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Existence and uniqueness of solutions to neutral stochastic
functional differential equations with infinite delay in L?(Q, C})

Haibo Bao

Abstract
In this paper, we shall consider the existence and uniqueness of solutions to neutral stochastic functional

differential equations with infinite delay in LP(Q2, Ch) space:
d[w(t) - G(wt)] = f(t7$t)dt + g(t7 It)dB(t)7

where we assume f : RT x LP(Q,Ch) — LP(Q,R™), g : Rt x LP(Q,Cy) — LP(Q,L(R™,R™)), G :
LP(Q,Cn) — LP(Q,R™), p> 2, and B(t) is a given m-dimensional Brownian motion.

Key Words: Neutral stochastic functional differential equations; existence; uniqueness; infinite delay.

1. Introduction

In recent years, the existence, uniqueness and stability of stochastic differential equations have been
extensively investigated by many authors (for example, see L. Arnold [1], A. Friedman [4], R. Z. Has’minskii
[6], N. Ikeda and S. Watanabe [7], X. Mao [12, 13]). It is well known that these topics have been developed
mainly by using two different methods, that is, the iterative method and the Banach fixed point theorem.
As a matter of fact, there exist extensive literatures on the related topics for stochastic functional differential
equations and stochastic partial functional differential equations with finite delay (for example, see K. Liu and
X. Mao [10], K. Liu and X. Xia [11], S. E. A. Mohammed [14], T. Taniguchi et al [15], T. Taniguchi [16] and
the references therein). However, as far as the present authors know, there seems to be no work on neutral
stochastic functional differential equations with infinite delay. We would also like to mention that some similar
topics to the above for functional differential equations with infinite delay have already been investigated by
various authors (cf. [2], [3], [5], [9], [17], [18]).

In this paper, we adopt the symbols as follow: R"™ denotes the usual n-dimensional Euclidean space,
R~, R™ and R denote the interval (—o0,0], [0,00) and (—o0,+00) respectively. Suppose z € R™, let
lz| = Y |wil,x = (x1,...,2n). Let (Q,F,P) be a probability space on which an increasing and right
continuous family {F:}ic[0,400) Of complete sub-o-algebras of F is defined. Suppose z(t) : @ — R™ is a
continuous F;-adapted stochastic process, we can associate with another process z; : Q@ — LP(Q,C}y), t > 0,

by setting x+(s)(w) = z(t +s)(w), s € R~. Then we say that the process z; is generalized by the process x(t).
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Here LP(Q, C}) denotes the space of all F-measurable stochastic processes from 2 to Cj, with L?(Q, C})-norm
(see Section 2). Let B(t) is a given m-dimensional standard Brownian motion.
In this paper, by using Banach fixed point theorem we shall discuss the existence and the uniqueness of

solutions to stochastic functional equations with infinite delay,

{ dlz(t) — G(xr)] = f(t, ze)dt + g(t, z¢)dB(t), t >0, (1)
xo=¢ € LP(Q,Cy), '

where ¢ is JFp-measurable. Throughout this paper, we shall assume f : Rt x LP(Q,C}) — LP(Q, R") and
g: RT x LP(Q,Ch) — LP(Q, L(R™, R™)), p > 2.

The contents of this paper are organized as follows. In Section 2, the Banach space LP(Q2, C},) is studied
which is fundamental for the subsequent developments. In Section 3, we shall discuss the existence and the
uniqueness of solutions to stochastic functional equations with infinite delay. Finally, we shall present in Section

4 some applications about Volterra stochastic integro-differential equation with infinite delay:

dlz(t) — kx(t —s)] = /_ D(t, s)F(xz(s))dsdt + /_ K(t,s)G(x(s))dsdB(t), t>0.

2. Banach space LP(Q2,C},)
Suppose x(t) : [a,b] — R™. Let

[@8] = sup{|z(s)| : a < s < b}.

|

Assume h is a continuous function from R~ to R with h(s) >0 and | = f_ooo h(s)ds < 400. Let
0
Ch = {w € C(R", R")|/ h(s) |l *%ds < +oo}.

Then C}, is a Banach space with the norm ||z||¢, = f_ooo h(s)||z||*%ds (cf. [9], [17], [18]).

Denote by LP(2, C},) the space of all F-measurable stochastic processes ¢ : @ — C}, such that ||¢(w)]|c,
is of class LP(p > 2), i.e.

0

@, = {02 Cl(EL[ (s)loldsi)F < +oc).
It is easy to see
O 1
Sy = EL[ bl s}

is a norm in LP(£, Ch).
Let
L7(Q, C([a,b], R™) = {6 : © — C([a, 1], RO|(B[|]“]7)7 < 400}
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with the norm

a 1
18] Lo, (fap),rry) = (E[l]|1*]P)7.

Lemma2.1 For any ¢ > 0 and any k > 0, there exists 6 = (¢, k) > 0 such that for any ¢1, ¢ € LP(Q,Cy,), if
|61 — d2llr(,cy < 0, then ||¢1 — d2|Le(o,c(=k.0),R)) < €

Proof. If this is not true, suppose there exist ¢g > 0, ko > 0 such that for any § > 0, there exist

0, 99 € LP(Q, Cy) satisfying || — ¢8| Lo(a,cp) < 0, then we have ¢ — ¢3| Lr(0,c(1—ko,0,R7)) = €0- Let lo =
f__ol? h(s)ds > 0 and select dy < €glo , then there exists ¢, ¢3 € LP(Q, Cp) satisfying |69 — ¢ r(0,c0) < o
On the other hand, ||¢§ — ¢g||Lp(Q7C([_kO7O]7Rn)) > ¢p. Thus

0
160 — Bllimicn) = @V h(s)[169 — g3)|1+Vds)?)

— 00

—ko 0 .
= (B[ / h(s)]|6) — @31 %ds + /_ ) h(s)l|6 — @9|1=0lds]?) >

— 00

—ko

> (Bl ol - oBE sy

—ko )
> (Bl hs)let - g dasn)?

—ko
> / h(s)ds|| ) — G5l v (2,0 (ko 0], R™))
2 60107
therefore dy > €plp, which contradicts dy < €glp. This completes the proof. |

Lemma 2.2 Suppose ¢,, are sequences in LP(Q,C(R~, R"™)) which are uniformly bounded; then lim | ¢,, —
dollr(,c;,) = 0 if and only if for any k > 0, #gnoo |6m — ¢ollLr,c(~k.0,Rm)) = 0.
Proof. Necessity can be proved straight away by Lemma 2.1, so we only need to prove the sufficiency. Suppose

|omllLr@.c(r- ) < H. Since for any k > 0, Jim |6m —dollLr(@,c(|=k,00, 7)) = 0, thus ||¢ollLr@,c(~k.0],R7))

is bounded, so ||¢ol|Lr(,c(r-,rn)) is also bounded. Assume ||¢ol|Lr(0,c(r-,rn)) < H'.

By I = f_ooo h(s)ds < +o00, then for any € > 0, there exists k£ > 0 such that f__olz h(s)ds < e, and there

exists N > 0 such that when m > N, we have [|¢,, — ¢ol|zr(0,c(—k.,0),r")) < €. Therefore, if m > N, we have
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0
[6m = oolnacy = EL[ hs)Iom — ool Vs

— 00

—k 0
= Bl Hlon - ollVds+ [ 15l - bulleVas)

— 00

—k 0
< g / B(s) |6 — o]l >OVds]? + 221 B / ) — Vs
—k - - 0
< o / W()dsP E(|om|® + 60| F )P + 201 B / )~ 6ol s
—k
< 4 / RS 0m I 000 oy + 1900y o] + 27 (€
< 4P7YH(HP + H'P)eP + €PIP).
This completes the proof. O

Lemma 2.3 LP(Q),C},) is a Banach space.

Proof.  Suppose{¢,,} are a Cauchy sequence in (LP(Q, Cp), || - |zr(2.,cy)), then for any € > 0, there exists a

positive integer N, if m’, m > N, then we have

0

1
| prmr — ¢m||LP(Q7Ch) = (E[/ h(s)||¢m: — ¢m||[570]d5]p)p <e€
and
0 . s 0 . s
om | Lo@,cn) — PmllLr@.cn] = |(E[/ h(s)||@me||1*ds]P) > — (E[/ h(s)l|¢m 1> ds]P)7 |

IN

0 0
[ / B(S) [ [[#ds — / W(s)[6m |V ds)?] 5

— 00 — 00

= |om — dmllLra,cn) <€

Thus ||¢m| zr.c,) is also a Cauchy sequence, thus it is bounded.
Suppose ||[¢m| zr,c) < M, we prove that for any &k > 0, {||¢m| zr,c((=k,00,8m))} is bounded.

If this is not true, then there exist m;,i = 1,2,--- such that ||¢m, | zr,c(~k.0),r)) > 4. Thus,

48



BAO

0
(E[/ 7). || ONds]?) 7

— 00

|, le (2,00

—k

> (E[/_ h(s)||dm, || > ds]?) 7
—k

> (E[/_ h(s)||dm, || F-Vds]P) 7

> i/_kh(s)ds—>+oo.

This contradicts ||| Lr0,c) < M.

By Lemma 2.1, we have [|¢m — ¢m nr,c((=k,00,8m) < € if m,m' > N and N is large enough. So there
exists a function ¢ € LP(Q2, C([—k,0], R")) such that lim ||¢n — ¢l zr(q,c(~k.0),r7)) = 0. Since k is arbitrary,

¢ can be extended on R, ie., ¢ € LP(Q,C(R™,R")).
For any £ >0,

0
(E[/ h($)|6mr — dm |*Ods]?) 7 < e,
—k
let m’ — oo, we have

0
(E] / A()|ém - o||-ds]?)7 < e.

Thus,
0

[6m = ¢l Leo.cn) = (E[/ h(s)|[ém — ol|*Ods]?) 7

— 00

Le. lim {l¢m = ollLr.0n) = 0-

Moreover,

0
6y = B hs)lol sy

— 00

IN

0
B[ ) oml* + o — ol*)asl?

— 00

0

<e

0
< 2 B[ h)onl s+ 2B [ (s)on - ol*Vasr

— 0 —o0

< 2 Mol oq.on + 27 0m = Sl .cp) < 0

Thus ¢ € LP(2, Cp), therefore (LP(Q, Ch), || - || zr(0,c,)) is a Banach space.
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Lemmas 2.4 Suppose ¢ € LP(Q,Ch), A > 0, z(t) = ¢(t) on (—o00,0] and z(t) € LP(Q, C(]0, A], R™)) on
[0, A], then for all t € [0, A],z, € LP(Q, Cy) and x; is continuous for ¢t in LP(Q, C},).

Proof. As a matter of fact, we have

0 —t 0
B[ bl sy = EL[ el s+ [ (o dasp
—t

— 00 — 00

—t 0
< 2p-1E[/ h(s)thn[&%s]p+2p-1E[/ h(s) ]| s
—t

—t 0

< 2Bl hlpmax{lad = el DO dsl? + 22 B n)lle] s
—o0 —t
—t —t

< 4p-1E[/ h(s)llwll“*ﬁo]ds]fﬂ+4p‘1E[/ h(s) |z ds]?

0
+ 2p_1E[/ h(s)]|z||=0ds)P

—t

IN

0
4p‘1E[/ h(s)||o)|l=Vds]? + (4771 + 2P~ 1P|z Locar.o(0,a), R7)) < OO,

— 00

therefore x; € LP(§2, Ch).
Next we prove that z; is continuous for ¢t. Without loss of generality, we suppose to € [0, 4], t € [0, A].
Let 0 <ty <t, for any € > 0, there exists M (tg,€) > 0, such that

-M 0 L e -M ¢
O e e

— 00 — 00

where [|z[|Lr(q,0([0,4],r7)) < L. Suppose that |tg —t| is small enough such that

€
llz: = 240l Lo (0,0(=M01, Rn)) < Tk

Thus

0
lot =2 lpey = ELf hOlo:—ai]*Vds”

— 00

-M 0
= Bl bl s [ sy
-M

— 00

IN

-M -M
Y RO T Ry R CTEN e

— 00 — 00

0
+ 2p_1E[/ h(s)|lx: — xt0||[s’o]ds]p
-M
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IN

—-M
2p‘1E[/ h(s) (o [ + [l F0 + [z, =) ds]?

— 00

0
+ ol / h(s) e — oy ||=Ods]P
M

—M —M
< 2B / h(s)thon[w]ds]P+4p-1E[/ h(s) |0 ds]?
0
L g / h(s) 2 — 2| #OVds]?
—M
-M —-M
< Bl [ ) *Vase B w0 dsp

0
+ 2p-1E[/ h(s) | — 2, |- ds]?
M

—1op € -1 -1
< AP+ VI .o, ammy) T2 T = ol n0,0 (- 01,70y
e? P P »
< Z + Z + 5 = €.
Therefore ||x; — x4, Lr(0,cp) < € thus x; is continuous for ¢ in LP(Q, Cy). O

3. Existence and uniqueness of solutions

We shall consider the following stochastic integral equation instead of (1.1) by finding a fixed point of
the operate ®:

{ w(t) = $(0) + G(xy) — G(wo) + [ f(s,3)ds + [ g(s,25)dB(s), t>0, (3.1)
o = (b S LP(Q, Ch),

where ¢ is Fy-measurable.

Throughout this section, we assume that:

(Hy) : For arbitrary &,n € LP(Q,C)) and 0 <t <T, suppose that there exist positive real constants
Ly =Ly(T), Ly = Lo(T), K =k(T) > 0 such that

1£(t,8) = ft;m)llee < Lall€ = nllze.cn)s

gt &) — gt m)llLe < L2ll§ = nllLr@.0n)

and
1G(&) —G)ller < &ll€ = nllLr.cn)-

o1



BAO

(Hg) : There exists a ¢ = ¢(T") > 0 such that

1 Ol + Mgt e + 1GE) e < (X + €]l Lr.0n)

for 0 <t < T, where T > 0 is any fixed time .

Theorem 3.1 Suppose assumptions (H1) and (H2) hold. Then there exist a unique local uniformly continuous
solution to (1.1) for any initial value (0, ¢) with ¢ € LP(£,C},).

To prove this theorem, assume 7" > 0 is a fixed point to be determined later, and Dy is the subspace of
all continuous processes z which belong to the space C((—o0, T, LP(2, Cr)), 2z, € LP(R, C},), with||z| p, < oo,
where

[2lpr :== sup |[2t]|ze(o,cn)- (3.2)
0<t<T

Now we introduce the following mapping ® on Dyp:

{ (@2)(t) = ¢(0) + G(z) — G(z0) + [y F(5,25)ds + [ g(s,25)dB(s), t >0,
(®2)(t) = ¢(t) € LP(Q,Cy), t<0.

Lemma 3.1 Suppose the operator mapping ® and the corresponding domain Dt are defined by (3.2), then
(I)(DT) C Dr.

Proof. By the definition of ®, we have

0
1@ )lEc,y = EL[ Aol @2))>Vas?

— 00

—t 0
= Bl H@] s+ [ @ as

— 00

—t 0
< 2p-1E[/ h<s>||<<1>z>t||[570]dslp+2p-1E[/ h(s)|(B2)s |1 ds]?
oo —t
—t 0
< 2p-1E[/ h(s)max{||<<1>z>t||[57-th||<<I>z>t||[-f70]}ds1p+2p-1E[/ h(s) | B2 Odsp
oo —t
—t —t
< 4p—1E[/ h(s)||<1>z||[5+f70st]P+4p—1E[/ h(s)|| @zt ds]?

0
+ g / h(s)|[ @20 ds]?

—t

0
< 4 / h(s) 6] Ods]P + (471 4 201 )P |32

— 00

II)/P(Q7C([O7T]7R"))'

Almost every sample path of (®z)(¢) is uniformly continuous on the interval [0, 7], then it is easy to prove
that
[ sup [(@2)()[]” = sup [(®2)(H)[" a.s.

0<t<T 0<t<T
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By the Doob’s inequality (cf. Mohammed [14, Theorem 6.1]),

B swp [(®2)(1)]" < (2)"B|(®2)(T)P"

0<t<T

So we have
p — P _ p b p p
1920170 0.c0,m1,8m)) = E[OiltlgTK‘I’Z)(f)H = EozlngK‘I’Z)(f” < (p_ 1) E|(@2)(T)]
» T T
= GELPEI60) + Gla) — G + [ frzir+ [ gt z)dB)?
0 0
p - p - p _
< (== EG(0) [P + (——=)P5" (L + (|8l + (——=)P5" (1 + [|z])h,
p—1 p—1 p—1
p g p g
+ (—)p5p_1E|/ f(T,ZT)dT|p+(—)p5p_1E|/ g(7, 2;)dB(T)|?
p—1 0 p—1 0
p pep—1 p —1 P
= (L yp5r1Ep0)P + (—2- 5l
(p—l) [9(0)] +(p_1) (14 [|9)py,
p _
+ (E)pt’)p 1Cp(1+||2||)%T+Il +I27
» T
ho= et [ pe ey
p—1 0
p e [T
< CEyrwrt [ Bl P
p—1 0
p e [T
< Ry rt [ oo
p—1 0
P _ P
< (m)plop TP (14 |2]5,),
» T
b= (Eors i [ trnease)y
p—1 0
-1 o [T
< Loy BEEr [ plgir ) par
p—1 2 0
-1 _ T
< p )p5p—1[P(P )]%T%cp/ (1 + ||z || Lo@,cn)PdT
p—1 2 0
p D p—lp(p_l)ﬁ L P
< ()P0 [=——=]2 T2 (1 + ||2]p,.)-
p—1 2 T
Therefore, we obtain that |®z||p, < co. This completes the proof. O
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Proof of Theorem 3.1: Let X,Y € Dr, then for any fixed t € [0, T

0
(@) = @Y Ml = EL () (@X)0(0) — (@), (0)] s

= E[/__t h(s)|[(®X)(t + 0) — (BY) (¢ + 0)[|5ds + /0 h(s)|[(@X)(t + 0) — (BY)(t + 0)]|15ds]?

—t

IN

B[ (s max{[(@X)(t +0) — (8Y)(¢-+ ) [@X)(¢ +6) — (@)t + )]~ ds

+ /O h(s)|[(@X)(t + 0) — (®Y)(t + 0)]|I>Vds]P

—t

B[ hI@x)@+0) @)+ 0l as + [ REI@X)(E+0) - @)+ o)

— 00

IN

+ /O R(s)|[(@X)(t + ) — (DY) (¢ + 0)||I =% ds]?

—t 0
BU[ n(s)lott+0)— o+ 0 ds+2 [ ns)|@X)(t+0) - (@)t +0)] s

— 00

IN

0
= E[2/ h(s)|@X — @Y(|0ds]P < 1P27||9X — DY, 0 c0.00.8m))

= [P2PE[ sup [(®X — ®Y)(¢)|]’ =IP2PE sup [(PX — OY)(¢)|P
0<t<T 0<t<T

_pP_
p—1

IN

P3P( YE|(®X — dY)(T)[?

IN

(L3 1B (|G(Xr) - GY)IP + P(—L)P3% Y| X + Yo | E| / U X0) = Yol
p— 1 T T p— 1 T T A 3 T s L7

T
+ P B [ ot X0 — g(r Yl

IN

I RIX =Y, I+ Lo

T
b= v / (7, X2) — f(r, Yo)ldr[J?

IN

T
Tl RNCS SRS BIRE

IN

T
P _ P
lp(ﬁ)?gzp 1Tq/O L€||XT—YT||ZP(Q7C}L)dT

IN

I T RX = Y,
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T
I = lp(]%)pi%zp_lE[l/ [9(7, X7) — g(7, Y7)]dB(7)[]?
- 0
-1 s (T
< lp(L)p:),?p—l[M]%T%/ Elg(r, X;) — g(1,Y,)|Pdr
p—1 2 0
p =) e [T
S IP(E)P?)QP 1[T]QT 2 /0 Lg"XT_YT|‘IL),P(Q,C;L)dT

-1
< wPoypgr PO st x|

Hence by takeing a suitable 7" > 0 such that T is sufficiently small, we obtain a positive real number
p(T) € (0,1) such that
[®X — @Y pr < p(T)[|X = YllDs

for any X,Y € Dp. Thus by the well known Banach fixed point theorem we have a unique fixed point X € Dp
which yields

which proves the existence of a local uniformly continuous solution of (1.1). The uniqueness of solution is

proved similarly. Therefore the proof is complete. O

Theorem 3.2 Let f : RT x LP(Q,Cy) — LP(Q, R"Y), g : RT x LP(Q,Cy) — LP(Q, L(R™, R™)) satisfy the

assumption (Hy). If there exists a constant ¢ > 0 such that

&N Le + 9 e + 1GE) e < e+ €l Lr@.0n)

for all £ € LP(2,Cy), t > 0, then there exist a unique, global uniformly continuous solution X (t) : @ — R" to
the equation (1.1) for any initial (0,¢) with ¢ € LP(Q, Cp).

Proof. If f and g satisfy the global Lipschitz condition, then the proof of the theorem can be given similarly
as a corollary of Theorem 3.1. If f and g satisfy the local Lipschitz condition, then the proof is given by the

standard truncation method [15, Theorem 2.5]. Hence we omit the proof. O

4. Applications

The existence, uniqueness and stability of Volterra integro-differential equation have already been inves-
tigated by many authors (cf. [2], [3], [17], [18]). In this section, we shall discuss Volterra neutral stochastic
integro-differential equation with infinite delay.

Let D(t,s),K(t,s) € C(R? R). Assume that there exists a positive continuous function h(s) on R~
with
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|D(t, t+ s)|, |K(t,t+ )| < h(s), /O h(s)ds < 4o0. (4.1)

— 00

We consider the following Volterra stochastic integro-differential equation:

{ dlz(t) — kx(t — 8)] = fioo D(t, s)F(z(s))dsdt + fioo K(t,s)G(x(s))dsdB(t), t>0, (4.2)

o = (b (S LP(Q, Ch),

where k >0, B(t) is a one-dimensional standard Brownian motion, and ¢ is Fo-measurable.
Throughout this section, we assume that

(B): Both F: R— R and G : R — R are continuous functions. They satisfy the Lipschitz condition
and the linear growth condition. That is, for arbitrary =,y € R, there exist positive real constants Ly, Lo > 0
such that
[F(x) = F(y)| < Lalz —yl, |G(x) = G(y)| < La|z —yl,

and there is moreover a ¢ > 0 such that
[F(2)|+|G(@)] <c(l+|z]), z€R.
Theorem 4.1 Suppose (4.1) and assumption (B) hold. Then there exist a unique, global uniformly continuous

solution X (t) : Q@ — R to the equation (4.2) for any initial (0, ¢) with ¢ € LP?(Q,C}).
Proof. Let

0 0
ft.0)= [ Dltt+)F@s)ds, ot.0)= [ Kltt+9)G(0(s)ds, o€ L(Ch)

then

0 ¢
flt,xe) :/_ D(t,t + s)F(z(s))ds :/_ D(t,s)F(z(s))ds,

0 ¢
g(t,zy) :/_ K(t,t+ s)G(x¢(s))ds :/_ K(t,s)G(x(s))ds.

Now we prove that f(t,¢) and g(t, ¢) satisfy globally Lipschitz condition and the linear growth condition.
In fact, for any ¢, ¥ € LP(Q2, C}),

Elf(tv (b) - f(tvw)lp

0
B / Dt t + 5)(F(6(5)) — F((s)))ds|?

0
< g5 / h(s)Lx|(s) — (s)|ds]?
0
< I7E / h(s)ld — =P = LEll6 —vl12, 0.0
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thus |f(t, @) — f(t,¥)|zr < L1ll¢ — ¥l|Lr(a,cy) > and

0
Blfwo)r = E| [ D+ 9@

0
< B[ s+ lolds
0 0
< 2p—1cpE[/ h(s)ds]p—i—Qp_lcpE[/ h(s)||o| = ds]P

< P 4+ 6] 00

Similarly, g satisfies globally Lipschitz condition and the linear growth condition. Hence, all the conditions in

Theorem 3.2 are satisfied. Therefore, there exists a unique uniformly continuous solution to equation (4.2). O

Remark 4.1 For example, D(t,s) = K(t,s) = e*~t, h(s) = e satisfy the condition (4.1).
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