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On orders and types of Dirichlet series of slow growth

Yinying Kong and Huilin Gan

Abstract

The present paper has the object of showing some interesting relationship on the maximum modulus,
the maximum term, the index of maximum term and the coefficients of entire functions defined by Dirichlet

series of slow growth; some properties like Taylor entire functions are obtained.
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1. Introduction and main results

The growth and the value distribution of Taylor entire functions
+oo
flz) = Z by 2"
n=0

were studied for a long time and many important results were obtained in [1],[2] and [3]. For instance, S.K.
Bajpai gave some different characterizations on the coefficients and the maximum modulus, the maximum term,
and the index of maximum term for the entire functions of fast growth p = oo in [1]. On the other hand, G.P.
Kapoor [3] and Ramesh Ganti [2] continued this work and defined a generalized order and a generalized type
for the Taylor entire functions of slow growth p = 0.

Dirichlet series was introduced by L. Dirichlet in 19th century and it has the form:

+oo
J(s) = 3 baete, (1)
n=1

where {b,} € C,0 < A\, 1 +o0 and s = o + it(o, t are real variables). It is well known that Dirichlet series
are the generalization of Taylor series, because (1) can be Taylor series, provided e® = z and A, = n. In this

paper we do not require A, must be integers and we always assume that the series (1) satisfies

Tm 17 _p. 2)

n—-4oo n
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— Inlb,
lim 2 |bn|

n—-4oo

= —00. (3)

3

It follows from Valiron formula in [8] that the abscissa of uniform convergence of (1) are —oo and so the
series (1) defines an entire function f(s) in the complex plane. Some relative results on the growth and the

convergence of Dirichlet series can be found in [4-7].

Definition 1 The mazimum modulus, the mazimum term, and the index of mazimum term of (1) can be
defined as

M(o) = sup{If(o +it)}; € R),
m(o) = Inax{|bn|e)‘"", ne Nt}
N(o) = max{\,; |bn|6)‘"a =m(o),n € NT}.

Note: N(o) is a non-decreasing step function and it plays a key role for the growth of (1). We proceed
to replace N (o) by the order of (1).

Normally, the growth of (1) is measured in terms of its order p and the type v, the order can be defined
by
o Inln M (o)

= m —j
K st . ;

if 4 € (0,00), we can define the type of (1) by

— InM
v= lim &.

oc—+oo eIH
Next, we try to define a new order and a new type of Dirichlet series of slow growth deals with some

more general conditions. Let A denote the class of functions h(x) satisfying the following conditions:
(i) h(x) is defined on [a; 00) and is positive, strictly increasing, differentiable and tends to co as & — oo;
(i)
d(h
L ()

=ke(0,00), p>1,peNT
T—00 d(ln[p] x) ( )

(0]

where Iz = 2, InM 2 = Inz, In” 2 = mP~YInz. we can easy testify that

T ) B U G o))
N TE T

=1, (4)
for every ¢ > 0, that is, h(z) is slowly increasing.

Definition 2 Let a(z) € A, the generalized order of the entire function f(s) defined by (1) can be defined as

p=plo:f)= Tm 20D

o—+00 a(a)
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if the order is of slow growth i.e. p € (0,00), and then the type T(a; f) of (1) is defined by

o alM) o AInM(o)
r=rlef) = m e T M T e

where f(lnx) = a(z).

Theorem 1 Suppose that Dirichlet series (1) satisfies (2) and (3), then
— a(lnM(0)) o e

An
1° lim ————** —1= lim 7)1
e alo) 7550 oy (In ]~ )

o i ) o GO )y e oz
g ) e al@) g | )

Theorem 2 Suppose that Dirichlet series (1) satisfies (2) and (3), then

2 ti 20 M)

o—-+oo a(o’) o——+oo a(a) o—-+00 CY(O')

IN

Theorem 3 Suppose that Dirichlet series (1) satisfies (2) and (3), and has the generalized order p € (1, 00)
then

 BME) o 0
7ot [B@))r nmeoB(n by )]

T =

Note. Let p=1,e°* =z and A\, = n, we can use the same method to prove Theorem 2.1 in [2,P.6/).

2. Preliminary Lemmas

Lemma 1 Suppose that Dirichlet series (1) satisfies (2) and (3), then

lim a(lnM(a)): lim a(lnm(o))

o=too [a(0)]E T omtoeo [a(0)]E E € (0,+00)

Proof.
Case I: From (2), Ve > 0, there exist an integer N, when n > N, it follows that

Inn €
<D+ =Z
N, Pty

then

By Definition 1,

oo N oo
M(U) < Z |bn|6)‘"a < Z |bn|6)‘"0 + Z |bn|6)‘"(0+D+€)6_)‘"(D+€)
n=1 n=1 n=N+1
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< (N+1)m(c)+m(c+D+e¢) Z e~ An(D+e)

n=N+1
(N + 1)ym(o) + m(o + D +¢) i ()5
= g g — 2
n=N+1 n

< K(e)m(oc + D +¢),

where K (e) is a positive constant on €, then

. a(lnM(o)) . a(mK()+Inm(c+D+¢)) [alc+D+e)F
lim ————* < lim .
o=too [ao)]F T oo [a(o+ D +e)|” [a(0)]®
By (4), it follows that
lim a(lnM (o)) < lim a(lnm(o))
o=too (o)l T o—toe [a(0)]”
Case II: From Lemma 2 in [6, P.559], it follows that M (¢) > m(o). This proves Lemma 1. O

In the following proof we use C for a real constant. It will not be the same at each occurrence but it is
always independent of all variables.

Lemma 2 Suppose that a(o) € A and its inverse function is a~1(c), then

lim a{oca"[Aa(oc + B)]}

== a(0)

<A+1, A>0,B>0. (5)

Proof.  From the condition (ii), (o) = (k4 o(1))In" ¢ + C (let C > 0 without loss of generality) and
a~ (o) = expl?! (k"%o(cl)), where expl? o = g, expl 0 = €7, explPl o = expP~ exp(0).

Case I: When p =1, it follows that

a YAa(c+ B)] = exp[%]

A(k+o In(o AC-C
— exp[ AL+l Iz By +AC=C)

=C(oc+ B)* +0o(1).

Then
a{oca [Aa(oc + B)]} = kIn{oa~[Aa(c + B)]} +C
=klno+ kIn[C(c+ B)A +o(1)] + C
=klno+ kAln(oc + B) + C +o(1),
thus
—1
lim afoca[Aa(c + B)]} — lim klnoc+ kAln(c + B) + C + o(1) Al
o—+00 a(o) o—+o0 (k+o(l))lnc+C

Case II: When p = 2,3, -, it follows that

A(k+0(1)) nP! (o + B) + AC — C
k+o(1)

o HAa(o + B)] = exp![ ] = expP[AIn (6 + B) + C + 0(1)].
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Then
ofoaAa(o + B)]} =kmP{oa " [Aa(c + B)]} +C
= kP {oexpP [AInP (o + B) + C + o(1)]} + C
= kP {Ino + expP~U[AmP (o + B) + C]} + C + 0(1)
< kInP~2{Inlno + expP=2A[AInP (0 + B) + O]} + C + 0o(1)
<.
< kP o + k[AInP (o + B)] 4+ C + o(1),
thus
-1 [p] (]
lim afoca'[Aa(c + B)|} < lim Eln o + k[AIn'" (o + B)] 4+ C + o(1) ALl
o—+oo alo) o= +o0 ((k+o(1)In o 4 C
O
Corollary 1 Suppose that a(o) € A and its inverse function is o~ (o), then
_ ~1
i A= B o)} 0 450850
0—+00 a(a)
Corollary 2 Suppose that B(Inc) = a(o) € A and B~1(0) is the inverse function of (o), then
“1{A B)]»
i S8 {ABO+ B} A>0,B>0,p> 1.
o—+oo [6(e))?
For the convenience of readers, we prove the follow lemma again.
Lemma 3 Suppose that Dirichlet series (1) satisfies (2) and (3), then
Inm(o) = lnm(oq) +/ N(o)do, o1 >0.
o1
Proof. Let m(o) = |b,|eN(?)7, where A\, = N(0) is a constant, which satisfies the definition the index of
maximum term. We give differential coefficient in each open domain Iy := (o, 0k41), it follows that
m (o) = N(0)|by|eN@)7 = N(c)m(c), then
Okt1 m, (0) Okt1
Inm(okr1) — Inm(og =/ doz/ N(o)do.
(o) ~tmion) = [ 2= [ NG
For Vo € (01, +0), 3k, such that o € (o, 0k+1), combining with the above equality, then
k—1
Inm(o) —Ilnm(o1) = Inm(o) — Inm(ox) + Z(ln m(oj+1) —Inm(o;))
j=1
(e k—1 Oj4+1 (e
= / N(o)do + Z/ N(o)do = / N(o)do.
Ok ]:1 gj g1
So Lemma 3 is proved. It can be found in [6]. O
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3. Proof of Theorems

Proof of Theorem 1 We prove this theorem in two steps.

Case I: When p = 1,a(c) = klno + C, then a~!(0) = exp(";c) = Ce% . By Lemma 1,

o a(lnM (o)) B e a(lnm(o))
0—+00 a(a) 0—+00 a(a)

A.

We suppose 1 < A < oco. Then for every € > 0,30¢(¢) > 0, when o > oy, it follows that

a(lnm(o))

<A+4+e= A",
a(o)
it follows that
A* -C .
Inm(o) = a ' [A*a(0)] = exp( a(z) )= Co?",
then
In |b,|eM? <Inm(o) = Co? or In|b,|~' > Ao — Co?.
When n is large enough, set o = (%) T, we have
)\ )\ A*il
Inb| ™ > A (2271 — (23 =T = (A" — )2
b~ = A0 (30) (o) = (a0 - )
then
1 1
In[ln |b,| ™3] > C InAp,
wlinfb| %) > €+ o
-5 a(An)
In|b,|" %) > c,
o(in b, 7) > L)y
so we obtain
a(An)

A-1> lim ——"——.
n=+0 o (In b, | )

When p=2,3---, we suppose that A < co. From the above proof, it follows that
Inm(o) < a [A*a(o)] or Inlb,| <a '[A*a(0)] — Ao
Choose 0 = o(\,) to be the unique root of equation

o= a_l[%a()\n)], (60 =00 n— o00).

1 1
then In|b,| 3 >0 —1 or a(ln|b,| > ) > a(oc —1).
By (4), when o is sufficiently large, we have a(oc — 1) = (1 4+ o(1))a(o), thus
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a(ln]ba ") = (1+ o(1))a(o) = (1 +o(1)[Ea(A,)], or
A*=A+e> Lﬂ)l(l +0(1)).
a(ln |b,|”>)
Now proceeding to limits, we obtain

A> Tim @(An)

- n—»+ooa(1n|bn|—>\%l) ’

The above inequality obviously holds when A = oc.
Case II: Conversely, let

i 2 _p
n=+0 o (In |by| ")

We suppose B < co. Then for Ve > 0 and for all n > ng(e), we have

An
o) g p
a(ln |b,|™>)

or a(A,) < B*a(ln|bn|_%n), then o™ Z-a(A,)] < —)\%ln|bn|,

That is to say Ve > 0,dng > 0, when n > nyg

bu] < exp{-Ana [za(M]). (6)

From (2), there exists r > 0, such that

1
Ap >rinn or e M <
n’l‘

In addition, when o is sufficiently large, there exist S > ng, so that
—1[* 2
As < a ' [B*alo + ;)] < As+1- (7)

we have

no S [e'S)
M(o) <3 [bale™+ 37 fbale™? 4 D7 [bale™” = Ao+ A1 + Ao,
n=1

n=no+1 n=S+1
s s
(6)(7) 2 1

Aso —1 * —1

A <e’s E b, < exp{oa'[B*alc + ;)]} . E exp{— A\, [ﬁa()\n)]}
n=ngo+1 n=ngo+1
2 5 1 2

= -lrp* . E . -B* =
exp{ca” " [B*a(o + T)]} oy e et S Cexp{oa " [B*a(c + T)]}

But in Ay, we can sce that A, > a~'[B*a(c + 2)] then

o< a_l[%a()\n)] -
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From (6) and the above inequality, it follows that

o0

i 1 1 1 2
42 <Y ep{-Aa [gra)]} - exp{Aua [gra()l} e
n=S+1
oo i oo 1
= Z (& ” S Z E<C
n=5+1 n=S+1

Accordingly,

M(o) < (14 o(1)C explon™ [Balo + 2],

by Lemma 2, we have

a(lnM(0)) < (1+o(1))afoa™ B a(o + %)]} = (L +o(1))(B" + Da(o),

thus
U@wwz(ij‘i)(”)) <B+1
So from Case I and II, the proof is completed.
Proof of Theorem 2 Case I: Let
lim M = A.

o——+00 a(a)

we suppose A < 0o. Then for every £ > 0,3o,(¢) > 0, when o > o,, it follows that
a(lnm(o)) < (A+¢e)a(o).

By Lemma 3, we have

o+2
a[N(o)] =1 +o(1))a[2N(0)] < / N(z)dzx < a[lnm(oc +2)] < (A+e+0(1))a(o),

then
Tim a(N(9)) < A
o—+00 a(a)
Case II: Let
Tm a(N(0)) - B

we suppose B < 0o. Then for every € > 0,301(e) > 0, when o > o1, it follows that

N(o) < a '[(B+¢e)a(o)].
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By Lemma 3, there exists o; > 0 such that
Inm(c) — Inm(oy) = / N(o)do < (o —o1)a" (B +¢)a(o))].
o1

By Lemma 1 and Corollary 1, Theorem 2 is obtained.

Proof of Theorem 3 We prove this theorem in two steps.
Case I: By Lemma 1, let
7 BnM(o)) o B(lnm(o))

= m —— =T7.

AR TBO AR B

we suppose 7 < 0o0. Then for every £ > 0,3o¢(¢) > 0, when o > oy, it follows that

B(lnm(s))
[6(e))?

<T+e=T,

Inm(o) < B7HF[B(0)]?}, then In|b,| < B~HF[B(0)]*} — Ano.

Choose o = o(\,) to be the unique root of equation

then 1n|bn|_%n >0—1or ﬁ(ln|bn|_%n) > B(c —1).
By (4), when o is sufficiently large, we have B(oc — 1) = (1 4+ o(1))5(o), thus

[B(1n [b,|~37)]7 > (1 + 0(1)[B(0))7 = (L + o(1))[L8(An)], or

B(An)
[8(In [b,|~x7)]e

T=T+e> (L4 o0(1)).

Now proceeding to limits, we obtain
_ M\,
nre [B(In [by| AP
The above inequality obviously holds when 7 = cc.

Case II: Conversely, let
B(An)

lim —— = — =B
e[S fbn| T x))e

We suppose B < 0o. Then for Ve > 0 and for all n > ng(e), we have

B(An)

5 —<B+e=5
[6(In[by |~ x)]?
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or B(A,) < B*[B(In by, _%”)]pv then 5_1{[31* B(An)]%} < _)\Lnln“)nla

That is to say Ve > 0,3dng > 0, when n > nyg

1

bu] < exp{-Au ™ {0} (5)

From (2), there exists r > 0, such that

1
Ap >rinn or e M <
n’l‘

In addition, when o is sufficiently large, there exist S > ng, so that

As < BB B0 + )7} < Ao ©)
we have

no S [e%s)
M(o) <Y lbale® ™+ Y (bale T+ D [baleT = Af + A} + A).
n=1

n=ngp+1 n=S+1
Al < erso S bl 2 ~B* 200y S B [ B F
P<edT 30 el < exp{oB BB+ DI D0 exp{=MS {5 A0}
n=nop+1 n=ngo+1
2 5 1 2
=exp{of~H{B*[B(c + =)]"} - Z — < Cexp{of Y{B*[B(c + =)|"}.
" n=no+1 n" B Hz=B)]7} r
But in A}, we can sce that A, > 87'{B*[3(c + 2)]”} then
1 1 2
“H=—p\)]P Y = =.
7 < B M g B0} -
From (8) and above inequality, it follows that
- - 1 1 - 1 1 _2in
Ay < 37 exp{-MB T {5z BOWIT ) - exp (M8 I BOWI P} e
n=S+1
n=5+1 n=S+1
Accordingly,
2
M) < (14 o(1))Cexp{of™{B"[3(o + ~))}
then
1 o 2
Bl M(o)) < (1 +0(1))8{af~ {B*[B(c + S
Hence, by Corollary 2, it follows that
i AnM(o)) < B.
o—+oo  [B(o)]P
From Case I and Case II, the result follows. O

10
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