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Abstract

In this paper some B.-Y. Chen inequalities for slant submanifolds in quaternionic space forms are

established.
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1. Introduction

One of the most powerful tools to find relationships between intrinsic invariants and extrinsic invariants
of a submanifold is provided by Chen’s invariants. This theory was initiated in [9] where B.-Y. Chen established
a sharp inequality for a submanifold in a real space form using the scalar curvature and the sectional curvature
(both being intrinsic invariants) and squared mean curvature (the main extrinsic invariant).

On the other hand, the slant submanifolds of complex manifolds were defined in [8] and Chen-like
inequalities for slant submanifolds in complex space forms and in generalized complex space forms were obtained
in [27] and [23]. The slant submanifolds of contact manifolds were introduced in [24], and Chen-like inequalities

for slant submanifolds of Sasakian space forms were obtained in [14]. The study of slant submanifolds in

S -manifolds and B.-Y. Chen inequalities in S -space forms has been realized in [6] and [7]. Other Chen-like

inequalities in different settings and submanifolds satisfying Chen’s equality can be found in [1], [2], [3], [5],

[12], [13], [15], [17], [18], [19], [20], [28], [29], [30], [32], [34].

Some B.-Y. Chen inequalities for totally real submanifolds in quaternionic space forms are established
in [33]. Recently, Şahin [31] introduced the slant submanifolds of quaternionic Kähler manifolds, as a natural
generalization of both quaternionic and totally real submanifolds. Motivated by the above considerations, we’ll
be studying Chen-like inequalities in the context of slant submanifolds in quaternionic space forms.

The paper is organized as follows: in Section 2, following [31], we collect basic definitions, some formulas
and results concerning the slant submanifolds of quaternionic Kähler manifolds for later use. In Section 3,
following [11], we recall a string of Riemannian invariants on a manifold. In Section 4 we establish a Chen-like
inequality between Chen’s δ invariant and squared mean curvature for θ -slant submanifolds in a quaternionic
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space form. In Section 5 we give another Chen-like inequality between Chen’s δ(n1, ..., nk)-invariant and
squared mean curvature for θ -slant submanifolds in a quaternionic space form. In Section 6 we establish a
sharp inequality between Ricci curvature and the squared mean curvature for slant submanifolds in quaternionic
space forms.

2. Slant submanifolds of quaternionic kähler manifolds

Let M be a differentiable manifold and assume that there is a rank 3-subbundle σ of End(TM) such

that a local basis {J1, J2, J3} exists on sections of σ satisfying for all α ∈ {1, 2, 3} :

J2
α = −Id, JαJα+1 = −Jα+1Jα = Jα+2, (1)

where the indices are taken from {1, 2, 3} modulo 3. Then the bundle σ is called an almost quaternionic

structure on M and {J1, J2, J3} is called a canonical local basis of σ . Moreover, (M, σ) is said to be an almost
quaternionic manifold. It is easy to see that any almost quaternionic manifold is of dimension 4m .

A Riemannian metric g on M is said to be adapted to the almost quaternionic structure σ if it satisfies
the relation

g(JαX, JαY ) = g(X, Y ), ∀α ∈ {1, 2, 3} (2)

for all vector fields X ,Y on M and any canonical local basis {J1, J2, J3} of σ . Moreover, (M, σ, g) is said to
be an almost quaternionic Hermitian manifold.

If the bundle σ is parallel with respect to the Levi-Civita connection ∇ of g , then (M, σ, g) is said to
be a quaternionic Kähler manifold. Equivalently, locally defined 1-forms ω1, ω2, ω3 exist such that we have for
all α ∈ {1, 2, 3}

∇XJα = ωα+2(X)Jα+1 − ωα+1(X)Jα+2 , (3)

for any vector field X on M , where the indices are taken from {1, 2, 3} modulo 3 (see [22]).

Remark 2.1 For a submanifold M of a quaternion Kähler manifold (M, σ, g) , we denote by g the metric
tensor induced on M . If ∇ is the covariant differentiation induced on M , the Gauss and Weingarten formulas
are given by

∇XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM) (4)

and

∇XN = −ANX + ∇⊥
XN, ∀X ∈ Γ(TM), ∀N ∈ Γ(TM⊥), (5)

where h is the second fundamental form of M , ∇⊥ is the connection on the normal bundle and AN is the
shape operator of M with respect to N . The shape operator AN is related to h by

g(ANX, Y ) = g(h(X, Y ), N) (6)

for all X, Y ∈ Γ(TM) and N ∈ Γ(TM⊥) .
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If we denote by R and R the curvature tensor fields of ∇ and ∇ we have the Gauss equation:

R(X, Y, Z, W ) = R(X, Y, Z, W ) + g(h(X, W ), h(Y, Z))

−g(h(X, Z), h(Y, W )), (7)

for all X, Y, Z, W ∈ Γ(TM) .

If {e1, ..., en} is an orthonormal basis of TpM and {en+1, ..., e4m} is an orthonormal basis of T⊥
p M ,

where p ∈ M , we denote by H the mean curvature vector, that is

H(p) =
1
n

n∑
i=1

h(ei, ei).

Also, we set
hr

ij = g(h(ei, ej), er), i, j ∈ {1, ..., n}, r ∈ {n + 1, ..., 4m}

and

||h||2 =
n∑

i,j=1

g(h(ei, ej), h(ei, ej)).

The submanifold M is called totally geodesic if the second fundamental form vanishes identically and
totally umbilical if there is a real number λ such that h(X, Y ) = λg(X, Y )H for any tangent vectors X , Y on
M .

If H = 0, then the submanifold M is said to be minimal.

A submanifold M of a quaternionic Kähler manifold M is called a quaternion submanifold (resp. totally

real submanifold) if each tangent space of M is carried into itself (resp. into the normal space) by each section
in σ .

Definition 2.2 [31] A submanifold M of a quaternionic Kähler manifold M is said to be a slant submanifold

if for each non-zero vector X tangent to M at p , the angle θ(X) between Jα(X) and TpM , α ∈ {1, 2, 3} is

constant, i.e. it does not depend on choice of p ∈ M and X ∈ TpM .

We can easily see that quaternionic submanifolds are slant submanifolds with θ = 0 and totally-real
submanifolds are slant submanifolds with θ = π

2 . A slant submanifold of a quaternionic Käler manifold is said

to be proper (or θ -slant proper) if it is neither quaternionic nor totally real.

B. Şahin obtained the next characterization for slant submanifolds of quaternionic Kähler manifolds [31]:

Theorem 2.3 Let M be a submanifold of a quaternionic Kähler manifold M . Then M is slant if and only if
there exists a constant λ ∈ [−1, 0] such that

PβPαX = λX, ∀X ∈ Γ(TM), α, β ∈ {1, 2, 3}, (8)

where PαX denote the tangential component of JαX . Furthermore, in such case, if θ is the slant angle of M ,

then it satisfies λ = − cos2 θ .
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From the above theorem we can deduce that if M is a θ -slant submanifold of a quaternionic Kähler

manifold M , then we have for any X, Y ∈ Γ(TM) and α, β ∈ {1, 2, 3} (see [31])

g(PαX, PβY ) = cos2 θg(X, Y ). (9)

Moreover, if M is a θ -slant proper submanifold, we can choose a canonical orthonormal local frame
{e1, e2, ..., e2s} , called an adapted slant frame, as follows: let e1 be a local unit vector field tangent to M and

we settle α ∈ {1, 2, 3} . We define now the unit tangent vector e2 = sec θ Pαe1 . If dim M > 2, then, by

induction, for each i ∈ {1, ..., s− 1} , we may choose a unit vector e2i+1 of M orthogonal to e1, ..., e2i and we
can define e2i+2 = secθ Pαe2i+1 . So, we can conclude that every proper slant submanifold of a quaternionic
Kähler manifold is of even dimension.

3. Riemannian invariants

Let M be an n-dimensional Riemanian manifold. We denote by K(π) the sectional curvature of M

associated with a plane section π ⊂ TpM, p ∈ M . If {e1, ..., en} is an orthonormal basis of the tangent space

TpM , the scalar curvature τ at p is defined by

τ (p) =
∑
i<j

K(ei ∧ ej) (10)

One denotes
(inf K)(p) = inf{K(π)|π ⊂ TpM, dimπ = 2} (11)

and Chen first invariant is given by
δM (p) = τ (p) − (inf K)(p). (12)

Suppose L is an r -dimensional subspace of TpM , r ≥ 2 and {e1, ..., er} an orthonormal basis of L . We

define the scalar curvature τ (L) of the r -plane section L by

τ (L) =
∑
α<β

K(eα ∧ eβ). (13)

For an integer k ≥ 0 we denote by S(n, k) the set of k -tuples (n1, ..., nk) of integers ≥ 2 satisfying

n1 < n, n1 + ... + nk ≤ n . We denote by S(n) the set of unordered k -tuples with k ≥ 0 for a fixed n .

For each k -tuples (n1, ..., nk) ∈ S(n), Chen introduced a Riemannian invariant δ(n1, ..., nk) defined by

δ(n1, ..., nk)(p) = τ (p) − S(n1 , ..., nk)(p), (14)

where
S(n1, ..., nk)(p) = inf{τ (L1) + ... + τ (Lk)}; (15)

L1, ..., Lk run over all k mutually orthogonal subspaces of TpM such that dimLj = nj, j ∈ {1, ..., k} . Also,

we denote by d(n1, ..., nk) and b(n1, ..., nk) the real constants given by

d(n1, ..., nk) =
n2(n + k − 1 − ∑k

j=1 nj)

2(n + k − ∑k
j=1 nj)
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and

b(n1, ..., nk) =
n(n − 1) − ∑k

j=1 nj(nj − 1))
2

.

4. First Chen-like inequality for slant submanifolds in quaternionic space forms

Let (M, g, σ) be a quaternionic Kähler manifold and let X be a non-null vector on M . Then the 4-plane

spanned by {X, J1X, J2X, J3X} , denoted by Q(X), is called a quaternionic 4-plane. Any 2-plane in Q(X) is
called a quaternionic plane. The sectional curvature of a quaternionic plane is called a quaternionic sectional
curvature. A quaternionic Kähler manifold is a quaternionic space form if its quaternionic sectional curvatures

are equal to a constant, say c . It is well-known that a quaternionic Kähler manifold (M, g, σ) is a quaternionic

space form (denoted M(c)) if and only if its curvature tensor is given by (see [22])

R(X, Y )Z =
c

4
{g(Z, Y )X − g(X, Z)Y +

3∑
α=1

[g(Z, JαY )JαX −

−g(Z, JαX)JαY + 2g(X, JαY )JαZ]} (16)

for all vector fields X, Y, Z on M and any local basis {J1, J2, J3} of σ.

We recall now the following lemma of Chen [9] for later uses.

Lemma 4.1 If a1, ..., an, b are n + 1 real numbers, with n ≥ 2 , such that:

(
n∑

i=1

ai)2 = (n − 1)(
n∑

i=1

a2
i + b),

then
2a1a2 ≥ b,

with equality holding if and only if

a1 + a2 = a3 = ... = an.

We prove next a Chen-like inequality for proper slant submanifolds in quaternionic space forms.

Theorem 4.2 Let Mn be a θ -slant proper submanifold of a quaternionic space form M
4m

(c) . Then, for each
point p ∈ M , we have:

δM (p) ≤ n − 2
2

{ n2

n − 1
||H ||2 +

c

4
(n + 1 + 9 cos2 θ)}. (17)

Equality in (17) holds at p ∈ M if and only if there exists an orthonormal basis {e1, ..., en} of TpM and an

orthonormal basis {en+1, ..., e4m} of T⊥
p M such that the shape operators Ar ≡ Aer , r ∈ {n + 1, ..., 4m} , take
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the following forms:

An+1 =

⎛
⎜⎜⎜⎜⎜⎝

c 0 0 ... 0
0 c 0 ... 0
0 0 c + d ... 0
...

...
...

. . .
...

0 0 0 ... c + d

⎞
⎟⎟⎟⎟⎟⎠

(18)

and

Ar =

⎛
⎜⎜⎜⎜⎜⎝

cr dr 0 ... 0
dr −cr 0 ... 0
0 0 0 ... 0
...

...
...

. . .
...

0 0 0 ... 0

,

⎞
⎟⎟⎟⎟⎟⎠

, r ∈ {n + 2, ..., 4m}. (19)

Proof. Let p ∈ M and π ⊂ TpM a plane section. We choose an adapted slant basis {e1, e2 =

sec θ Pαe1, ..., e2s−1, e2s = sec θ Pαe2s−1} of TpM , where 2s = n , and {en+1, ..., e4m} an orthonormal ba-

sis of T⊥
p M , such that π = Span{e1, e2} and the normal vector en+1 is in the direction of the mean curvature

vector H .

Since M
4m

(c) is a quaternionic space form, from (16) and Gauss equation we can easily obtain the
relation

n2||H ||2 = 2τ (p) + ||h||2 − n(n − 1)c
4

− 3c

4

3∑
β=1

n∑
i,j=1

g2(Pβei, ej). (20)

On the other hand, because {e1, ..., e2s} is an adapted slant basis of TpM , using (8) and (9), we can see

that
g2(Pβei, ei+1) = g2(Pβei+1, ei) = cos2 θ, for i = 1, 3, ..., 2s− 1 (21)

and
g(Pβei, ej) = 0, for (i, j) 
∈ {(2l − 1, 2l), (2l, 2l− 1)|l ∈ {1, 2, ...., s}}. (22)

From (20), (21) and (22) we derive

n2||H ||2 = 2τ (p) + ||h||2 − c

4
[n(n − 1) + 9n cos2 θ]. (23)

Putting

Θ = 2τ (p) − n2(n − 2)
n − 1

||H ||2 − c

4
[n(n − 1) + 9n cos2 θ], (24)

we obtain from (23) and (24)

n2||H ||2 = (n − 1)(Θ + ||h||2),

i.e.

(
n∑

i=1

hn+1
ii )2 = (n − 1)[Θ +

n∑
i=1

(hn+1
ii )2 +

∑
i �=j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2]. (25)
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Applying Lemma 4.1 for

ai = hn+1
ii , ∀i ∈ {1, ..., n}

and

b = Θ +
∑
i �=j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2,

we derive

hn+1
11 hn+1

22 ≥ 1
2
[Θ +

∑
i �=j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2]. (26)

From (16) and Gauss equations it also follows

K(π) =
c

4
[1 + 3

3∑
β=1

g2(Pβe1, e2)] +
4m∑

r=n+1

[hr
11h

r
22 − (hr

12)
2];

and taking into account (21) we derive

K(π) =
c

4
(1 + 9 cos2 θ) +

4m∑
r=n+1

[hr
11h

r
22 − (hr

12)
2]. (27)

From (26) and (27) we obtain

K(π) ≥ c

4
(1 + 9 cos2 θ) +

4m∑
r=n+2

hr
11h

r
22 −

4m∑
r=n+1

(hr
12)

2

+
1
2
Θ +

1
2

∑
i �=j

(hn+1
ij )2 +

1
2

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2

=
c

4
(1 + 9 cos2 θ) +

1
2
Θ +

1
2

∑
i �=j>2

(hn+1
ij )2 +

1
2

4m∑
r=n+2

∑
i,j>2

(hr
ij)

2

+
1
2

4m∑
r=n+2

(hr
11 + hr

22)
2 +

4m∑
r=n+1

∑
j>2

[(hr
1j)

2 + (hr
2j)

2];

and so we conclude that

K(π) ≥ c

4
(1 + 9 cos2 θ) +

1
2
Θ. (28)

The case of equality at a point p ∈ M holds if and only if we have the equality in all the previous
inequalities and also in the Lemma 4.1:

hn+1
ij = 0, i 
= j > 2,

hr
1j = hr

2j = hr
ij = 0, r ≥ n + 2, i, j > 2,
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VÎLCU

hn+1
1j = hn+1

2j = 0, j > 2,

hr
11 + hr

22 = 0, r ≥ n + 2,

hn+1
11 + hn+1

22 = hn+1
33 = ... = hn+1

nn .

Finally, since we can choose {e1, e2} such that hn+1
12 = 0, we obtain the desired form for the shape

operators Ar , r ∈ {n + 1, ..., 4m} . �

5. The second Chen-like inequality for slant submanifolds in quaternionic space forms

Next we prove a generalization of the Theorem 4.2 in terms of Chen’s invariant δ(n1, ..., nk).

Theorem 5.1 If Mn is a θ -slant proper submanifold of a quaternionic space form M
4m

(c) , then we have

δ(n1, ..., nk) ≤ d(n1, ..., nk)||H ||2 + b(n1, ..., nk)
c

4
+

9c

8
(n −

k∑
j=1

nj) cos2 θ (29)

for any k-tuples (n1, ..., nk) ∈ S(n) .

Equality in (29) holds at p ∈ M if and only if there exists an orthonormal basis {e1, ..., en} of TpM and

an orthonormal basis {en+1, ..., e4m} of T⊥
p M such that the shape operators Ar ≡ Aer , r ∈ {n + 1, ..., 4m} ,

take the following forms:

An+1 =

⎛
⎜⎜⎜⎜⎜⎝

a1 0 0 ... 0
0 a2 0 ... 0
0 0 a3 ... 0
...

...
...

. . .
...

0 0 0 ... an

⎞
⎟⎟⎟⎟⎟⎠

(30)

and

Ar =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Br
1 ... 0 0 ... 0
...

. . .
...

...
. . .

...
0 . . . Br

k 0 ... 0
0 . . . 0 cr ... 0
...

. . .
...

...
. . .

...
0 . . . 0 0 ... cr

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, r ∈ {n + 2, ..., 4m}, (31)

where a1, ..., an satisfy the relations

a1 + ... + an1 = ... = an1+...nk−1+1 + ... + an1+...nk = an1+...nk+1 = ... = an

and each Br
j is a symmetric nj × nj submatrix satisfying

trace(Br
1 ) = ... = trace(Br

k) = cr.

122
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Proof. We choose {e1, e2 = sec θ Pαe1, ..., e2s−1, e2s = sec θ Pαe2s−1} an adapted slant basis of TpM , where

2s = n , and {en+1, ..., e4m} an orthonormal basis for the normal space T⊥
p M such that the mean curvature

vector H is in the direction of the normal vector en+1 .

Let L1, ..., Lk be k mutually orthogonal subspaces of TpM , with dim Lj = nj, ∀j ∈ {1, ..., k} , defined

by:
L1 = Span{e1, ..., en+1}, L2 = Span{en1+1 , ..., en1+n2}, ...,

Lk = Span{en1+...+nk−1+1, ..., en1+...+nk}.

From (16) and Gauss equation it follows

τ (Lj) =
nj(nj − 1)c

8
+

3c

4

3∑
β=1

∑
αj<βj

g2(Pβeαj , eβj)] +
4m∑

r=n+1

∑
αj<βj

[hr
αjαj

hr
βjβj

− (hr
αjβj

)2];

and using (21) and (22) we obtain

τ (Lj) =
nj(nj − 1)c

8
+

9c

8
nj cos2 θ +

4m∑
r=n+1

∑
αj<βj

[hr
αjαj

hr
βjβj

− (hr
αjβj

)2]. (32)

If we denote now

Ψ = 2τ (p) − 2d(n1, ..., nk)||H ||2 − c

4
[n(n − 1) + 9n cos2 θ] (33)

and

γ = n + k −
k∑

j=1

nj, (34)

we can rewrite(23) as

n2||H ||2 = γ(Ψ + ||h||2), (35)

i.e.

(
n∑

i=1

hn+1
ii )2 = γ[Ψ +

n∑
i=1

(hn+1
ii )2 +

∑
i �=j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2]. (36)

From (36) we obtain:

(
γ+1∑
i=1

bi)2 = γ[Ψ +
γ+1∑
i=1

(bi)2 +
∑
i �=j

(hn+1
ij )2

+
4m∑

r=n+2

n∑
i,j=1

(hr
ij)

2 − 2
k∑

j=1

∑
αj<βj

aαjaβj ], (37)

where
ai = hn+1

ii , ∀i ∈ {1, ..., n},
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b1 = a1, b2 = a2 + ... + an1 , b3 = an1+1 + ... + an1+n2 , ...,

bk+1 = an1+...+nk−1+1 + ... + an1+n2+...+nk ,

bk+2 = an1+...+nk+1, ..., bγ+1 = an.

Applying Lemma 4.1, we derive

k∑
j=1

∑
αj<βj

aαj aβj ≥ 1
2
[Ψ +

∑
i �=j

(hn+1
ij )2 +

4m∑
r=n+2

n∑
i,j=1

(hr
ij)

2] (38)

and so we deduce:

k∑
j=1

4m∑
r=n+1

∑
αj<βj

[hr
αjαj

hr
βjβj

− (hr
αjβj

)2] ≥ 1
2
Ψ +

1
2

4m∑
r=n+1

∑
(α,β) �∈D2

(hr
αβ)2

+
4m∑

r=n+2

∑
αj∈Dj

(hr
αjαj

)2, (39)

where D1, ..., Dk, D are the sets

D1 = {1, ..., n1}, D2 = {n1 + 1, ...., n1 + n2}, ...,

Dk = {n1 + ... + nk−1 + 1, ...., n1 + ... + nk},

D2 = (D1 × D1) ∪ ... ∪ (Dk × Dk).

From (39) we deduce

k∑
j=1

4m∑
r=n+1

∑
αj<βj

[hr
αjαj

hr
βjβj

− (hr
αjβj

)2] ≥ 1
2
Ψ, (40)

and so from (32) we obtain

k∑
j=1

τ (Lj) ≥
k∑

j=1

[nj(nj − 1) + 9nj cos2 θ]
c

8
+

1
2
Ψ. (41)

From (33) and (41) we derive the desired inequality.

The case of equality at a point p ∈ M holds if and only if we have the equality in all the previous
inequality and also in the Lemma 4.1. Similarly, as in Theorem 4.2, we obtain the desired form for the shape
operators Ar , r ∈ {n + 1, ..., 4m} . �
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6. Ricci curvature and squared mean curvature

B.-Y. Chen [10] established a sharp relationship between the Ricci curvature and the squared mean
curvature for a submanifold in a Riemannian space form. The extension of this inequality for slant submanifolds
in complex space forms was proved in [25].

A submanifold M of a quaternion Kähler manifold (M, σ, g) is said to be a quaternionic CR-submanifold

if there exists two orthogonal complementary distributions D and D⊥ on M such that D is invariant under

quaternionic structure and D⊥ is totally real (see [4]). Some recent results concerning quaternionic CR-

submanifolds can be found in [21]. An estimation of the Ricci curvature of a quaternionic CR-submanifold in

a quaternionic space form has been established in [26]. It is clear that, although quaternionic CR-submanifolds
are also the generalization of both quaternionic and totally real submanifolds, there exists no inclusion between
the two classes of quaternionic CR-submanifolds and slant submanifolds. Next we find an estimation of the
Ricci curvature for slant submanifolds in quaternionic space forms.

Theorem 6.1 Let Mn be a θ -slant proper submanifold of a quaternionic space form M
4m

(c) . Then:

i) For each unit vector X ∈ TpM, we have:

Ric(X) ≤ (n − 1)c
4

+
n2

4
||H ||2 +

3c

8
cos2 θ. (42)

ii) If H(p) = 0 , then a unit tangent vector X at p satisfies the equality case of (42) if and only if X

belongs to the relative null space of M at p :

Np = {X ∈ TpM |h(X, Y ) = 0, ∀Y ∈ TpM}.

iii) The equality case of (42) holds identically for all unit tangent vectors at p if and only either p is a
totally geodesic point or n = 2 and p is a totally umbilical point.

Proof. i) Let X ∈ TpM be a unit tangent vector at p. If we choose an adapted slant basis {e1, e2 =

sec θ Pαe1, ..., e2s−1, e2s = sec θ Pαe2s−1} of TpM such that e1 = X , where 2s = n , then from (23), using (9),

we find

n2||H ||2 = 2τ (p) +
1
2

4m∑
r=n+1

[
n∑

i=1

(hr
ii)

2 + (hr
11 −

n∑
i=2

hr
ii)

2]

+2
4m∑

r=n+1

[
∑
i<j

(hr
ij)

2 −
∑

2≤i<j≤n

hr
iih

r
jj]

− c

4
[n(n − 1) + 9n cos2 θ]. (43)

By using the equation of Gauss and (9), we obtain

∑
2≤i<j≤n

K(ei ∧ ej) =
4m∑

r=n+1

∑
2≤i<j≤n

[hr
iih

r
jj − (hr

ij)
2] +

(n − 1)(n − 2)c
8

+
3(3n − 1)c

8
cos2 θ. (44)
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From (43) and (44), we find

1
2
n2||H ||2 ≥ 2τ (p) + 2

4m∑
r=n+1

n∑
j=2

(hr
1j)

2 − 2
∑

2≤i<j≤n

K(ei ∧ ej)

−(n − 1)c
2

− 3c

4
cos2 θ (45)

and therefore we obtain (42).

ii) If H(p) = 0, then equality holds in (42) if and only if

hr
1j = 0, j ∈ {2, ..., n},

hr
11 =

n∑
i=2

hr
ii, r ∈ {n + 1, ..., 4m}

and therefore e1 = X lies in Np . The converse is clear.

iii) We have equality in (42) for all unit tangent vectors at p if and only if

hr
ij = 0, i 
= j, r ∈ {n + 1, ..., 4m},

n∑
i=1

hr
ii = 2hr

jj, j ∈ {1, ..., n}, r ∈ {n + 1, ..., 4m}.

If n = 2, it follows that p is a totally umbilical point and if n 
= 2 then p is a totally geodesic point.
The proof of converse part is straightforward. �
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