A perturbation of m-order derivations on Banach algebras

Yong-Soo Jung* and Kyoo-Hong Park

Abstract

Let \mathcal{A} be a unital Banach algebra and let $m, 1 \leq m \leq 4$, be an integer. If $f: \mathcal{A} \rightarrow \mathcal{A}$ is an approximate m-order derivation in the sense of Hyers-Ulam-Rassias, then $f: \mathcal{A} \rightarrow \mathcal{A}$ is an exact m-order derivation.

Key Words: m-order derivation, approximate m-order derivation, stability.

1. Introduction

The study of stability problems in the case of homomorphisms between metric groups originated from a famous talk given by S.M. Ulam [24] in 1940: Under what condition does there exists a homomorphism near an approximate homomorphism? In 1941, D.H. Hyers [8] answered affirmatively the question of Ulam for Banach spaces, which states that if $\delta>0$ is real number and $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping with \mathcal{X} a normed space, \mathcal{Y} a Banach space such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \delta
$$

for all $x, y \in \mathcal{X}$, then there exists a unique additive mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\|f(x)-T(x)\| \leq \delta
$$

for all $x \in \mathcal{X}$. This stability phenomenon is called the Hyers-Ulam stability of the additive functional equation $f(x+y)=f(x)+f(y)$.

A generalized version of the theorem of Hyers for approximately additive mappings was given by T. Aoki [2] in 1950 and by Th.M. Rassias [17] in 1978 for linear mappings, respectively and the result is as follows:

If $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping and there exist real numbers $\theta \geq 0$ and $0 \leq p<1$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in \mathcal{X}$, then there exists a unique additive mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \theta}{2-2^{p}}\|x\|^{p}
$$

[^0]
JUNG, PARK

for all $x \in \mathcal{X}$.
On this fact, some authors say that the additive functional equation $f(x+y)=f(x)+f(y)$ has the Hyers-Ulam-Rassias stability property [5, 9, 11, 19, 20]. In 1991, Z. Gajda [6] answered the question for the case $p>1$, which was raised by Th.M. Rassias [18]. Z. Gajda [6] gave an example to prove that it is not possible to prove a Th.M. Rassias's stability Theorem for the case when $p=1$. Independently, a different new example was given by Th.M. Rassias and P. Semrl [21].

Let \mathcal{A} be an algebra over the real or complex field \mathbb{F}. An additive map $d: \mathcal{A} \rightarrow \mathcal{A}$ is said to be a ring derivation if the functional equation $d(x y)=x d(y)+d(x) y$ holds for all $x, y \in \mathcal{A}$.

Recently, T. Miura et al. [15] examined the stability of ring derivations on Banach algebras:
Suppose that \mathcal{A} is a Banach algebra. Let $p \geq 0$ and $\varepsilon \geq 0$ be real numbers. If $p \neq 1$ and $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \varepsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in \mathcal{A}$, and

$$
\|f(x y)-x f(y)-f(x) y\| \leq \varepsilon\|x\|^{p}\|y\|^{p}
$$

for all $x, y \in \mathcal{A}$, then there exists a unique ring derivation $d: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\|f(x)-d(x)\| \leq \frac{2 \varepsilon}{\left|2-2^{p}\right|}\|x\|^{p}
$$

for all $x \in \mathcal{A}$. In particular, if \mathcal{A} is a Banach algebra without order, then f is an ring derivation.
The stability result concerning derivations was first obtained by P. Šemrl [22] in operator algebras and various results for the stability of derivations have been obtained by many authors (for instances, [3, 4, 12, 13]).

Let $f: \mathcal{X} \rightarrow \mathcal{Y}$ be a mapping with \mathcal{X}, \mathcal{Y} two vector spaces and let

$$
D^{m} f(x, y):=\left\{\begin{array}{lc}
f(x+y)-f(x)-f(y), & \text { if } m=1 \\
f(x+y)+f(x-y)-2 f(x)-2 f(y), & \text { if } m=2 \\
f(2 x+y)+f(2 x-y)-2 f(x+y) & \text { if } m=3 \\
-2 f(x-y)-12 f(x), & \text { if } m=4 \\
f(2 x+y)+f(2 x-y)-4 f(x+y)-4 f(x-y) \\
-24 f(x)+6 f(y), &
\end{array}\right.
$$

For each integer $m, 1 \leq m \leq 4$, the functional equation $D^{m} f(x, y)=0$ is said to be additive, quadratic, cubic [10] and quartic [14], respectively. For convenience' sake, a solution of the functional equation $D^{m} f(x, y)=0$ will be called an m-order mapping.

In particular, the quadratic functional equation is used to characterize inner product spaces [1]. The Hyers-Ulam stability of quadratic functional equations was first proved by F. Skof [23]. S. Czerwik [5], K. W. Jun and H. M. Kim [10], obtained the Hyers-Ulam-Rassias stability result for the quadratic and cubic functional equation, respectively.

On the other hand, S.H. Lee et. al. [14] proved the Hyers-Ulam stability of the quartic functional equation. Using the Hyers' direct method in as the proof of [14, Theorem 3.1], we obtain the Hyers-Ulam-Rassias stability result for the quartic functional equation. Hence we have the following:

Proposition 1.1 For each integer $m, 1 \leq m \leq 4$, let $0 \leq p \neq m$ and $\delta \geq 0$ be real numbers. If $f: \mathcal{X} \rightarrow \mathcal{Y}$ is a mapping with \mathcal{X} a normed space, \mathcal{Y} a Banach space such that

$$
\left\|D^{m} f(x, y)\right\| \leq \delta\left(\|x\|^{p}+\|y\|^{p}\right)
$$

for all $x, y \in \mathcal{X}$, then there exists a unique m-order mapping $T: \mathcal{X} \rightarrow \mathcal{Y}$ such that

$$
\|f(x)-T(x)\| \leq k \delta\|x\|^{p}
$$

for all $x \in \mathcal{X}$, where: when $m=1, k=\frac{2}{\left|2-2^{p}\right|}$ if $p \neq 1$, when $m=2,3, k=\frac{m}{\left|m^{m}-m^{p}\right|}$ if $p \neq m$ and when $m=4, k=\frac{1}{2\left|2^{4}-2^{p}\right|}$ if $p \neq 4$.

We here introduce the following mapping:
An m-order mapping $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ will be called an m-order derivation if the equality $\Delta(x y)=$ $x^{m} \Delta(y)+\Delta(x) y^{m}$ is fulfilled for all $x, y \in \mathcal{A}$. As a simple example, let us consider the algebra of 2×2 matrices

$$
\mathcal{A}=\left\{\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]: a, b \in \mathbb{C}\right\}
$$

where \mathbb{C} is a complex field. Then it is easy to see that the mapping $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\Delta\left(\left[\begin{array}{ll}
a & b \\
0 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
0 & b^{m} \\
0 & 0
\end{array}\right]
$$

is an m-order derivation, where $m, 1 \leq m \leq 4$, is an integer.
It is natural to ask that there exists an approximate m-order derivation which is not an exact m-order derivation. The following example is a slight modification of an example due to [15].

Example 1.2 Let X be a compact Hausdorff space and let $C(X)$ be the commutative Banach algebra of complex-valued continuous functions on X under pointwise operations and the supremum norm $\|\cdot\|_{\infty}$. We define $f: C(X) \rightarrow C(X)$ by

$$
f(a)(x)= \begin{cases}a(x)^{m} \log |a(x)| & \text { if } a(x) \neq 0 \\ 0 & \text { if } a(x)=0\end{cases}
$$

for all $a \in C(X)$ and all $x \in X$, where $m, 1 \leq m \leq 4$, is an integer. It is easy to see that

$$
f(a b)=a^{m} f(b)+f(a) b^{m}
$$

for all $a, b \in C(X)$.
Note that the following inequality holds for all $a \in C(X)$ with $a(x) \neq 0$:

$$
|f(a)(x)|=|a(x)|^{m}|\log | a(x)| | \leq(1+|a(x)|)^{m+1} \leq\left(1+\|a\|_{\infty}\right)^{m+1}
$$

Hence we have $\|f(a)\|_{\infty} \leq\left(1+\|a\|_{\infty}\right)^{m+1}$ for all $a \in C(X)$. Using this inequality and the triangle inequality, we deduce that

$$
\left\|D^{m} f(a, b)\right\|_{\infty} \leq M(a, b)
$$

for all $a, b \in C(X)$, where

$$
M(a, b)= \begin{cases}3\left(1+\|a\|_{\infty}+\|b\|_{\infty}\right)^{2} & \text { if } m=1, \\ 6\left(1+\|a\|_{\infty}+\|b\|_{\infty}\right)^{3} & \text { if } m=2 \\ 18\left(1+2\|a\|_{\infty}+\|b\|_{\infty}\right)^{4} & \text { if } m=3 \\ 40\left(1+2\|a\|_{\infty}+\|b\|_{\infty}\right)^{5} & \text { if } m=4\end{cases}
$$

Hence we may regard f as an approximate m-order derivation on $C(X)$.
It will be of interest to investigate the stability problem of m-order derivations on Banach algebras as in the case of ring derivations. That is, the purpose of this paper is to prove the Hyers-Ulam-Rassias stability and the superstability of m-order derivations on Banach algebras.

2. Stability of m-order derivations

In this section, let \mathbb{R} be the real field. \mathbb{Q} and \mathbb{N} will denote the set of the rational, the natural numbers, respectively and $m, 1 \leq m \leq 4$, is an integer

Lemma 2.1 Suppose that \mathcal{A} is a Banach algebra. Let $\delta, \varepsilon \geq 0$ be real numbers and let $p, q \geq 0$ be real numbers with either $p, q<m$ or $p, q>m$. If $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping such that

$$
\begin{equation*}
\left\|D^{m} f(x, y)\right\| \leq \delta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.1}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$, and

$$
\begin{equation*}
\left\|f(x y)-x^{m} f(y)-f(x) y^{m}\right\| \leq \varepsilon\|x\|^{q}\|y\|^{q} \tag{2.2}
\end{equation*}
$$

for all $x, y \in \mathcal{A}$, then there exists a unique m-order derivation $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ such that

$$
\begin{equation*}
\|f(x)-\Delta(x)\| \leq k \delta\|x\|^{p} \tag{2.3}
\end{equation*}
$$

for all $x \in \mathcal{A}$, where: when $m=1, k=\frac{2}{\left|2-2^{p}\right|}$ if $p \neq 1$, when $m=2,3, k=\frac{m}{\left|m^{m}-m^{p}\right|}$ if $p \neq m$ and when $m=4, k=\frac{1}{2\left|2^{4}-2^{p}\right|}$ if $p \neq 4$.

Proof. Assume that either $p, q<m$ or $p, q>m$. From Proposition 1.1, the inequality (2.1) guarantees that there exists a unique m-order mapping $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ such that (2.3) holds for all $x \in \mathcal{A}$, where: when $m=1$, $k=\frac{2}{\left|2-2^{p}\right|}$ if $p \neq 1$, when $m=2,3, k=\frac{m}{\left|m^{m}-m^{p}\right|}$ if $p \neq m$ and when $m=4, k=\frac{1}{2\left|2^{4}-2^{p}\right|}$ if $p \neq 4$. We claim that

$$
\Delta(x y)=x^{m} \Delta(y)+\Delta(x) y^{m}
$$

for all $x, y \in \mathcal{A}$.

JUNG, PARK

Set $\tau=1$ if $p, q<m$ and $\tau=-1$ if $p, q>m$. Since Δ is an m-order mapping, from [1, Proposition 1, p. 166], [10, Theorem 2.1] and [14, Theorem 2.1], we see that $\Delta(x)=2^{-\tau m n} \Delta\left(2^{\tau n} x\right)$ for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. First, it follows from (2.3) that

$$
\begin{aligned}
\left\|2^{-\tau m n} f\left(2^{\tau n} x\right)-\Delta(x)\right\| & =2^{-\tau m n}\left\|f\left(2^{\tau n} x\right)-\Delta\left(2^{\tau n} x\right)\right\| \\
& \leq 2^{-\tau m n} k \delta\left\|2^{\tau n} x\right\|^{p}=2^{\tau(p-m) n} k \delta\|x\|^{p}
\end{aligned}
$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. Since $\tau(p-m)<0$, we have

$$
\begin{equation*}
\left\|2^{-\tau m n} f\left(2^{\tau n} x\right)-\Delta(x)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.4}
\end{equation*}
$$

Following the similar argument as the above, we obtain

$$
\left\|2^{-2 \tau m n} f\left(2^{2 \tau n} x y\right)-\Delta(x y)\right\| \leq 4^{\tau(p-m) n} k \delta\|x y\|^{p}
$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$, and so

$$
\begin{equation*}
\left\|2^{-2 \tau m n} f\left(2^{2 \tau n} x y\right)-\Delta(x y)\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.5}
\end{equation*}
$$

Since f satisfies (2.2), we get

$$
\begin{aligned}
& \left\|2^{-2 \tau m n} f\left(2^{2 \tau n} x y\right)-2^{-\tau m n} x^{m} f\left(2^{\tau n} y\right)-f\left(2^{\tau n} x\right) 2^{-\tau m n} y^{m}\right\| \\
& =2^{-2 \tau m n}\left\|f\left(\left(2^{\tau n} x\right)\left(2^{\tau n} y\right)\right)-\left(2^{\tau n} x\right)^{m} f\left(2^{\tau n} y\right)-f\left(2^{\tau n} x\right)\left(2^{\tau n} y\right)^{m}\right\| \\
& \leq 2^{-2 \tau m n} \varepsilon\left\|2^{\tau n} x\right\|^{q}\left\|2^{\tau n} y\right\|^{q}=4^{\tau(q-m) n} \varepsilon\|x\|^{q}\|y\|^{q}
\end{aligned}
$$

for all $x, y \in \mathcal{A}$ and all $n \in \mathbb{N}$. Reminding that $\tau(q-m)<0$, we obtain

$$
\begin{equation*}
\left\|2^{-2 \tau m n} f\left(2^{2 \tau n} x y\right)-2^{-\tau m n} x^{m} f\left(2^{\tau n} y\right)-f\left(2^{\tau n} x\right) 2^{-\tau m n} y^{m}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty \tag{2.6}
\end{equation*}
$$

Using (2.4), (2.5) and (2.6), we now see that

$$
\begin{aligned}
\| & \Delta(x y)-x^{m} \Delta(y)-\Delta(x) y^{m} \| \\
\leq & \left\|\Delta(x y)-2^{-2 \tau m n} f\left(2^{2 \tau n} x y\right)\right\| \\
& +\left\|2^{-2 \tau m n} f\left(2^{2 \tau n} x y\right)-2^{-\tau m n} x^{m} f\left(2^{\tau n} y\right)-2^{-\tau m n} f\left(2^{\tau n} x\right) y^{m}\right\| \\
& +\left\|2^{-\tau m n} x^{m} f\left(2^{\tau n} y\right)-x^{m} \Delta(y)\right\|+\left\|2^{-\tau m n} f\left(2^{\tau n} x\right) y^{m}-\Delta(x) y^{m}\right\| \\
\leq & \left\|\Delta(x y)-2^{-2 \tau m n} f\left(2^{2 \tau n} x y\right)\right\| \\
& +\left\|2^{-2 \tau m n} f\left(2^{2 \tau n} x y\right)-2^{-\tau m n} x^{m} f\left(2^{\tau n} y\right)-2^{-\tau m n} f\left(2^{\tau n} x\right) y^{m}\right\| \\
& +\left\|x^{m}\right\|\left\|2^{-\tau m n} f\left(2^{\tau n} y\right)-\Delta(y)\right\|+\left\|2^{-\tau m n} f\left(2^{\tau n} x\right)-\Delta(x)\right\|\left\|y^{m}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

which implies that $\Delta(x y)=x^{m} \Delta(y)+\Delta(x) y^{m}$ for all $x, y \in \mathcal{A}$. That is, Δ is an m-order derivation on \mathcal{A}, as claimed and the proof is complete.

JUNG, PARK

Lemma 2.2 Suppose that \mathcal{A} is a unital Banach algebra. Let $\delta, \varepsilon \geq 0$ be real numbers and let $p, q \geq 0$ be real numbers with either $p, q<m$ or $p, q>m$. If $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping satisfying (2.1) and (2.2), then we have

$$
f(r x)=r^{m} f(x)
$$

for all $x \in \mathcal{A}$ and all $r \in \mathbb{Q}$.
Proof. In the case when $r=0$, it is trivial since $f(0)=0$ by (2.1) or (2.2). Let e be a unit element of \mathcal{A} and $r \in \mathbb{Q} \backslash\{0\}$ arbitrarily. Put $\tau=1$ if $p, q<m$ and $\tau=-1$ if $p, q>m$. By Lemma 2.1, there exists a unique m-order derivation $\Delta: \mathcal{A} \rightarrow \mathcal{A}$ such that (2.3) is true. Recall that Δ is an m-order mapping, and hence it is easy to see that $\Delta(r x)=r^{m} \Delta(x)$ for all $x \in \mathcal{A}$ in view of [1, Proposition 1, p. 166], [10, Theorem 2.1] and [14, Theorem 2.1]. Then we get

$$
\begin{align*}
& \left\|\Delta\left(\left(2^{\tau n} e\right)(r x)\right)-r^{m} 2^{\tau m n} e f(x)-f\left(2^{\tau n} e\right) r^{m} x^{m}\right\| \\
& \leq r^{m}\left\|\Delta\left(2^{\tau n} e x\right)-f\left(2^{\tau n} e x\right)\right\|+r^{m}\left\|f\left(2^{\tau n} e x\right)-2^{\tau m n} e f(x)-f\left(2^{\tau n} e\right) x^{m}\right\| \tag{2.7}
\end{align*}
$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. Now the inequalities (2.2), (2.3) and (2.7) yields that

$$
\begin{align*}
& \left\|\Delta\left(\left(2^{\tau n} e\right)(r x)\right)-r^{m} 2^{\tau m n} e f(x)-f\left(2^{\tau n} e\right) r^{m} x^{m}\right\| \\
& \quad \leq r^{m} 2^{\tau n p} k \delta\|x\|^{p}+r^{m} 2^{\tau n q} \varepsilon\|x\|^{q} \tag{2.8}
\end{align*}
$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$.
It follows from (2.3) and (2.8) that

$$
\begin{aligned}
& \left\|f\left(\left(2^{\tau n} e\right)(r x)\right)-r^{m} 2^{\tau m n} e f(x)-f\left(2^{\tau n} e\right) r^{m} x^{m}\right\| \\
& \leq\left\|f\left(\left(2^{\tau n} e\right)(r x)\right)-\Delta\left(\left(2^{\tau n} e\right)(r x)\right)\right\| \\
& \quad+\left\|\Delta\left(\left(2^{\tau n} e\right)(r x)\right)-r^{m} 2^{\tau m n} e f(x)-f\left(2^{\tau n} e\right) r^{m} x^{m}\right\| \\
& \leq 2^{\tau n p}\left(r^{p}+r^{m}\right) k \delta\|x\|^{p}+r^{m} 2^{\tau n q} \varepsilon\|x\|^{q}
\end{aligned}
$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. That is, we have

$$
\begin{align*}
& \left\|f\left(\left(2^{\tau n} e\right)(r x)\right)-r^{m} 2^{\tau m n} e f(x)-f\left(2^{\tau n} e\right) r^{m} x^{m}\right\| \\
& \quad \leq 2^{\tau n p}\left(r^{p}+r^{m}\right) k \delta\|x\|^{p}+r^{m} 2^{\tau n q} \varepsilon\|x\|^{q} \tag{2.9}
\end{align*}
$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. From (2.2) and (2.9), we obtain

$$
\begin{aligned}
& \left\|2^{\tau m n}\left\{f(r x)-r^{m} f(x)\right\}\right\| \\
& =\left\|2^{\tau m n} e\left\{f(r x)-r^{m} f(x)\right\}\right\| \\
& \leq\left\|2^{\tau m n} e f(r x)+f\left(2^{\tau n} e\right) r^{m} x^{m}-f\left(\left(2^{\tau n} e\right)(r x)\right)\right\| \\
& \quad+\left\|f\left(\left(2^{\tau n} e\right)(r x)\right)-r^{m} 2^{\tau m n} e f(x)-f\left(2^{\tau n} e\right) r^{m} x^{m}\right\| \\
& \leq \varepsilon\left\|2^{\tau n} e\right\|^{q}\|r x\|^{q}+2^{\tau n p}\left(r^{p}+r^{m}\right) k \delta\|x\|^{p}+r^{m} 2^{\tau n q} \varepsilon\|x\|^{q} \\
& =2^{\tau n p}\left(r^{p}+r^{m}\right) k \delta\|x\|^{p}+2^{\tau n q}\left(r^{q}+r^{m}\right) \varepsilon\|x\|^{q}
\end{aligned}
$$

JUNG, PARK

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. This means that

$$
\begin{align*}
& \left\|f(r x)-r^{m} f(x)\right\| \\
& \leq 2^{\tau(p-m) n}\left(r^{p}+r^{m}\right) k \delta\|x\|^{p}+2^{\tau(q-m) n}\left(r^{q}+r^{m}\right) \varepsilon\|x\|^{q} \tag{2.10}
\end{align*}
$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. Since $\tau(p-m)<0$ and $\tau(q-m)<0$, if we take $n \rightarrow \infty$ in (2.10), then we arrive at

$$
f(r x)=r^{m} f(x)
$$

for all $x \in \mathcal{A}$. This completes the proof, since $r \in \mathbb{Q} \backslash\{0\}$ was arbitrary.

Remark. In Lemma 2.2, if f is continuous, then it is easy to observe that $f(t x)=t^{m} f(x)$ for all $x \in \mathcal{A}$ and all $t \in \mathbb{R}$.

Now we are ready to prove our main result.
Theorem 2.3 Suppose that \mathcal{A} is a unital Banach algebra. Let $\delta, \varepsilon \geq 0$ be real numbers and let $p, q \geq 0$ be real numbers with either $p, q<m$ or $p, q>m$. If $f: \mathcal{A} \rightarrow \mathcal{A}$ is a mapping satisfying (2.1) and (2.2), then $f: \mathcal{A} \rightarrow \mathcal{A}$ is an m-order derivation.
Proof. Let Δ be a unique m-order derivation as in Lemma 2.2. Put $\tau=1$ if $p, q<m$ and $\tau=-1$ if $p, q>m$. Since $f\left(2^{\tau n} x\right)=2^{\tau m n} f(x)$ for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$ by Lemma 2.2, it follows from (2.3) that

$$
\begin{aligned}
\|f(x)-\Delta(x)\| & =\left\|2^{-\tau m n} f\left(2^{\tau n} x\right)-2^{-\tau m n} \Delta\left(2^{\tau n} x\right)\right\| \\
& \leq 2^{-\tau m n} k \delta\left\|2^{\tau n} x\right\|^{p} \\
& =2^{\tau(p-m) n} k \delta\|x\|^{p}
\end{aligned}
$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. Namely,

$$
\begin{equation*}
\|f(x)-\Delta(x)\| \leq 2^{\tau(p-m) n} k \delta\|x\|^{p} \tag{2.11}
\end{equation*}
$$

for all $x \in \mathcal{A}$ and all $n \in \mathbb{N}$. Since $\tau(p-m)<0$, by letting $n \rightarrow \infty$ in (2.11), we conclude that $f(x)=\Delta(x)$ for all $x \in \mathcal{A}$ which implies that f is an m-order derivation.

References

[1] Aczél, J. and Dhombres, J.: Functional Equations in Several Variables, Cambridge Univ. Press, 1989.
[2] Aoki, T.: On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2, 64-66 (1950).
[3] Amyari, M. and Moslehian, M.S.: Stability of derivations on Hilbert C^{*}-modules, Contemporary Math. 427, 31-38 (2007).
[4] Baak, C. and Moslehian, M.S.: θ-derivations on $J B^{*}$-triples, Bull. Braz. Math. Soc. 38(1), 115-127 (2007).
[5] Czerwik, S.: On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62, 59-64 (1992).

JUNG, PARK

[6] Gajda, Z.: On stability of additive mappings, Internat. J. Math. Math. Sci. 14, 431-434 (1991).
[7] Hatori, O. and Wada, J.: Ring derivations on semi-simple commutative Banach algebras, Tokyo J. Math. 15, 223-229 (1992).
[8] Hyers, D.H.: On the stability of the linear functional equation, Proc. Natl. Acad. Sci. 27, 222-224 (1941).
[9] Hyers, D.H.; Isac, G. and Rassias Th.M.: On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126(2), 425-430 (1968).
[10] Jun, K.-W. and Kim, H.-M.: The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274(2), 867-878 (2002).
[11] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, Florida, 2001.
[12] Jung, Y.-S.: On the stability of the functional equation $f(x+y-x y)+x f(y)+y f(x)=f(x)+f(y)$, Math. Inequal. Appl. 7(1), 79-85 (2004).
[13] Jung, Y.-S. and Chang, I.-S.: On approximately higher ring derivations, J. Math. Anal. Appl. 343(2), 636-643 (2008).
[14] Lee, S.H.; Im, S.M. and Hwang, I.S.: Quartic functional equations, J. Math. Anal. Appl. 307(2), 387-394 (2005).
[15] Miura, T.; Hirasawa, G. and Takahasi, S.-E.: A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319, 522-530 (2006).
[16] Moslehian, M.S.: Hyers-Ulam-Rassias stability of generalized derivations, Internat. J. Math. \& Math. Sci. 2006, 1-8 (2006).
[17] Rassias, Th.M.: On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, 297-300 (1978).
[18] ——: The stability of mappings and related topics, In 'Report on the 27th ISFE', Aequationes Math. 39, 292-293 (1990).
[19] - (Ed.): "Functional Equations and inequalities", Kluwer Academic, Dordrecht, Boston, London, 2000.
[20] —: "Stability of mappings of Hyers-Ulam type", Hadronic Press, Inc., Florida, 1994.
[21] Rassias, Th.M. and Semrl, P.: On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proc. Amer. Math. Soc. 14, 989-993 (1992).
[22] Šemrl, P.: The functional equation of multiplicative derivation is superstable on standard operator algebras, Integr. Equat. Oper. Theory 18, 118-122 (1994).
[23] Skof, F.: Local properties and approximations of operators, Rend. Sem. Mat. Milano 53, 113-129 (1983).
[24] Ulam, S.M.: A Collection of Mathematical Problems, Interscience Publ., New York, 1960.
Yong-Soo JUNG
Received 11.09.2008
Department of Mathematics Sun Moon University, Asan, Chungnam 336-708, Republic of KOREA e-mail ysjung@sunmoon.ac.kr
Kyoo-Hong PARK
Department of Mathematics Education, Seowon University, Cheongju, Chungbuk 361-742, Republic of KOREA e-mail: parkkh@seowon.ac.kr

[^0]: 2000 AMS Mathematics Subject Classification: 39B52, 46H99, 39B72, 39B82.
 ${ }^{*}$ This work was supported by the Korea Research Foundation Grant funded by the Korean Government(KRF-2008-313-C00045).

