Q

Turk J Math
34 (2010) , 35 — 44.
o © TUBITAK
TUBITAK doi:10.3906 /mat-0810-46

Nontrivial periodic solutions of nonlinear functional differential
systems with feedback control

Yingzin Guo

Abstract
This paper examines the existence of nontrivial periodic solutions for the nonlinear functional differential
system with feedback control:
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u'(t) = —p(tyu(t) + )y Bu(t) /Ooo [t x(t —0)) dipu(6).

Under certain growth conditions on the nonlinearity f, several sufficient conditions for the existence of

nontrivial solution are obtained by using Leray-Schauder nonlinear alternative.
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1. Introduction

In this paper, we are concerned with the existence of nontrivial periodic solutions for the delay functional
differential equations with feedback control:
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where f € C(R*R) with f(t +w,2) = f(t 2), the coefficients a,a;, bj, ¢, p, 3, € C(R,R") are w-periodic
functions, ¢;, ¢;,0,, ¢, € C(R,R) are nondecreasing with [ de;(0) = 1, [;° d¢s(0) =1, [;° dd,(0) =1, and
JoSdv,(0) = 1,i=1,2,...,n35 = 1,2,...om;p = 1,2,...,p ;v =1,2,...,q, where R = (—00,400),RT =
(0, 4+00).

In the real world, the variation of the environment plays an important role in many biological and
ecological system. Thus, the assumption of periodicity of the parameters in the way incorporates the periodicity
of the environment. An ecological justification of model (1.1) can be found in [3, 4, 6, 10]. Using continuation
theory for k-set-contractions, Lu [8], Lu and Ge [9] studied the existence of positive periodic solutions for the

following system of functional differential equations

dzzift(t) = N(0)[at) ~ BN ~ 3 bitNu(t — (0) — 3 e (OONG ¢ — 050, (1.2)
i=1 j=1

where the functions a(t), 8(t), bi(t), ¢;(t), 7i(t), 0;(t) are continuous w-periodic, and a(t) > 0, G(t) > 0,
bi(t) > 0, ¢;(t) >0 (¢ = 1,2,...,n, j = 1,2,...,m). Yang and Cao [11] used Mawhin’s continuation
theorem [2] to investigated the existence of positive periodic solutions of (1.2). The main results obtained in
[6, 9] required ¢; € C1,0; € C? and 07 <1 (j=1,2,...,n). As far as we known, there has few papers which
deal with the existence of periodic solutions of neutral equations with distributed delays (1.1).

Recently, Chen et al. [13], by using Mawhin’s continuation theorem [2], investigated the existence of

positive periodic solutions of the following single species neutral logistic model with several discrete delays
n'(t) = n(t) [a(t) — Bt)n(t) = > bit)n(t, a'( Z cin' (t — it
—s(tnu(t) - 3 dilult — oi(1))), (1.3)

u'(t) = —e(t)u(t) + )+ Zgz n(t = ni(t)))-

where the functions a(t), 8(t), bi(t), ci(t), 6, di(t), e, f, gi, Ti, Vi, 04, i are nonnegative continuous w-periodic, and
i=1,2,...,n. Liu and Li [7], by using Avery-Henderson fixed point theorem, study the existence of positive

periodic solutions of the following nonlinear nonautonomous functional differential system with feedback control

(1.4)

{x'(t) = —r(t)a(t) + F(t, x, u(t — 0(t))),
W (6) = ~h(B)ult) + g(0)a(t — (1),
where the functions d(t),o(t) € C(R,R),r(t),h(t),g(t) € C(R,(0,+00)), all of the above functions are w-
periodic, and w is a constant, F(t + w, T11y, 2) = F(t, x4, 2).

In [1, 5], Li, by using the abstract continuous theory for k-contractions and a fixed point theorem of strict-

set-contraction, established criteria for the existence of positive periodic solutions for the periodic functional
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differential equations with feedback control,

and

where 7, K, a,b, ¢, 3,7,9,0 € C(R, (0, +00)) are w-periodic functions in (1.5); the coefficients a, a;, b, cu, p, By €
C(R,R*) are w-periodic functions, ¢;, ¢, 0., 1, € C(R,R) are nondecreasing with [ dp;(0) =1, [~ d¢:(0) =
1, [, d6u(0) =1, and [;° dy(0) =1,i=1,2,....,n,j=1,2,....m,u=1,2,...,p,v=1,2,...,q in (1.6).

Motivated by the above paper, we are concerned with (1.1). The main purpose of this paper is to establish
some simple criteria for the existence of nontrivial solution of the delay functional differential equations with
feedback control (1.1). Note that we do not require any monotonicity and nonnegative on f. A periodic solution
u(t) of (1.1) is called nontrivial periodic solution if w(t) # const,t € [0,w].

For convenience, we introduce the following notation:
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+ZC“ / / H(s—0,s) Zﬂy s)dsdd, (0)]ds,
p=1
I =
tggg]{a( )}

efts p(0)do

H(t,S):W, E[t,t+W],
o= JSa(0)do

G(t,s) = € [t,t+ w].

1 — o Jo al0)as’
It is easy to see that H(t + w,s +w) = H(t,s),G(t + w,s + w) = G(t,s) and

1 oJ p(0)do

O<W H(t,s) < T ar ] seltt+wl.

e Jo a(6)de . 1 N
T Y (0do < _— = .
0< 1 — e Jo a(®)do — (t,s) < 1_ o Joae)de , SEItt+w

2. Preliminaries and lemmas

In this section, we give some preliminaries and lemmas which will be used in the proof of the main results.

Since each w-periodic solution of the equation
q %)
u/(t) = —p(tyult) + > B (1) / ft, 2(t — 6)) e, (6)
v=1 0

is equivalent to that of the equation

t+w q %)
u(t) = H(t,s) Zg,,(s)/o f(s,2(s — 0)) dip, () ds := (Bx)(t), (2.1)
v=1

t

and vice versa, where z(t) is w-periodic, therefore, the existence problem of w-periodic solution of system (1.1)
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is equivalent to that of w-periodic solution of the equation

n +00

2(0) = alt)a) = [Yailt) [ ft.alt 0)dp)

i=1 0

m

+oo
#3000 [ s =0) s ) (2.2)

Jj=1

P 0o t—0+w q 0o
3 e / / H(t— 0,53 6u(s) / F(s,2(s — £) duy (€) ds ds, (6)]

p=1 -0 v=1

Remark 2.1 Tt is easy to see that the function wu(t) defined by (2.1) is w-periodic function. In fact, for any

w-periodic function z(t),

t+2w q (e’
u(t + w) :/ H(t—i—w,s)Zﬁ,,(s)/O f(s,z(s — ) e, (0) ds
t v=1

+w
t+w q )
= H(t—i—w,h—i—w)Zﬂu(h—i-w)/ fh4+w,z(h+w—0))dy,(0)dh
t pyt 0
t+w

— H(t,s) Y By(s) /OOO f(s,x(s —0))dy, (0)ds
v=1

t

=u(t).

To obtain the existence of periodic solutions to (1.1), we make the following preparations:

Lemma 2.2 [12] Let X be a real Banach space, ) be a bounded open subset of X, 0€Q, T:Q — X isa

completely continuous operator. Then, either there exists x € 00, u > 1 such that T(x) = px, or there exists a

fized point z* € Q.

To apply Lemma 2.2 to the equation (2.2), we set
CY ={zx c COR,R) : (t + w) = z(t)}
with the norm |z|o = max;ejo){|2(t)]}, and
Cl ={z c CYR,R) : z(t + w) = z(t)}
with the norm |z|; = |z]o + |2'|o. Then C° and C! are all Banach spaces.
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Let T be defined by

t+w n +oo
o = [ GOl w) [ fealc—0)da

m

“+oo
3 b06) / F(s.2' (s — 0)) do; (0)

Jj=1

p %) c—0+4w q %)
#3ae) [ [ 0930 [ o - ) A dsag, @]

p=1

Then, when x € CL, we have

t+2w n “+o0
(Ta)(t +w) = /+ Gt +w,9[ Y ails) / £(s.2(s — 0)) dgi(0)
t+w i=1
m 400 )
+;bj<<> / £(6,2'(s — 0)) do; (0)

+30eu(6) [ a)ls a5, (0)]ds

p=1

t+w n +oo
:/t G(t—i—w,v—i—w)[Zai(v—i—w)/O flo4+w,z(v+w—0))de;(0)

i=1

+oo
+ij(v+w)/0 F(o +w,2 (04w — 6)) dé; (6)

+ ) cu(v +w) /OOO(CIMC)(U +w—0)ds,(9)]dv

j=1 p=1

— (Ta)(1).

Using the Arzela-Ascoli theorem, we can conclude that T : C1[0,w] — C'[0,w] is a completely continuous

operator, and (2.2) has a solution z* € C'[0,w] if and only if u* is a fixed point of 7' in C[0,w].

3. Main results

We are now in a position to state and show that our main result of this paper.
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Theorem 3.1 Suppose that f(t,0) # 0, and there exist nonnegative functions k,r € L'[0,w] such that

{ |f(t, )| < k(t)|z] +r(t), ae (t,z) € RXR,

O+ M+ AK < 1.

Then system (1.1) has at least one nontrivial w -periodic solution.

Proof. Since f(t,0) # 0, there exists [0, 7] C [0,w] such that

Juin [ f(t,0)] > 0.

On the other hand, from the conditions r(t) > |f(,0)], a.e. t € R, we know that 7™ + AR > 0. Let
a= "+ AR)1— M+ kM + AK) 1, Qu = {2 € CL: |z|) < a,t €]0,uw]}.
Suppose x € 90, A > 1 such that Tx = Az; then

Aa = \Nz|y = |Tz|1 = |Tz|o + [(Tx)'|o.

Due to

n

—+o0
|(Tz) (t)|o = max ‘x(t)a(t) — [Z ai(t)/o flt,x(t —0))dp;(0)

t€[0,w]

1=1
m +00 )
+ ; b;(t) /O F(t,2'(t — 6)) de; (6)
P oo pt—b+w q o
+ ; Cu(f)/o /t_e H(t—0,s) ;ﬁu(s) ; fs,2(s =€) A, (€) ds dé, (0)] ‘
< lz(t)h nax {a(t) + [k(t) > ai(t) + k() > b;(t)
' i=1 =
P oo rt—0+w q
+ ; cu(t) /O /t_e H(t—0,s) ; By (s)k(s)dsdd, (0)] }
+ max [r(t) S ai(t) +r(t) S by()
’ 1=1 j=1
P oo pt—0+w q
+ Z cu(t /0 /t—e H(t—0,s) Z By (s)r(s)dsdd, (9)]
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and

t€[0,w]

t+w n &)
|(Tx)(t)|o = max G(t, a;i(s f(s,z(sc — 0))de; (0)
O ‘/ § ; / S S (2]
+oo
#3000 [ flea'ls = 0)do,0)

p %) c—0+4+w q %)
#3009 3000 [ e - )i dsas, 0]

p %) c—0+4+w q
+) cu(c)/o / H(s—0,5) > Bu(s)r(s) dsdd,(0)]ds = AK|x(t)1 + AR,

v=1

then
Aa = Azl = [Tz|y = [Tz|o + [(Tz)']o

< (M + EM + AK)|z(t)|1 + (M + AR)
= {1+ kM + AK)a + (r™ + AR).

Therefore,
(r™ + AR)

A< (T +EM 4 AK) + =

=M +kM + AK)+[1 — T+ kM + AK)] =

This contradicts A > 1. By Lemma 2.2, T has a fixed point 2* € Q,. Since f(¢,0) # 0, (2.2) has at least
one nontrivial solution u* € C1[0,w]. Thus, system (1.1) has at least one nontrivial w-periodic solution. This

completes the proof. O

Example. Consider the following system:

cost)x —cost [T 2e~tad(t —
(1) = (1 + cost)x(t) _{1 t/o [M_szt]d%(@

107 400 1+ 23(t — 0)
L +sint [T 2e~t23(t — 0) 5 1 —sint [
g : — 3.2
+ 100 /0 [1+x’4(t—6‘) sin®t] d¢;(0) + 350 /0 u(t 9)d5u(6‘)}, (3.2)

% 9e—ty3(f
u'(t) = —(1 — cos t)u(t) +/ [2 (t=0)

a2
A m — Sin t] dwy(e)
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Obvionsly, a(t) = S5622, 320y au(t) = 15684, T, by (1) = 558 0 1) = 138

p(t) =1—cost, Y2 B(t) =1, f(t,x) = 216;;23 —sin?t, k(t) = e~*, r(t) = sin? t. Then, it is easy to prove that

|f(t,2)| < k(t)|z]+r(t), ae.(t,z) € RxR, and e *™ < k(s) < 1,5 € [0,2n],A= — 1, -+ < H(t,s) < ef:—il,

1
1
1—e 5

1—cost 1+sint 2me?™(1 —sint)
M <
=00 T a0 T s — 1) ]

4 4re®™

< b < 0.0495
=300 " 30(@—1) © ’

|t

2m . o .
1- t 1 t 2 1 —sint
K S/ [ cost + sin me’™ (1 —sint)
o 400 400 320(e27 — 1)
< T n 472e2™
=100 ' 320(e2" — 1)

2,27
AK < [T i !
— €

: 0.8561
100 ' 320(e>" — 1) 1 < ’

_1
5
1
II=— <0.0637.
57

So MM+ kM + AK < 0.9693 < 1. Hence, by theorem 3.1, system (3.2) has at least one nontrivial 27 -periodic

solution.
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