}\left(\left[t_{1}, \infty\right)\right)$. Hence, (H2), (5) and boundedness of r implies that $w \in L^{1}\left(\left[t_{1}, \infty\right)\right)$. On the other hand, we see from (22) that

$$
W^{\prime}(t)=Z^{\prime}(t)+\int_{t-\alpha+\beta}^{t} q(u) g(x(u-\beta)) d u \geq 0, \quad t \geq t_{4}
$$

holds, so that $-\infty<L<\infty$ is true, where

$$
L:=\lim _{t \rightarrow \infty} W(t)=\lim _{t \rightarrow \infty} w(t) .
$$

Now, we investigate possible ranges of L as follows:
(i) $L \neq 0$. In this case, we obtain contradiction as obtained in Theorem 2.
(ii) $L=0$. In this case, we see that $\lim _{t \rightarrow \infty} x(t)=0$ holds as in Theorem 2 .

Proof is done.

Remark 1 Letting f,g as the identity functions, we see that our results are still better than those in [3].

4. An Application

Example 1 Consider the forced neutral equation

$$
\begin{align*}
& {\left[x(t)-\frac{1}{2} x(t-2 \pi)\right]^{\prime \prime}} \\
& +\left(\mathrm{e}^{-t}+\frac{1}{2}\left(1-\frac{1}{\sin ^{2}(t)+2}\right)\right) \frac{x(t-4 \pi)\left([x(t-4 \pi)]^{2}+2\right)}{[x(t-4 \pi)]^{2}+1} \\
& -\mathrm{e}^{-t} \frac{x(t-2 \pi)\left([x(t-2 \pi)]^{2}+2\right)}{[x(t-2 \pi)]^{2}+1}=0 \tag{27}
\end{align*}
$$

for $t \geq 1$. For this equation, we have $r(t)=1 / 2, \gamma=2 \pi, f(u)=u, p(t)=\left(\mathrm{e}^{-t}+\left(1-1 /\left(\sin ^{2}(t)+2\right)\right) / 2\right)$, $\alpha=4 \pi, q(t)=\mathrm{e}^{-t}, \beta=2 \pi, g(u)=u\left(u^{2}+2\right) /\left(u^{2}+1\right)$. In this case, we may let $M=1$, and since we have $g(u) / u=1+1 /\left(u^{2}+1\right)$ for all $u \neq 0$, we may let $N_{1}=1$ and $N_{2}=2$. On the other hand, we have $\lim \inf _{t \rightarrow \infty} h(t)=1 / 4>0$, where $h(t)=\mathrm{e}^{-t}\left(1-\mathrm{e}^{2 \pi}\right)+\left(1-1 /\left(\sin ^{2}(t)+2\right)\right) / 2$, and $\int_{1}^{\infty} \int_{u-2 \pi}^{u} \mathrm{e}^{-v} d v d u=$ $\left(\mathrm{e}^{2 \pi}-1\right) / \mathrm{e}<\infty$. All the conditions of Theorem 4 are satisfied, thus every solution of (27) is oscillatory or convergent to zero as t tends to infinity. One can see by direct substation that $x(t)=\sin (t)$ is an oscillatory solution.

YILDIZ, KARPUZ, ÖCALAN

Acknowledgement

The authors are thankful to the referee for his/her valuable suggestions to improve the presentation of the paper.

References

[1] Erbe, L. H.; Kong, Q. and Zhang, B. G.: Oscillation theory for functional differential equations, Marcel Dekker, (1995).
[2] Győri, I. and Ladas, G.: Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford, (1991).
[3] Manojlovic, J.; Shoukaku, Y.; Tanigawa, T. and Yoshida, N.: Oscillation criteria for second order differential equations with positive and negative coefficients, Appl. Math. Comput. 181, 853-863 (2006).
[4] Öcalan, Ö.; Yildiz, M. K. and Karpuz, B.: On the oscillation of nonlinear neutral differential equation with positive and negative coefficients, Dynamic Systems and Applications 17, 667-676 (2008).
[5] Parhi, N. and Chand, S.: Oscillation of second order neutral differential equations with positive and negative coefficients, J. Ind.Math. Soc. 66, 227-235 (1999).
[6] Li, W. T. and Quan, H. S.: Oscillation of higher order neutral differential equations with positive and negative coefficients, Ann. of Diff. Eqs. 11, 1, 70-76 (1995).
[7] Zhou, Y. and Zhang, B. G.: Existence of nonoscillatory solutions of higher-order neutral differential equations with positive and negative coefficients, Appl. Math. Lett. 15, 867-874 (2002).

Mustafa Kemal YILDIZ, Başak KARPUZ,
Received 26.11.2007
Özkan ÖCALAN,
Department of Mathematics,
Faculty of Science and
Arts, ANS Campus,
Afyon Kocatepe University,
Afyonkarahisar 03200, TURKEY
e-mail: mkyildiz@aku.edu.tr, bkarpuz@aku.edu.tr
e-mail: ozkan@aku.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 34C10, 34C15, 34K40.

