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A gap theorem for complete space-like hypersurface with constant

scalar curvature in locally symmetric Lorentz spaces
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Abstract

Let Mn be a complete space-like hypersurface with constant scalar curvature in locally symmetric

Lorentz space Nn+1
1 , S be the squared norm of the second fundamental form of Mn in Nn+1

1 . In this

paper, we obtain a gap property of S : if nP ≤ sup S ≤ D(n, P ) for some constants P and D(n, P ) , then

either sup S = nP and Mn is totally umbilical, or sup S = D(n, P ) and Mn has two distinct principal

curvatures.

Key Words: Constant scalar curvature, space-like hypersurface, second fundamental form, locally sym-

metric Lorentz space.

1. Introduction and main theorem

Let Nn+p
p be an (n + p)-dimensional connected semi-Riemannian manifold of index p (≥ 0). It is called

a semi-definite space of index p . In particular, Nn+1
1 is called a Lorentz space, with de Sitter space Sn+1

1 as
its special case. A hypersurface M of a Lorentz space is said to be space-like if the induced metric on M from

that of the Lorentz space is positive definite. When the Lorentz space Nn+1
1 is of constant curvature c , we call

it Lorentz space form, denoted by Nn+1
1 (c).

The motivation to the study of space-like hypersurfaces in space-times comes from its relevance in general
relativity. Moreover, the Goddard’s Conjecture [4] encouraged the study of compact or complete space-like

hypersurfaces with constant mean curvature in de Sitter space Sn+1
1 [7, 8]. In fact, constant mean curvature

hypersurfaces are relevant for studying propagation of gravitational waves. Another natural Goddard-like
problem is to study constant scalar curvature hypersurfaces. Partial results were obtained in [2, 13, 14]. Li [5]

proved that a compact space-like hypersurface with constant normalized scalar curvature R > 1 in Sn+1
1 must

be totally umbilical. Recently, A. Brasil Jr. et al. [1] generalize Li’s results to the complete case and obtain a
classification theorem.

In this paper, we substitute the ambient space Sn+1
1 for more general a large class of Lorentz spaces and

study its space-like hypersurfaces with constant normalized scalar curvature. First of all, we recall that, for
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constants c1 and c2 , Jin Ok Baek et al. [9] introduced the class of (n+1)-dimensional Lorentz spaces Nn+1
1 of

index 1 which satisfy the following two conditions (here and in the sequel, KN denotes the sectional curvature

on Nn+1
1 ):

(1) for any space-like vector u and any time-like vector v

KN(u, v) = −c1

n
; (1.1)

(2) for any space-like vectors u and v

KN (u, v) ≥ c2. (1.2)

This class of Lorentz spaces, denoted by M , contains several examples, for instance,

Example 1. The Lorentz space form Nn+1
1 (c) ∈ M , where −(c1/n) = c2 = c .

Example 2. Semi-Riemannian product manifold Hk
1 (−c1/n) × Nn+1−k(c2) ∈ M, c1 > 0, and Rk

1 ×
Sn+1−k(1) ∈ M . In particular, R1

1 × Sn(1) is so-called Einstein Static Universe. Of course, these are all
Lorentz spaces, but not Lorentz space forms.

Example 3. Robertson-Walker spacetime N(c, f) = I ×f N3(c) ∈ M , where I denote an open interval

of R1
1 and f > 0 an appropriate smooth function defined on the interval I , N3(c) a 3-dimensional Riemannian

manifold of constant curvature c .
In [9], the authors investigated complete space-like hypersurfaces with constant mean curvature in a

locally symmetric Lorentz space Nn+1
1 ∈ M , They give an optimal estimate of the squared norm of the second

fundamental form of such hypersurfaces and the characterization of totally umbilical hypersurfaces. One natural
problem is, for the hypersurfaces with constant normalized scalar curvature in locally symmetric Lorentz space

Nn+1
1 ∈ M , what kind rigidity and classification theorems will be have? In this paper, we shall discuss this

problem.

In order to present our theorem, we firstly recall that the scalar curvature of locally symmetric Lorentz

spaces is constant. On the other hand, if we denote R̄CD as the components of the Ricci tensor of Nn+1
1 ∈ M ,

then the scalar curvature R̄ of Nn+1
1 is

R̄ =
∑
A

εAR̄AA = −2
∑

i

K(n+1)ii(n+1) +
∑
i,j

Kijji

=2c1 +
∑
i,j

Kijji;

hence,
∑
i,j

Kijji is constant. This fact together with the formula (2.3) suggests us to define a constant P by

n(n − 1)P = n2H2 − S =
∑
i,j

Kijji − n(n − 1)R. (1.3)

Using (1.3), we can finally establish our main result:
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Theorem 1.1 Let Mn(n ≥ 3) be a complete space-like hypersurface with constant normalized scalar curvature

R in a locally symmetric Lorentz space Nn+1
1 ∈ M , 0 ≤ P ≤ c . If the squared norm S of the second

fundamental form of M satisfies: nP ≤ sup S ≤ D(n, P ) , then

i) sup S = nP and Mn is totally umbilical hypersurface; or

ii) sup S = D(n, P ) and Mn has two distinct principal curvatures, where

D(n, P ) =
n

(n − 2)(nP − 2c)
[n(n − 1)P 2 − 4c(n − 1)P + nc2],

c = c1
n + 2c2 and P determined by (1.3).

In particular, let Nn+1
1 = Sn+1

1 in Theorem 1.1, then − c1
n

= c2 = c = 1, so P = 1−R from (1.3). When

sup S = D(n, P ), following from Theorem 1.1, we know Mn has two distinct principal curvatures; in fact Mn

is hyperbolic cylinder H1(1− coth2 r)×Sn−1(1− tanh2 r). In this case, Theorem 1.1 generalizes X. Liu’s result

in [6] to more general situations. We also refer readers to compare Theorem 1.1 with [1, Theorem 1.1], where
they assumed that the supremum of squared mean curvature bounded from above by certain positive constant.

2. Estimates of the laplacian �hij and �S

In this section, we calculate the Laplacian of the second fundamental form and its squared norm of space-
like hypersurface in locally symmetric Lorentz space belong to the class M . We shall make use of the following
convention on the ranges of indices throughout this paper, unless otherwise stated:

1 ≤ A, B, C, · · · ≤ n + 1; 1 ≤ i, j, k, · · · ≤ n.

2.1 General setting for Lorentz space and its space-like hypersurfaces

We assume that (N, h) is an (n + 1)-dimensional Lorentz space and (M, g) is a space-like hypersurface
in N . Choose a local field of orthonormal frames e1, . . . , en+1 in N such that, restricted to M , the vectors
e1, . . . , en are tangent to M and the other is normal to M . Namely, e1, . . . , en are space-like vectors and
en+1 is a time-like vector. Let {ωA} and ωAB be the fields of dual frames and the connection 1-forms of N ,

respectively. Then the indefinite Riemannian metric tensor h of N is given by h =
∑

A εAωA ⊗ ωA , where

εi = 1 and εn+1 = −1, the induced metric g of M is given by g =
∑

i ωi ⊗ ωi . Restricting the frames to M ,

we have

ω(n+1)i =
∑

j

hijωj , hij = hji,

where the hij are the coefficients of the second fundamental form of M . Then H = 1
n

∑
j

hjj and S =
∑
i,j

h2
ij

are the mean curvature and squared norm of the second fundamental form of hypersurface M , respectively. As
usual, we denote hijk and hijkl the first and the second covariant derivatives of hij , KABCD the curvature

tensor of N . The Gauss equation, components Rij of Ricci tensor and normalized scalar curvature R of M

are given by
Rijkl = Kijkl − (hilhjk − hikhjl), (2.1)
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Rij =
∑

k

Kkijk − nHhij +
∑

k

hikhkj, (2.2)

n(n − 1)R =
∑
j,k

Kkjjk − n2H2 + S, (2.3)

The components KABCD;E of the covariant derivative of the Riemannian curvature tensor K are defined by

∑
E

εEKABCD;EωE

= dKABCD −
∑
E

εE(KEBCDωEA + KAECDωEB + KABEDωEC + KABCEωED),

restricting on M , K(n+1)ijk;l is given by

K(n+1)ijk;l = K(n+1)ijkl + K(n+1)i(n+1)khjl + K(n+1)ij(n+1)hkl +
∑
m

Kmijkhml,

where K(n+1)ijkl denote the covariant derivative of K(n+1)ijk as a tensor on M so that

∑
l

K(n+1)ijklωl = dK(n+1)ijk −
∑

l

K(n+1)ljkωli −
∑

l

K(n+1)ilkωlj −
∑

l

K(n+1)ijlωlk.

Now, we can write down the Laplacian of the second fundamental form (see [9, formula (2.21)] for a proof) as

�hij =(nH)ij +
∑

k

(
K(n+1)ijk;k + K(n+1)kik;j

)

−
∑

k

(hkkK(n+1)ij(n+1) + hijK(n+1)k(n+1)k)

−
∑
k,l

(2hklKlijk + hjlKlkik + hilKlkjk)

− nH
∑

l

hilhlj + Shij ,

(2.4)

thus
1
2
�S =

∑
i,j,k

h2
ijk +

∑
i,j

hij�hij

=
∑
i,j,k

h2
ijk +

∑
i,j

(nH)ijhij +
∑
i,j,k

(
K(n+1)ijk;k + K(n+1)kik;j

)
hij

−
(
nH

∑
i,j

hijK(n+1)ij(n+1) + S
∑

k

K(n+1)k(n+1)k

)

−
∑

i,j,k,l

2(hklhijKlijk + hilhijKlkjk) − nH
∑
i,j,l

hilhljhij + S2.

(2.5)

2.2 Estimates of �S when N ∈ M is a locally symmetric Lorentz space
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Now, let Nn+1
1 ∈ M is a locally symmetric Lorentz space, i.e. KABCD;E = 0. We shall continue to

estimate �S , more precisely, to estimate the middle three terms in the right-hand side of (2.5). In order to do

this, we will choose {e1, . . . , en} such that hij = λiδij , then local symmetry of Nn+1
1 implies that

∑
i,j,k

(
K(n+1)ijk;k + K(n+1)kik;j

)
hij = 0. (2.6)

Because of Nn+1
1 ∈ M , using curvature assumptions (1.1) and (1.2), we get

−
(
nH

∑
i,j

hijK(n+1)ij(n+1) + S
∑

k

K(n+1)k(n+1)k

)

= −
(
nH

∑
k

λkK(n+1)kk(n+1) − S
∑

k

K(n+1)kk(n+1)

)

=
∑

k

(S − nHλk)
c1

n

=c1(S − nH2).

(2.7)

Also we have

−
∑

i,j,k,l

2(hklhijKlijk + hilhijKlkjk) = −2
∑
j,k

(λjλk − λ2
k)Kkjjk

≥ c2

∑
j,k

(λj − λk)2

= 2c2(nS − n2H2).

(2.8)

Substituting (2.6), (2.7) and (2.8) into (2.5), we finally obtain

1
2
�S ≥

∑
i,j,k

h2
ijk +

∑
i

λi(nH)ii

+ (2nc2 + c1)(S − nH2) + (S2 − nH
∑

i

λ3
i ),

(2.9)

where λj are principal curvatures of M .

3. Key Lemmas

In order to prove the main theorem, we need some lemmas. We quote firstly an asymptotic maximum
principle at infinity for complete manifolds due to Omori [11] and Yau [12] (notice that in Lemma 3.1 below, we

assumed that C2 -function F bounded from below, there is another version of this maximum principle where
F is bounded from above).

Lemma 3.1 ([11], [12]) Let M be a complete Riemannian manifold whose Ricci curvature is bounded from

below on M . Let F be a C2 -function bounded from below on M ; then, for any ε ≥ 0 , there exists a point
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p ∈ M such that
‖grad F (p)‖ ≤ ε, �F (p) ≥ −ε, inf F ≤ F (p) ≤ inf F + ε.

Lemma 3.2 ([10]) Let {μi}n
i=1 be real numbers satisfying

∑
i

μi = 0,
∑
i

μ2
i = B , then

∣∣ ∑
i

μ3
i

∣∣ ≤ n − 2√
n(n − 1)

B
3
2

and the equality holds if and only if at least n − 1 of the μi ’s are equal, i.e.

μ1 = · · · = μn−1 = −
√

1
n(n − 1)

B, μn =

√
n − 1

n
B.

Lemma 3.3 Let Mn be a complete space-like hypersurface with constant normalized scalar curvature R in

locally symmetric Lorentz space Nn+1
1 ∈ M . If P ≥ 0 , then

∑
i,j,k

h2
ijk ≥ n2‖gradH‖2 .

Proof Notice that P is constant, differentiating n2H2 − S = n(n − 1)P exteriorly yields n2HHk =∑
i,j hijhijk , then Cauchy-Schwarz inequality leads to

∑
k

n4H2(Hk)2 =
∑

k

( ∑
i,j

hijhijk

)2

≤
( ∑

i,j

h2
ij

)( ∑
i,j,k

h2
ijk

)
,

namely,

n4H2‖grad H‖2 ≤ S
∑
i,j,k

h2
ijk,

together with the fact n2H2 − S ≥ 0 since P ≥ 0; we conclude lemma 3.3. �

The following lemma 3.4 will play a key role in the proof of our Theorem 1.1. Before we state it, we
choose {e1, . . . , en} such that hij = λiδij , then applying self-adjoint operator � , introduced by Q.M. Cheng

and S.T. Yau in [3], to the function nH and using (2.3), we obtain

�(nH) :=
∑
i,j

(nHδij − hij)(nH)ij

=
1
2
�(nH)2 −

∑
i

(nH)2i −
∑

i

λi(nH)ii

=
1
2
�

( ∑
i,j

Kijji − n(n − 1)R
)

+
1
2
�S − n2‖gradH‖2 −

∑
i

λi(nH)ii.

(3.1)

According to (1.3), the first term on the right-hand side of (3.1) vanishes; and substituting (2.9) into (3.1), we
conclude that

�(nH) ≥
∑
i,j,k

h2
ijk − n2‖gradH‖2

+ (2nc2 + c1)(S − nH2) + (S2 − nH
∑

i

λ3
i ).

(3.2)
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Lemma 3.4 With the same assumptions as Theorem 1.1, we have

n − 1
n

(S − nP )φP (S) ≤ �(nH) ≤ nC|�(nH)|,

where φP (S) = nc − 2(n − 1)P + n−2
n S − n−2

n

√
(n(n − 1)P + S)(S − nP ), c = c1

n + 2c2 , C is an upper bound

of |H |+
√

S , and φP (sup S) ≥ 0 .

Proof Putting μi = λi − H, B =
∑
i

μ2
i , then

∑
i

μi = 0, B = S − nH2,

∑
i

λ3
i =

∑
i

μ3
i + 3HB + nH3.

Applying lemma 3.2, we get

−nH
∑

i

λ3
i = − n2H4 − 3nH2B − nH

∑
i

μ3
i

≥2n2H4 − 3nSH2 − n(n − 2)√
n(n − 1)

‖H‖B 3
2 .

Putting into (3.2) and using lemma 3.3 leads to

�(nH) ≥ B

{
nc − nH2 + B − n(n − 2)√

n(n − 1)
‖H‖B 1

2

}
. (3.3)

It follows from (1.3) that

B = S − nH2 =
n − 1

n
(S − nP ). (3.4)

Substituting into (3.3), we have

�(nH) ≥ n − 1
n

(S − nP )φH(S), (3.5)

where

φH(S) = nc − 2nH2 + S − n(n − 2)√
n(n − 1)

‖H‖
√

S − nH2. (3.6)

Using (3.4), we can rewrite (3.6) as

φP (S) =nc − 2(n − 1)P +
n − 2

n
S

− n − 2
n

√
(n(n − 1)P + S)(S − nP ),

so, (3.5) becomes

�(nH) ≥ n − 1
n

(S − nP )φP (S). (3.7)
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On the other hand,

�(nH) ≤|
∑

i

(nH − hii)(nH)ii|

=n(‖H‖ +
√

S)|�(nH)|

≤nC|�(nH)|.

Finally, we shall prove φP (sup S) ≥ 0. It is easy to check that the assumption sup S ≤ D(n, P ) implies

(
nc − 2(n − 1)P +

n − 2
n

sup S
)2 ≥ (n − 2)2

n2
(n(n − 1)P + sup S)(sup S − nP ). (3.8)

Because of P ≤ c, sup S ≥ nP , (3.8) equivalent to

nc − 2(n − 1)P +
n − 2

n
sup S ≥ (n − 2)

n

√
(n(n − 1)P + sup S)(sup S − nP ),

which completes the proof of Lemma 3.4. �

4. Proof of Theorem 1.1

Since Nn+1
1 ∈ M is a locally symmetric Lorentz space, from (2.2), it is easy to check that RicM ≥

nc2 − n2H2

4
. Since S is bounded by assumption, we know that the Ricci curvature of M is bounded from

below. Thus we may apply Omori and Yau’s maximum principle to the function F defined by F = 1√
1+(nH)2

,

which is a positive smooth function on M . A straightforward calculation will give

‖grad F ‖2 =
1
4
‖grad (nH)2‖2

(1 + (nH)2)3
, (4.1)

�F = −1
2

�(nH)2

(1 + (nH)2)
3
2

+
3
4
‖grad (nH)2‖2

(1 + (nH)2)
5
2

. (4.2)

According to Lemma 3.1, there exists a point {pk} such that

lim
k→∞

F (pk) = inf F, �F (pk) > −1
k

, ‖gradF ‖2(pk) <
1
k2

. (4.3)

Applying (4.3) to (4.1) and (4.2), we obtain

−1
k
≤ −1

2
�(nH)

(1 + (nH)2)
3
2
(pk) +

3
k2

(
1 + (nH)2(pk)

) 1
2 ,

hence,

�(nH)
(1 + (nH)2)2

(pk) <
2
k

(
1√

1 + (nH)2(pk)
+

3
k

)
. (4.4)
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Evaluating at the points pk , then Lemma 3.4 gives

n − 1
n

(S(pk) − nP )φP (S(pk)) ≤ �(nH)(pk) ≤ nC|�(nH)|(pk). (4.5)

Let k → ∞ , it follows from (4.4) and the fact lim
k→∞

(nH)(pk) = sup(nH) that the right-hand side of (4.5) goes

to zero. Therefore, we have

n − 1
n

(sup S − nP )φP (sup S) ≤ 0.

On the other hand, we have already shown in lemma 3.4 that φP (sup S) ≥ 0, together with the assumption
sup S ≥ nP , it must be

n − 1
n

(sup S − nP )φP (sup S) = 0,

which implies

sup S = nP,

or
φP (sup S) = 0.

(i) When supS = nP , it follows from (3.4) that supB = n−1
n (sup S − nP ) = 0, that is, B ≡ 0. Thus

S = nH2 and we infer that M is totally umbilical.

(ii) When φP (sup S) = 0, that is

nc − 2(n − 1)P +
n − 2

n
sup S =

n − 2
n

√
(n(n − 1)P + sup S)(sup S − nP ),

which leads to

sup S =
n

(n − 2)(nP − 2c)
[n(n − 1)P 2 − 4c(n − 1)P + nc2],

at that time, the equalities in lemma 3.2 and 3.3 hold. Hence, Mn has two distinct principal curvatures. We
complete the proof of Theorem 1.1. �

If M is a compact space-like hypersurface in locally symmetric Lorentz space Nn+1
1 ∈ M , then∫

M
�(nH)dv = 0 since � is self-adjoint operator. Similar arguments as in the proof of theorem 1.1 will

show that either S = nP , that is S = nH2 and Mn is totally umbilical, or

S =
n

(n − 2)(nP − 2c)
[n(n − 1)P 2 − 4c(n − 1)P + nc2],

which implies that Mn has two distinct principal curvatures. Thus we obtain the following theorem.

Theorem 4.1 Let M be a compact space-like hypersurface with constant normalized scalar curvature in locally

symmetric Lorentz space Nn+1
1 ∈ M , 0 ≤ P ≤ c . If the squared norm S of the second fundamental form of

M satisfies: nP ≤ S ≤ D(n, P ) , where D(n, P ) the same as in Theorem 1.1, then
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i) S = nP and Mn is totally umbilical; or

ii) S = D(n, P ) and Mn has two distinct principal curvatures.

Acknowledgememt

The authors would like to express gratitude to Prof. C. L. Shen and Prof. Y. L. Yu for helpful discussion.
They also would like to thank the referee for his/her kind advice to improve this article.

References

[1] Brasil Jr, A., Colares, A. G., Palmas, O.: A gap theorem for complete constant scalar curvature hypersurfaces in

the de Sitter space. J. Geom. Phys. 37, 237–250 (2001).

[2] Cheng, Q. M., Ishikawa, S.: Space-like hypersurface with constant scalar curvature. Manuscripta Math. 95, 499–505

(1998).

[3] Cheng, S. Y., Yau, S. T.: Hypersurfaces with constant scalar curvature. Math. Ann. 225, 195–204 (1977).

[4] Goddard, A. J.: Some remarks on the existence of space-like hypersurfaces of constant mean curvature. Math. Proc.

Camb. Phil. Soc. 82, 489–495 (1977).

[5] Li, H.: Global rigidity theorems for hypersurfaces. Ark. Math. 35, 327–351 (1997).

[6] Liu, X.: Complete space-like hypersurface with constant scalar curvatrue. Manuscripta Math. 105, 367–377 (2001).

[7] Montiel, S.: An integral inequality for compact space-like hypersurfaces in the de Sitter space and applications to

the case of constant mean curvature. Indiana Univ. Math. J. 37, 909–917 (1988).

[8] Montiel, S.: A characterization of hyperbolic cylinders in the de Sitter space. Tôhoku Math. J. 48, 23–31 (1996).
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