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On completeness of elementary generalized solutions of a class of

operator-differential equations of a higher order

Rovshan Z. Gumbataliev

Abstract

In this paper we give definition of m -fold completeness and prove a theorem on completeness of ele-

mentary generalized solution of corresponding boundary value problems at which the equation describes the

process of corrosive fracture of metals in aggressive media and the principal part of the equation has multiple

characteristics.
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1. Introduction

Many problems of mechanics and mathematical physics are connected in part to eigen and adjoint vectors
of operator pencils. As an example, we can show the following papers.

Study of trace problems for solving some elliptic equations in a semi-cylinder precedes the completeness
problems.

Necessary and sufficient conditions are formulated for boundary values providing the belongness of the
solution to energetic space.

As is known, stress-strain state of a plate may be separated into internal and external layers [1,4].
Construction of a boundary layer is related with sequential solution of plane problems of elasticity theory in a
semi-strip. In Papkovich’s paper [5] and in others a boundary value problem of elasticity theory in a semi-strip

x > 0, |y| ≤ 1 is reduced to the definition of Airy biharmonic functions in the form

u =
∑

Im σk>0

Ckϕk(y)eiσkx,

where ϕk are Papkovich functions [5,6], σk are corresponding values of a self-adjoint boundary value problem,

and Ck are unknown coefficients. In this connection, in [6] there is a problem on representation of a pair of
functions f1 and f2 in the form

∞∑
k=1

CkPkϕk = f1,

∞∑
k=1

CkQkϕk = f2, (1)
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where Pk, Qk are differential operators defined by boundary conditions for x = 0. In papers [7, 8] some sufficient

conditions for the convergence of expansion (1) is given for the cases when coefficients Ck are obviously defined
with the help of generalized orthogonality.

I. I. Vorovich [9] indicated the relation of the given problem with the n- fold completeness of M. V.

Keldysh [10, 11] and suggested a new approach based on immediate study of initial boundary value problem. In

[12] the coefficients Ck are uniquely defined by the boundary values of a biharmonic function and its derivatives.
Thus, completeness and base properties of elementary solutions are closely connected with differential properties
of a biharmonic function in a corner points domain (trace problem).

In the later investigations of [13, 14], are statements on n- fold completeness in the space L2 of a part
of eigen and adjoint vectors of an operator pencil generated by some boundary value problem for an elliptic
equation on a semi-strip. The trace problem for a two-dimensional domain with piecewise smooth boundary was
studied in paper [15]. Paper [16] deals with differential properties of solutions of general elliptic equations in

domains with canonical and corner points. Some new results for a biharmonic equation are in [17]. Investigations
to behaviour of solution of problems of elasticity theory in the vicinity of singular points at the boundary in
are papers [18-20]. M. B. Orazov [21], S. S. Mirzoyev [22], Dj. Allahverdiyev and E. E. Gasanov [23] studied

the problem when a principal part of the equation is of the form (−1)m d2m

dt2m + A2m , where A is a self-adjoint

operator pencil and it has multiple characteristics that differ from above-mentioned papers.

2. Problem statement

Let H be a separable Hilbert space, and A be a positive-definite self-adjoint operator in H with domain of
definition D(A). Denote by Hγ a scale of Hilbert spaces generated by the operator A, i.e. Hγ = D(Aγ), (γ ≥ 0),

(x, y)γ = = (Aγx, Aγy) , x, y ∈ D(Aγ ). We denote by L2 ((a, b); H) (−∞ ≤ a < b ≤ ∞) a Hilbert space of

vector-functions f(t) determined in (a, b) almost everywhere with values from H measurable, square integrable
in the Bochner’s sense

‖f‖L2((a,b);H) =

⎛⎝ b∫
a

‖f‖2
γ dt

⎞⎠1/2

.

Further, we define a Hilbert space for natural m ≥ 1 [24]

Wm
2 ((a, b); H) =

{
u/u(m) ∈ L2 ((a, b); H) , Amu ∈ L2 ((a, b); Hm)

}
with norm

‖u‖Wm
2 ((a,b);H) =

(∥∥∥u(m)
∥∥∥2

L2((a,b);H)
+ ‖Amu‖2

L2((a,b);H)

)1/2

.

Here and in conat follows the derivatives are understood in the sense of distributions theory [24]. We
assume

L2 ((0,∞); H) ≡ L2(R+; H), L2 ((−∞,∞); H) ≡ L2(R; H),

Wm
2 ((0,∞); H) ≡ Wm

2 (R+; H) , Wm
2 ((−∞, +∞); H) ≡ Wm

2 (R; H) .
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Then we determine the spaces

Wm
2

(
R+; H ; {ν}m−1

ν=0

)
=

{
u|u ∈ Wm

2 (R+; H) , u(ν)(0) = 0, ν = 0, m− 1
}

.

Obviously, by the trace theorem in [24] the space Wm
2

(
R+; H ; {ν}m−1

ν=0

)
is a closed subspace of the Hilbert

space Wm
2 (R+; H) .

Let’s define a space of D ([a, b]; Hγ)-times infinitely differentiable functions for a ≤ t ≤ b with values in

Hγ having a compact support in [a, b]. As is known, a linear set D ([a, b]; Hγ) is everywhere dense in the space

Wm
2 ((a, b); H) ([24]).

It follows from the trace theorem that the space

D
(
R+; Hm; {ν}m−1

ν=0

)
=

{
u|u ∈ D (R+; Hm) , u(ν)(0) = 0, ν = 0, m− 1

}
and is also everywhere dense in the space.

Let’s consider a polynomial operator pencil

P (λ) =
(
−λ2E + A2

)m +
m∑

j=1

Ajλ
m−j . (2)

Bind the polynomial pencil (2) with the boundary value problem(
− d2

dt2
+ A2

)m

u(t) +
m∑

j=1

Aju
(m−j)(t) = 0, t ∈ R+ = (0, +∞), (3)

u(ν)(0) = ϕν, ν = 0, m− 1, ϕν ∈ Hm−ν−1/2. (4)

Here we assume that the following conditions are fulfilled

1) A is a positive-definite self-adjoint operator with completely continuous inverse C = A−1 ∈ σ∞ .

2) The operators

Bj = A−j/2AjA
−j/2

(
j = 2k, k = 1, m

)
and

Bj = A−(j−1)/2AjA
−(j−1)/2

(
j = 2k − 1, k = 1, m− 1

)
are linear in H .

3) Operators (B + Em) are bounded in H ; Em are unit operators.

Equation (3) describes a process of corrosion fracture in aggressive media that were studied in the paper

[25].

3. Some definition and auxiliary facts

Denote

P0

(
d

dt

)
u(t) ≡

(
− d2

dt2
+ A2

)m

u(t), u(t) ∈ D (R+; Hm) , (5)
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P1

(
d

dt

)
u(t) ≡

m−1∑
j=1

Aju
(m−j)(t), u(t) ∈ D (R+; Hm) . (6)

Lemma 1. Let A be a positive-definite self-adjoint operator, the operators

Bj = A−j/2AjA
−j/2

(
j = 2k, k = 1, m

)
and Bj = A−(j−1)/2AjA

−(j−1)/2
(
j = 2k − 1, k = 1, m− 1

)
be bounded

in H . Then a bilinear functional
P1(u, ψ) ≡ (P1(d/dt)u, ψ)L2(R+;H)

determined for all vector-functions u ∈ D (R+; Hm) and ψ ∈ D
(
R+; Hm; {ν}m−1

ν=0

)
continues on the space

Wm
2 (R+; H)⊕ Wm

2

(
R+; Hm; {ν}m−1

ν=0

)
that acts in the following way:

P1(u, ψ) =
∑

(j=2k)

(−1)m−j/2
(
Aju

(m−j/2), ψ(m−j/2)
)

L2

+

+
∑

j=(2k−1)

(−1)m−(j+1)/2
(
Aju

(m−(j−1)/2), ψ(m−(j−1)/2)
)

L2

. (7)

In the first term, the summation is taken over even j , in the second term over odd j.

Proof. Let u ∈ D(R+; Hm), ψ ∈ D
(
R+; Hm; {ν}m−1

ν=0

)
. Then integrating by parts we get

P1(u, ψ)L2 ≡ (P1(d/dt)u, ψ)L2
=

m∑
j=0

(
Aju

(m−j), ψ
)

L2

=
∑

(j=2k)

(−1)m−j/2
(
Aju

(m−j/2), ψ(m−j/2)
)

L2

+

+
∑

j=(2k−1)

(−1)m−(j+1)/2
(
Aju

(m−(j−1)/2), ψ(m−(j−1)/2)
)

L2

.

Since

P1(u, ϕ) =
∑

(j=2k)

(−1)m−j/2
(
BjA

j/2u(m−j/2), Aj/2ψ(m−j/2)
)

L2

+

+
∑

j=(2k−1)

(−1)m−(j+1)/2
(
BjAju

(m−(j−1)/2), A(j−1)/2ψ(m−(j−1)/2)
)

L2

,

from belongless of u ∈ D (R+; Hm) and ψ ∈ D
(
R+; Hm; {ν}m−1

ν=0

)
by intermediate derivatives theorem [24], it

follows that

|P1(u, ϕ)| ≤
∑

(j=2k)

‖Bj‖
∥∥∥Aj/2u(m−j/2)

∥∥∥
L2

∥∥∥Aj/2ψ(m−j/2)
∥∥∥

L2

+

+
∑

j=(2k−1)

‖Bj‖
∥∥∥A(j+1)/2u(m−(j−1)/2)

∥∥∥
L2

∥∥∥A(j−1)/2ψ(m−(j−1)/2)
∥∥∥

L2

≤ const ‖u‖Wm
2 (R+;H) ‖ψ‖Wm

2 (R+;H) ,

i.e. P1(u, ϕ) is continuous in the space D(R+; Hm)⊕D
(
R+; Hm; {ν}m−1

ν=0

)
therefore it continues by continuity

on the space Wm
2 (R+; H) ⊕ Wm

2

(
R+; H ; {ν}m−1

ν=0

)
. The lemma is proved. �
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Definition 1. The vector-function u(t) ∈ Wm
2 (R+; H) is said to be a generalized solution of (3), (4), if

lim
t→0

∥∥∥u(ν)(t) − ϕν

∥∥∥
Hm−ν−1/2

= 0, ν = 0, m− 1,

and for any ψ(t) ∈ Wm
2

(
R+; H ; {ν}m−1

ν=0

)
it is fulfilled the identity

〈u, ψ〉 = (u, ψ)Wm
2 (R+;H) +

m−1∑
p=1

Cp
m

(
Apu(m−p), Apψ(m−p)

)
L2(R+;H)

+ P1(u, ψ) = 0,

where

Cp
m =

m(m − 1)...(m− p + 1)
p!

=
(

m
p

)
.

Definition 2. If a non-zero vector ϕ0 �= 0 is a solution of the equation P (λ0)ϕ0 = 0 , then λ0 is said to be an

eigen-value of the pencil P (λ) and ϕ0 is an eigenvector corresponding to the number λ0.

Definition 3. The system {ϕ1, ϕ2, ..., ϕm} ∈ Hm is said to be a chain of eigen and adjoint vectors ϕ0 if it
satisfies the equations

q∑
i=0

1
i

di

dλi
P (λ)|λ=λ0 · ϕq−i = 0, q = 1, m.

Definition 4. Let {ϕ0, ϕ1, ..., ϕm} be a chain of eigen and adjoint vectors corresponding to eigenvalues λ0,

then vector-functions

ϕh(t) = eλ0t

(
th

h!
ϕ0 +

th−1

(h − 1)!
ϕ1 + ... + ϕn

)
, h = 0, m

satisfy equation (3) and are said to be its elementary solutions corresponding to the eigen-value λ0.

Obviously, elementary solutions ϕh(t) have traces in the zero

ϕ
(ν)
h =

dν

dtν
ϕh|t=0, ν = 0, m− 1.

By means of ϕ
(ν)
h we define the vectors

{
ϕ̃h =

(
ϕ

(0)
h , ϕ

(1)
h

)
, h = 0, m

}
⊂ Hm = H × ...× H︸ ︷︷ ︸

m times

.

Later by K(Π−) we denote all possible vectors ϕ̃h corresponding to all eigen-values from the left half-

plane (Π− = {λ/Re λ < 0}) .
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Definition 5. The system K(Π−) is said to be m-fold complete in the trace space, if the system K(Π−) is

complete in the space
m⊕

i=0
Hm−i−1/2.

It holds

Lemma 2. Let conditions 1)-2) be fulfilled and

α =
m∑

j=1

Cj ‖Bm−j‖ < 1, (8)

where

Cj =

{
d

m/2
m,j/2, j = 2k, k = 0, m(
dm,(j−1)/2dm,(j+1)/2

)m/2
, j = 2k − 1, k = 1, m− 1

and

dm,j =

{ (
j
m

) j
m

(
m−j

m

)m−j
m , j = 1, m− 1

1 , j = 0, m.

Then, for any ψ ∈ Wm
2

(
R+; Hm; {ν}m−1

ν=0

)
, holds the inequality

Re P (ψ, ψ) ≥ (1 − α)P0(ψ, ψ),

where

P0 (ψ, ψ) =
((

− d

dt
+ A

)m

ψ,

(
− d

dt
+ A

)m

ψ

)
L2

and
P (u, ψ) = P0(u, ψ) + P1(u, ψ).

P1(u, ψ) is determined from lemma 1.

Proof. Let ψ ∈ D
(
R+; Hm; {ν}m−1

ν=0

)
. Then for any ψ

Re P (ψ, ψ) = Re P0(ψ, ψ) + Re P1(ψ, ψ) =
((

− d

dt
+ A

)m

ψ,

(
− d

dt
+ A

)m

ψ

)
L2

+

+ Re P1(ψ, ψ) ≥
∥∥∥∥(

− d

dt
+ A

)m

ψ

∥∥∥∥2

L2

− |P1(ψ, ψ)| .

Since ∥∥∥Akψ(m−k)
∥∥∥

L2

≤ d
m/2
m,m−k ‖u‖Wm

2

then
|P1(ψ, ψ)| ≤

≤

⎛⎝ ∑
(j=2k)

‖Bj‖ d
m/2
m,m−j/2 +

∑
(j=2k−1)

‖Bj‖d
m/2
m,m−(j−1)/2d

m/2
m,m−(j+1)/2

⎞⎠ ‖ψ‖Wm
2

.
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Here, d0,0 = dm,m = 1, thus

|P1(ψ, ψ)| ≤
m∑

j=0

‖Bm−j‖Cj,

where

Cj =

{
d

m/2
m,j/2, j = 2k, k = 0, m(
dm,(j+1)/2dm,(j−1)/2

)m/2
, j = 2k − 1, k = 1, m− 1.

Thus
|P1(ψ, ψ)L2 | ≤ α ‖ψ‖2

Wm
2 (R+;H) .

Thus
P (ψ, ψ)L2(R+;H) ≥ (1 − α)P0(ψ, ψ)L2(R+;H).

The lemma is proved. �

Remark. From the proof we can show that for m = 2, c1 = c3 = 1/2, c2 = 1/4, c4 = 1.

Lemma 3. Let the conditions of lemma 2 be fulfilled. Then, for any x ∈ Hm and ξ ∈ R , holds the inequality

(P (iξ)X, X)H > (1 − α) (P0(iξ)X, X)H .

Proof. It follows from the conditions that, for all ψ(t) ∈ Wm
2

(
R+; H ; {ν}m−1

ν=0

)
, holds the inequality

(P (ψ, ψ))L2(R+;H) ≥ (1 − α)P0(ψ, ψ)L2(R+;H). (9)

Let ψ(t) = g(t) ·X, X ∈ Hm and a scalar function g(t) ∈ Wm
2

(
R+; H ; {ν}m−1

ν=0

)
. Then from (7)we get

(P (iξ)g(t) · X, g(t) · X)L2(R+;H) ≥ (1 − α) (P0(iξ) · X, X) ‖g(t)‖2
L2(R+;H) ,

then
(P (iξ)X, X) ‖g(t)‖2

L2(R+;H) ≥ (1 − α) (P0(iξ)X, X) ‖g(t)‖2
L2(R+;H) ,

i.e.
(P (iξ)X, X) ≥ (1 − α) (P0(iξ)X, X)

The lemma is proved. �

4. On the existence of generalized solution of boundary value problems

First of all we consider the problem

P0

(
d

dt

)
u(t) =

(
− d2

dt2
+ A2

)m

u(t) = 0, t ∈ R+ = (0, +∞), (10)
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u(ν)(0) = ϕν , ν = 0, m− 1. (11)

The folowing theorem holds.

Theorem 1. For any collection ϕν ∈ Hm−ν−1/2

(
ν = 0, m− 1

)
, problems (10), (11) has a unique generalized

solution.

Proof. Let c0, c1, ..., cm−1 ∈ Hm−ν−1/2

(
ν = 0, m− 1

)
, e−At be a holomorphic semi-group of bounded

operators generated by the operator (−A). Then the vector-function

u0(t) = e−tA

(
c0 +

t

1!
Ac1 + ... +

tm−1

(m− 1)!
Am−1cm−1

)

belongs to the space Wm
2 (R+; H). Really, using spectral expansion of the operator A we see that each term

tm−ν

(m − ν)!
Am−νe−tA ∈ Wm

2 (R+; H) for cν ∈ Hm−1/2

(
ν = 0, m− 1

)
.

Then it is easily verified that u0(t) is a generalized solution of equation (10), i.e. it satisfies the relation

(u0, ϕ)Wm
2

+
m−1∑
p=1

Cp
m

(
Am−pu

(p)
0 , Am−pϕ(p)

)
= 0

for any ϕ ∈ Wm
2

(
R+; H ; {ν}m−1

ν=0

)
.

Show that u(ν)(0) = ϕν , ν = 0, m− 1.

For this purpose we must determine the vectors cν

(
ν = 0, m− 1

)
from condition (11). Obviously, in

order to determine the vectors cν

(
ν = 0, m− 1

)
from condition (11) we get a system of equations with respect

to the vectors ⎛⎜⎜⎜⎜⎜⎜⎜⎝

E 0 · · · 0
−E E · · · 0
E −E · · · 0
...

...
...

...

(−1)m−1

(
1

m− 1

)
E (−1)m−2

(
2

m − 2

)
E · · · E

⎞⎟⎟⎟⎟⎟⎟⎟⎠
×

×

⎛⎜⎜⎜⎜⎜⎝
c0

c1

c2

...
cm−1

⎞⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
ϕ0

A−1ϕ1

A−2ϕ2

...
A−(m−1)ϕm−1

⎞⎟⎟⎟⎟⎟⎠ , (12)

where E is a unique operator in H and
(

p
m − s

)
= Cp

m−s. Since the principal operator determinant is

invertible, we can uniquely determine cν

(
ν = 0, m− 1

)
. Obviously, for any ν the vector A−(m−ν)ϕν ∈
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Hm−1/2, since ϕν ∈ Hm−ν−1/2. As the vector at the right hand side of the equation (12) belongs to the space

Hm−1/2 ⊕ ...⊕ Hm−1/2︸ ︷︷ ︸
m times

=
(
Hm−1/2

)m
,

then taking into account the fact that the principal operator matrix Ẽ as a product of the invertible scalar

matrix by matrix where Ẽ is a unique matrix in
(
Hm−1/2

)m
, then it is unique. Therefore, each vec-

tor cν

(
ν = 0, m− 1

)
is a linear combination of elements A−(m−ν)ϕν ∈ Hm−1/2, that is why the vector

cν

(
ν = 0, m− 1

)
is determined uniquely and belongs to the space Hm−1/2. The theorem is proved. �

In the space Wm
2

(
R+; H ; {ν}m−1

ν=0

)
we define a new norm

‖|u|‖Wm
2 (R+;H) =

(
‖u‖2

Wm
2 (R+;H) +

m−1∑
p=1

Cp
m

∥∥∥Am−pu(p)
∥∥∥2

L2(R+;H)

)1/2

.

By the intermediate derivatives theorem [24] the norms ‖|u|‖Wm
2 (R+;H) and ‖u‖Wm

2 (R+;H) are equivalent

in the space Wm
2

(
R+; H ; {ν}m−1

ν=0

)
. Therefore, the numbers

Nj

(
R+; {ν}m−1

ν=0

)
= sup

0 �=u∈Wm
2 (R+;H;{ν}m−1

ν=0 )

∥∥∥Am−ju(j)
∥∥∥

L2(R+;H)
‖|u|‖−1

Wm
2 (R+;H) , j = 0, m.

are finite.
The next lemma enables one to find exact values of these numbers.

Lemma 4. The numbers Nj

(
R+; {ν}m−1

ν=0

)
are determined as follows:

Nj

(
R+; {ν}m−1

ν=0

)
= d

m/2
m,j ,

where

dm,j =

{ (
j
m

) j
m

(
m−j

m

)m−j
m , j = 1, m− 1

1, j = 0, m.

Using the method of papers [22, 26] the lemma is easily proved.

Now, let’s prove a theorem on the existence of generalized solutions of problem (4), (5).

Theorem 2. Let A be a positive-definite self-adjoint operator, the operators Bj = A−j/2AjA
−j/2

(
j = 2k, k = 0, m

)
and Bj = A−(j−1)/2AjA

−(j−1)/2
(
j = 2k − 1, k = 1, m− 1

)
be bounded in H and let hold the inequality

α =
m∑

j=1

Cj ‖Bm−j‖ < 1,
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where Cj are determined from Lemma 2. Then for any ϕν ∈ D
(
Am−n−1/2

)
,

(
ν = 0, m− 1

)
problem (4), (5)

has a unique generalized solution, and thus holds the inequality

‖u‖Wm
2 (R+;H) ≤ const

m−1∑
ν=0

‖ϕ‖m−ν−1/2 .

Proof. Let ψ ∈ D
(
R+; H ; {ν}m−1

ν=0

)
. Then for any ψ

Re P (ψ, ψ) = Re P0(ψ, ψ) + Re P1(ψ, ψ) =
((

− d

dt
+ A

)m

ψ,

(
− d

dt
+ A

)m

ψ

)
+

+ Re P1(ψ, ψ) ≥
∥∥∥∥(

− d

dt
+ A

)m

ψ

∥∥∥∥2

− | Re P1(ψ, ψ)| ≥
∥∥∥∥(

− d

dt
+ A

)m

ψ

∥∥∥∥2

L2(R+;H)

− |P1(ψ, ψ)|L2(R+;H) .

Since by lemma 2 ∥∥∥Akψ(m−k)
∥∥∥

L2(R+;H)
≤ d

m/2
m,m−k ‖u‖Wm

2 (R+;H) ,

then
|P1(ψ, ψ)| ≤

≤

⎛⎝ ∑
(j=2k)

‖Bm−j‖d
m/2
m,m−k +

∑
(j=2k−1)

‖Bm−j‖ d
m/2
m,m−k+1d

m/2
m,m−k−1

⎞⎠ ‖ψ‖2
Wm

2
.

Here d0,0 = dm,m = 1 and

dm,k =
(

k

m

) k
m

(
m − k

m

) m−k
m

,
(
k = 1, m− 1

)
,

thus

|P1(ψ, ψ)| ≤
m∑

j=1

Cj ‖Bm−j‖ ,

where

Cj =

⎧⎨⎩ d
m/2
m,j/2, j = 2k, k = 0, m(
d

m/2
m,(j+1)/2d

m/2
m,(j−1)/2

)m/2

, j = 2k − 1, k = 1, m− 1.

Consequently

|P1(ψ, ψ)| ≤ α ‖ψ‖2
Wm

2 (R+;H) .

Then
Re P (ψ, ψ)L2(R+;H) ≥ (1 − α)P0(ψ, ψ)L2(R+;H). (13)

Now we look for a generalized solution of problem (4), (5) in the form

u(t) = u0(t) + θ(t),
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where u0(t) is a generalized solution of problem (10), (11) and θ(t) ∈ Wm
2

(
R+; H ; {ν}m−1

ν=0

)
. To define θ(t) we

get relation

〈θ; ψ〉 = (θ, ψ)Wm
2 (R+;H) +

m−1∑
p=1

Cp
m

(
Am−pθ, Am−pψ

)
+ P1 (θ, ψ) = P1(u0, ψ). (14)

Since the right hand side of the equality is a continuous functional in Wm
2

(
R+; H ; {ν}m−1

ν=0

)
, and the

left hand side 〈θ; ψ〉 is a bilinear functional in the space Wm
2

(
R+; H ; {ν}m−1

ν=0

)
⊕ Wm

2

(
R+; H ; {ν}m−1

ν=0

)
, then

by inequality (13) it satisfies conditions of Lax-Milgram theorem [25]. Consequently, there exists a unique

vector-function θ(t) ∈ Wm
2

(
R+; H ; {ν}m−1

ν=0

)
that satisfies equality (14) and u(t) = u0(t)+ θ(t) is a generalized

solution of problem (4), (5).

Further, by J(R+; H) we denote a set of generalized solutions of problem (4), (5) and define the operator

Γ : J(R+; H) → H̃ =
m−1⊕
k=0

Hm−k−1/2 acting in the following way Γu =
(
u(k)(0)

)m−1

k=0
. Obviously J(R+; H) is

a closed set and by the trace theorem ‖Γu‖
�H ≤ C ‖u‖Wm

2 (R+;H) . Then by the Banach theorem on the inverse

operator there exists the inverse operator Γ−1 : H̃ → J(R+; H). Consequently

‖|u|‖Wm
2 (R+;H) ≤ const

m−1∑
k=0

‖ϕ‖m−k−1/2 .

The theorem is proved. �

Lemma 5. Let conditions 1)-3) and solvability conditions be fulfilled, then estimation
∥∥Amp−1(iξ)Am

∥∥ ≤ const

is true.
The proof of this lemma is easily obtained from Keldysh lemma [12] and lemma 2.

5. The basic result

Now, let’s prove the principal theorems. The following theorem holds.

Theorem 3. Let conditions 1)-2) be fulfilled, solvability conditions and one of the following conditions hold:

a) A−1 ∈ σp (0 ≤ p < 1);

b) A−1 ∈ σp (0 ≤ p < ∞) and Bj ∈ σ∞.

Then the system of eigen and adjoint vectors from K(Π−) is complete in the trace space.

Proof. Denote
L(λ) = A−mp(λ)Am ,

where

L(λ) =
(
−λ2C2 + E

)m
+

m∑
j=1

λm−jT j,
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and

Tj =
{

Cm−1/2BjC
m−1/2 for j = 2k, k = 1, m

Cm−(j−1)/2BjC
m−(j−1)/2 for j = 2k − 1, k = 1, m− 1.

Obviously Tj ∈ σp/m−j . Then L−1(λ) is represented in the form of relation of two entire functions of

order p and minimal order p . Then

Am−1/2p−1(λ)Am−1/2 = A−1/2
(
Amp−1(λ)Am

)
A−1/2

is also represented in the relation of two entire functions of order p and of minimal type for order p. The proof
of m-fold completeness of the system K(Π−) is equivalent to the proof of the fact that for any ϕ0, ϕ1, ..., ϕm−1

from holomorphic property of the vector-function

F (λ) =
(
L∗(λ)

)−1 (
f(λ), f(λ)

)
,

where

f (λ) =
m−1∑
j=0

λjCj+1/2ϕj.

For Π− = {λ/ Re λ < 0} it follows that ϕj = 0.

The theorem is proved. �

Now we use theorem 2 and theorem 3 and prove the completeness of elementary solutions of problem (4),

(5).

Theorem 4. Let the conditions of theorem 2 be fulfilled. Then elementary solutions of problem (4), (5) is
complete in the space of generalized solutions.

Proof. It is easy to see that if there exists a generalized solution, then

‖u‖Wm
2 (R+;H) ≤ const

m−1∑
j=0

‖ϕj‖m−j−1/2 .

Then it follows from the trace theorem [24] and these inequalities that

Ck

m−1∑
ν=0

‖ϕν‖m−ν−1/2 ≤ ‖u‖Wm
2 (R+;H) = Ck

m−1∑
ν=0

‖ϕν‖m−ν−1/2 . (15)

Further, from the theorem on the completeness of the system K(Π−) it follows that for any collection

{ϕν}m−1
ν=0 and ϕν ∈ Hm−ν−1/2 there is such a number N and Ck(ε, N) that

∥∥∥∥∥ϕν −
N∑

k=1

Ckϕ
(ν)
i,j,h

∥∥∥∥∥ < ε/m, ν = 0, m− 1.
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Then it follows from (15) that ∥∥∥∥∥u(t) −
N∑

k=1

Ckϕ
(ν)
i,j,h

∥∥∥∥∥ ≤ ε.

The theorem is proved. �
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