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The main result of the present paper establishes a stability property of the first eigenvalue of the associated

problem which deals with the p(z)-Laplacian on Riemannian manifolds with Dirichlet boundary condition.
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1. Introduction

Over the last decades the variable exponent Lebesgue spaces LP(*) and the corresponding Sobolev space

W1P(#) have been a subject of active research stimulated by development of the studies of problems in elasticity,

fluid dynamics, calculus of variations, and differential equations with p(z)-growth (see [2], [3], [12]). We refer

the reader to [5], [7], [8] for fundamental properties of these spaces.

The p(z)-Laplacian equations related to eigenvalue problems have been studied in [6], [9], [10], [11].

Let G C RY (N >2) is a bounded domain with a smooth boundary. For measurable function p(z) we

denote the variable exponent Lebesgue space by

LP@) (G) = { u measurable real functions : / lu ()P de < 00},

G

which is equipped with the norm, the so-called Luxemburg norm (see [5],[7])

(@)
. u(z) |’
(Ul ) = U] ooy gy =nf 6 >0 / 5 de <1,
G
where
1 <ess inf p(z):=p~ <p(z) <ess sup p(z) :=p" < 0,
z€G z€G
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where (Lp(w) (@), Lp(m)) becomes a Banach space, which is known as a variable exponent Lebesgue space.

Define the variable exponent Sobolev space W1 ?(®) (@) by

W@ (@) = {u € LP@ (G); |Vu| € LX) (G)},

and equip with the norm

ully iy = Nllro @) = 1l + VUl Vo€ WHEH(G).

The space WOLp(w) (G) is denoted by the closure of C§°(G) in WP (G) which is equipped with the
norm for u € Wy "™ (@)

1,p(x
ully oy = |Vl vu e Wy (@)

p(z)
If p~ > 1, then the spaces LP(®) (G), WhP(®) (@) and WOLp(w) (G) are separable and reflexive Banach
spaces (see [5],[7]).

Proposition 1. ([5],[7]). Denote

0 p(a) (u) = / |u ()] P de,

G

and

0 1,p(2) (W) = 0 pa) (Vu) = / \Vu (z)] P da, Yu, Vu € LP@) (G,
G

then we have

. - + - +
mln{|u|§(w) ; |U|§(w)} <0 p(a) (u) < max{|u|§(w) ) Mi(m)} )

. - + - +
min {|Vull, , [Vall) } < 010 (@) < max{|Vull, , [Vall,) |

P P P p()

Let M be a compact Riemannian manifold with dimM = m, and A, is nonhomegenous p(z)-

Laplacian acting on functions on M, where Ay, yu = div (|Vu|p(w)_2 Vu), and 1 < p(x) < co.Let M* be a

compact submanifold of €2, and B. the tubular neinghborhood of M* of radius € > 0; that is,
B.={zeM:d(x,M") <e},

where d (., .) is the distance function on M induced by the Riemannian metric. Donete by A,y . the restriction

of Ap) to those functions on M vanishing identically in B.. Set
0. = M\B; and 09, = 0B..

We consider the following Dirichlet problem
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Apz),et + A(e) |u|p(w)_2 u=0 x€ B,
u=0 r € 0B:.

The first eigenvalue A; ;) (€, @) of the p(z)-Laplacian is defined as the least number A for which the

Dirichlet problem has a nontrivial solution u € WO1 »(@) (Q¢). It can be characterized by

S 1Vul dv,
Q.

wewy P @0} [ |ul"' dug
Q

€

)\17P(~) (Q&"u (b) =

)

where u runs over WO1 »(@) (2:) and dvy denotes the volume element of M. It turns out Ay (. (e, @) > 0.

When B. = @, that is, Q. = M} u runs over W1P@ (Q.) and [ |u[" )2 udv, = 0.We can easily see that
M

Al p(x) (M) = 0. The corresponding eigenfunctions are constant functions. In the case of p = 2, many people

have studied the asymptotic exponsion of the eigenvalues Ay 2 (¢) (k = 1,2, ...) for the 2—Laplacian of a manifold
M\ B. with the Dirichlet condition on the tubular neighborhood B.. Chavel and Feldman in [4] showed that
Ak,2(€) = 0 as € — 0 tends to zero under the condition codim (M™*) > 2. Eigenvalue problems for quasilinear
operators of p-Laplace type have received considerable attention in the last years (see [1]).

In the present paper, we establish conditions ensuring a stability property of the first eigenvalue of the
associated problem which deals with the p(z)-Laplacian. As far as we are concerned, this is the first paper that
discusses this subject. We prove that the first eigenvalues of the p(x)-Laplacian on Riemannian manifolds Q.

converges to zero as ¢ tends to zero. In precisely we show A1 p(q) (2, 0) — A1 p@) (M, ¢) =0 as € — 0.

Moreover, the investigation of the Riemannian manifolds in the variable exponent Lebesgue space LP(*)

is firstly dealt with in our study.

2. Main results and proofs

Lemma 1. Suppose that the codimension m — k > p*. Given any f € WP (M), there exists a
function f. € Wol’p(w) (Qc) such that

for sufficiently small € > 0.

Proof. By Proposition 1, we can write

Ql,p(w)(fa‘_f):Qp(w)(fa‘_f)+Qp(w)v(f€_f)'
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Define a function w. : Rt — Rt as

we(T)

Then we have

’

p(r)

€

Define f. =w.f € Wol’p(w) (Q¢) and r(z)

and

and

lim
e—0

2—1lexp(—e—2)

and

so we have

354

(g)sp(T)—p(T) ,exp (_8_2) <r<e

exp(— 72) ep(r) 2 p(r) _ _
( . EE ) (exp(—a*z)) 2 1exp (_8 2) <r

0,7 < exp (—5_2) .

d(M*,z). Then we have

o f) = / (e — DI du,,
M

111%/ fe = fIP) dug = 111%/ l(we — 1)fP™) dvy — 0,
E—> E—>
€ €

exp(—sfz)

/ £ — f1P¢ dvgy — 05

T

lim
e—0

ah—I»%/ fe = f1 P dvg = 0.
M
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Hence, by Proposition 1 we can write |f; — f|p(w) =0.

Let’s consider

0 )V (e = = [ IV(f = HIPY doy = IV (fe = P dog + VP dug,
/ / /

Te,2=lexp(—e—2) By exp(—e~2)

where T€7271 exp(—e—2) = BE\BQ—I exp(—e—2). Since f € whp() (M) )

/ IV 1P dvy — 0 as 27 exp(— %) — 0,
BQ*I exp(fsfz)
and
T +_ T T
VU [ WA a9 )
Te, 27t exp(—e—2) Te, 27t exp(—e—2) Te, 27 exp(—e—2)

The first term on the ring hand side tends to 0 as ¢ — 0 because of f € WP (M) . By the definition of f.,

we have

(V£ dvg < / [(Vwe)f +we (V)P dug
Te,2= 1 exp(—e—2) Te,2=lexp(—e—2)
< 2P+—1( / |f|10($) |vw€|lﬂ(w) dv¢ + / |vf|10(w) |w€|:0(fﬂ) dv¢).
Te,2=1exp(—e—2) Te,2= 1 exp(—e—2)
Since f € WP (M), the term J IV 1P |we P dug — 0 as e — 0.

Te,2=1exp(—e—2)
Next we shall show
1FIP |V we P duog — 0 as e — 0.
Te,2= 1 exp(—e—2)
From dim M* = k and m — k > p*, that is, the codimension of M* and M is grater than p™ or egual to p*.

We consider the fact
p~ < inf p(z) and sup p(r) < p*

— —_ )

z€(e,exp(—e72)) z€(e,exp(—e—2))

with which we can estimate

P Voo PO sy < C7F / Ve P o,
Te, 27t exp(—e—2) Te, 27t exp(—e—2)
e exp(—sfz)
(r)=p(r) —e=2)\ )
< 217*—1017*(01 / (Z)EP b S / M)
9 9
exp(—e—2) 2—1lexp(—e—2)
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€

2 p(r) L ep” —pt L
() s ]

exp(—e~
exp(—e~2)
exp(—e2
Ca (p") ) /2 " m—k—1 C1(p™) rer ek ]
cept exp(_ (gp —p )/E ) / " dr :<‘;“€107_p+ ep” —pt+m—k ( 2)
exp(—e~

2= lexp(—e~2)

r

m—k

oo ko)
+ 20D o (- (6p+—p+)/62)[ ]
€ 2~ lexp(—e—2)

Cy (pT - _
< D) e et (e pt - /)

Co(pt,m, k _
y RO (o (et k)
+ -+ p+_1
N B T L L Y
p pet
C +7 7k -
LG mE) L (ept -+ m— R) /).

gept

The right hand side tends to 0 by using

lim e™ %=1 = 0 (because of m —k > pt —1>0), 111r(1)5p+_1 exp(— (ep” —p* +m —k) /e?)=0
£—

e—0

0.

_ - _nt —k 2
(because of lime® = 1), lim exp(— (ep p 7+ m )/€7) _
e—0 e—0 cEp

This completes the proof of Lemma 1.

Theorem 2. Let (M, ) be a compact Riemannian manifold with dimM = m, and M* a closed submanifold
in M with dimM* = k. Suppose that the codimension m —k > pT of M* in M is grater than or equal to
pt. Let M) (e, ) be the first eigenvalue of the p(x)-Laplacian on Q.. We have

;-LI% )\l,p(w) (Qa‘u (b) = )‘l,p(w) (Mu (b) =0.

The corresponding eigenfunctions ¢. in Q. converge to a constant function ¢, in LP(*) (M).

Proof. Take the eigenfunction f for Ay, (M, ¢) such that [ |fIP“) dvg = 1. Then
M
Mty () = [ 1977 dos
M
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From Lemma 1, there exists f. € WO1 p(@) (Q¢) such that
].iII(lJ/ 1f- = f1P") dvg — 0 and ].iII(lJ/ V(f = HIPY dvg — 0.
£— PRy
Qe Q.

Thus
g‘{‘ |Vfg|p(w) dv¢ f |vf|lﬂ(w) dv¢
€ M

aS @ - @
J 1P dug J1fIPY dvg
Qe M

A p(a) (2, 9) = A p(a) (M, ¢) (¢ = 0). (1)

Now let ¢. be the first eigenvalue for the p(x)-Laplacian on §2.. By formula (1), ¢. is uniformly bounded.
$. has a strongly convergence limit ¢; € LP(®) (M) in LP®) (M). By formula (1), and the compactness of ¢.,
we have [ [¢1["") dvy =1 and

M

M) (M, ) < / V"™ dvg < lim / Ve dvg < A piay (M. 9.
M M

This shows that A1 pz) (e, @) — A p@) (M, ¢) as € — 0, and the limit function ¢, € LP®) (M) is the
first eigenfunction for p(x)-Laplacian on M.

This completes the proof of Theorem. O
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