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doi:10.3906/mat-0707-8

On maximum principle and existence of positive weak solutions for

n × n nonlinear elliptic systems involving degenerated p-Laplacian

operators

H. M. Serag and S. A. Khafagy

Abstract

We study the Maximum Principle and existence of positive weak solutions for the n×n nonlinear elliptic

system

−ΔP,pui =
�n

j=1 aij(x)|uj |p−2uj + fi(x, u1, u2, . . . , un) in Ω,

ui = 0, i = 1, 2, . . . n on ∂Ω,

�

where the degenerated p-Laplacian defined as ΔP,pu = div [P (x)|∇u|p−2∇u] with p > 1, p �= 2 and P (x)

is a weight function. We give some conditions for having the Maximum Principle for this system and then

we prove the existence of positive weak solutions for the quasilinear system by using “sub-super solutions

method”.

Key Words: Maximum principle, existence of positive weak solution, nonlinear elliptic system, degenerated

p-Laplacian.

1. Introduction

One of the most useful and best known tools employed in the study of partial differential equations
is the Maximum Principle, as it is an useful tool to prove many results such as existence, multiplicity and
qualitative properties for their solutions. An excellent overview of the subject up to 1967 can be found in the
book by Protter and Weinberger [13]. Several papers have explored Maximum Principle for different systems

(linear, semilinear and nonlinear) involving Laplace and p-Laplace operators. The Maximum Principle has

also been studied for linear elliptic systems. In particular, de Figueiredo and Mitidieri [4, 5, 6] gave necessary

and sufficient conditions for the Maximum Principle. Also, in [8], the authors proved sufficient and necessary
conditions for having the Maximum Principle and the existence of positive solutions for cooperative linear
elliptic systems involving Laplace operator with constant coefficients. In [9], Fleckinger and Serag presented
necessary and sufficient conditions for having the Maximum Principle and for the existence of positive solutions
for cooperative semilinear elliptic systems involving Laplace operator with variable coefficients. These results
have been extended in [8] to the cooperative nonlinear elliptic system involving the p-Laplacian operators with
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constant coefficients:

−Δpui =
∑n

j �=i aij|uj|p−2uj + fi(x, u1, u2, . . . , un) in Ω,

ui = 0, i = 1, 2, . . .n on ∂Ω.

}
(A)

Using an approximation method, the existence of solutions for (A) have been proved in [2].

Bouchekif, Serag and de Thélin [3], proved the validity of the Maximum Principle and the existence
of positive solutions for the following nonlinear elliptic system of two equations involving different operators

Δp, Δq defined on bounded domain Ω of �N , with constant coefficients a, b, c and d :

−Δpu = a|u|p−2u + b|u|α|v|βv + f(x, u, v) in Ω,
−Δqv = c|u|α|v|βu + d|v|q−2v + g(x, u, v) in Ω,

u = v = 0 on ∂Ω.

⎫⎬⎭ (B)

These results have been extended in [14] to a nonlinear system defined on unbounded domain with variable
coefficients.

Serag and El-zahrani [15] considered nonlinear elliptic system with p-Laplacian and different variable
coefficients:

−Δpui =
∑n

j=1 aij(x)|uj|p−2uj + fi(x, u1, u2, . . . , un) in Ω,

ui = 0, i = 1, 2, . . .n on ∂Ω.

}
(C)

Khafagy and Serag [11] gave a generalization of the p-Laplacian system (B) to the degenerated p-Laplacian
system with variable coefficients:

−ΔP,pu = a(x)|u|p−2u + b(x)|u|α|v|βv + f(x, u, v) in Ω,
−ΔQ,qv = c(x)|u|α|v|βu + d(x)|v|q−2v + g(x, u, v) in Ω,

u = v = 0 on ∂ Ω,

⎫⎬⎭ (D)

Here, we consider n × n nonlinear elliptic system involving degenerated p-Laplacian operators with
variable coefficients. We introduce the following nonlinear system:

−ΔP,pui =
∑n

j=1 aij(x)|uj|p−2uj + fi(x, u1, u2, . . . , un) in Ω,

ui = 0, i = 1, 2, . . .n on ∂Ω,

}
(S)

where Ω is an open bounded subset of �N with a smooth boundary ∂Ω, ΔP,p denotes the degenerated p-

Laplacian defined by ΔP,pu = div [P (x)|∇u|p−2∇u] with p > 1, p �= 2 and P (x) is a weight function, fi are

given functions and the coefficients aij(x) (1 ≤ i, j ≤ n) are smooth bounded weight functions. We consider

here a generalization of the p-Laplacian system (C) to the degenerated p -Laplacian system (S). We first study

the Maximum Principle for system (S) and then we prove the existence of positive weak solutions for this system
by using sub-super solutions method.

This paper is organized as follows. In section 2, we introduce some technical results and some notations,
which are established in [7], [8]. We give also some assumptions on the coefficients aij(x) and on the functions

fi to insure the validity of the Maximum Principle and the existence of positive weak solutions for system (S)
in a suitable weighted Sobolev space. Section 3 is devoted to the Maximum Principle for the scalar case

−ΔP,pu = a(x)|u|p−2u + f(x) in Ω, u = 0 on ∂Ω,
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and the existence of positive weak solutions for the quasilinear case which extends the scalar case. Finally, in
section 4, we consider the system case.

2. Technical results

In this section, we introduce the weighted Sobolev space W 1,p(P, Ω), which is the set of all real valued

functions u defined in Ω for which (see [7])

‖u‖W1,p(P,Ω) =

⎡⎣∫
Ω

|u|p +
∫
Ω

P (x)|∇u|p
⎤⎦

1
p

< ∞, (2.1)

where P (x) is a weight function in Ω ⊂ �N satisfying the conditions

P (x) ∈ L1
Loc(Ω), (P (x))−

1
p−1 ∈ L1

Loc(Ω), (P (x))−s ∈ L1(Ω), (2.2)

with

s ∈ (
N

p
,∞)∩ [

1
p − 1

,∞). (2.3)

Since we are dealing with the Dirichlet problem, we define also the space W 1,p
0 (P, Ω) as the closure of

C∞
0 (Ω) in W 1,p(P, Ω) with respect to the norm

‖u‖W1,p
0 (P,Ω) =

⎡⎣∫
Ω

P (x)|∇u|p
⎤⎦

1
p

< ∞, (2.4)

which is equivalent to the norm given by (2.1). Both spaces W 1,p(P, Ω) and W 1,p
0 (P, Ω) are well defined reflexive

Banach Spaces. Also, besides the conditions given by (2.2) and (2.3 ) and under the condition

ps =
ps

s + 1
< p < p∗s =

Nps

N − ps
=

Nps

N(s + 1) − ps
, (2.5)

the space W 1,p
0 (P, Ω) is compactly imbedded into the space Lp(Ω), i.e.

W 1,p
0 (P, Ω) ↪→↪→ Lp(Ω), (2.6)

which means that ∫
Ω

|u|p ≤ c2

∫
Ω

P (x)|∇u|p, i.e., ‖u‖Lp(Ω) ≤ c ‖u‖W1,p
0 (P,Ω), (2.7)

for every u ∈ W 1,p
0 (P, Ω) with a constant c2 > 0 independent of u.
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Now, let us introduce some technical results concerning the following degenerated homogeneous eigenvalue
problem [1], [7]:

−ΔP,P u = −div[P (x)|∇u|p−2∇u] = λa(x)|u|p−2u in Ω,
u = 0 on ∂Ω,

}
(2.8)

where P (x) is still weight function given by (2.2) and (2.3) and a(x) is a smooth bounded weight functions
satisfying

a(x) ∈ L
q

q−p (Ω) ∩ Lp(Ω) with some q satisfies p < q < p∗s and meas{x ∈ Ω : a(x) > 0} > 0, (2.9)

where p∗s is given by (2.5).

The hypotheses on P and a will be valid for the whole paper.

Definition 1 (see [7]) We say that λ ∈ � is an eigenvalue of ( 2.8) if there exists u ∈ W 1,p
0 (P, Ω), u �= 0 such

that ∫
Ω

P (x)|∇u|p−2∇u∇ϕ = λ

∫
Ω

a(x)|u|p−2uϕ

holds for any ϕ ∈ W 1,p
0 (P, Ω). Then u is called an eigenfunction corresponding to the eigenvalue λ.

Lemma 1 There exists the least (i.e. the first or principal) eigenvalue λ = λ1(p, Ω) > 0 and at least one

corresponding eigenfunction u = u1 ≥ 0 a.e. in Ω of the eigenvalue problem (2.8). Moreover, the first eigenvalue
is characterized by

λ1(p, Ω) = inf{
∫
Ω

P (x)|∇u|p :
∫
Ω

a(x)|u|p = 1}, (2.10)

and the normalized eigenfunction u1 associated to the first eigenvalue λ1 is in L∞(Ω) and unique.

Also, from the characterization of the first eigenvalue given by (2.10 ), we have

λ1(p, Ω)
∫
Ω

a(x)|u|p ≤
∫
Ω

P (x)|∇u|p. (2.11)

As in [8, 15], we also introduce the following definition.

Definition 2 A nonsingular matrix B = (bij) is a M-matrix if bij ≤ 0 for i �= j, bii > 0 and detBk > 0

for 1 ≤ k ≤ n, where Bk is the matrix obtained by taking the last (n − k) rows and columns out of the matrix

B = λ1(p, Ω)I − A, where λ1(p, Ω) is the first eigenvalue of the degenerated homogeneous eigenvalue problem

given by (2.8) and A = (aij) ∈ Mn×n, (1 ≤ i, j ≤ n) .

Lemma 2 If Bn is a nonsingular M-matrix, then for all Y ∈ �N , Y ≤ 0 (resp., Y ≥ 0), the solution X ∈ �N

of BnX = Y is non positive (resp. non negative).

Finally, we write u = u+ − u− where u+ = max{u, 0} and u− = max{−u, 0}.
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3. The case of a single equation for the degenerated p-Laplacian

In this section, for a given p > 1, we study the scalar case

−ΔP,pu = −div[P (x)|∇u|p−2∇u] = a(x)ψp(u) + f(x, u) in Ω,
u = 0 on ∂Ω,

}
(T)

where P (x) and a(x) are as in section 2, ψp(u) = |u|p−2u and f ∈ Lp∗
(Ω) with 1

p + 1
p∗ = 1.

Let us denote by Φ1 the positive eigenfunction associated with λ1(p, Ω) and normalized by ‖Φ1‖∞ = 1,

then, according to (2.8), Φ1 satisfies the eigenvalue problem

−ΔP,pΦ1 = λ1(p, Ω)a(x)ψp(Φ1) = λ1(p, Ω)a(x)(Φ1)p−1, Φ1 > 0 in Ω,
Φ1 = 0 on ∂Ω.

}
(3.1)

3.1. Maximum principle

We are concerned with the following form of the Maximum Principle: The hypotheses f ≥ 0 on Ω implies
u ≥ 0 for any solution u of (T). The validity of the Maximum Principle for the scalar case (T ), was proved

(see [7]), but we state it in the following theorem for the convenience of the reader.

Theorem 3 [7] For f(x) ∈ Lp∗
(Ω), the Maximum Principle holds for (T) iff λ1(p, Ω) > 1.

Proof. Let us prove first that the condition is necessary. Assume that λ1(p, Ω) ≤ 1, then the function

f(x) = [1 − λ1(p, Ω)]a(x)ψp(Φ1) is nonnegative and nevertheless (−Φ1) satisfies (T) and hence the Maximum

Principle does not hold.

Conversely, assume that 1 < λ1(p, Ω); if u is a solution of (T) for f ≥ 0, we obtain by multiplying (T)

by u− and integrating over Ω

∫
Ω

(−ΔP,pu)u− = −
∫
Ω

P (x)|∇u−|p =
∫
Ω

a(x)|u|p−2uu− +
∫
Ω

f(x)u−

= −
∫
Ω

a(x)|u−|p +
∫
Ω

f(x)u−.

Then, it follows from (2.11) that

λ1(p, Ω)
∫
Ω

a(x)|u−|p ≤
∫
Ω

P (x)|∇u−|p =
∫
Ω

a(x)|u−|p −
∫
Ω

f(x)u− ≤
∫
Ω

a(x)|u−|p.

So

(λ1(p, Ω) − 1)
∫
Ω

a(x)|u−|p ≤ 0,

and hence u− = 0, where a(x) �= 0 for any x , so that u ≥ 0.
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3.2. Existence of a positive weak solution

We now establish that the same condition λ1(p, Ω) > 1 is also sufficient for the existence of a positive

weak solution for the scalar case (T), where P (x) and a(x) are as in section 2 and f is a Caratheodory function,
and there exist M > 0 and 0 ≤ σ < 1 satisfying the condition

0 < f(x, u) ≤ M(1 + |u|σ(p−1)), for any x ∈ Ω and any u ≥ 0. (3.2)

Definition 3 (see [7]) We say that u ∈ W 1,p
0 (P, Ω) is a weak solution of (T) if

∫
Ω

P (x)|∇u|p−2∇u∇ϕ = λ

∫
Ω

a(x)|u|p−2uϕ +
∫
Ω

f(x, u)ϕ

holds for any ϕ ∈ W 1,p
0 (P, Ω).

It follows from the continuity and monotonicity of the first eigenvalue λ1 := λ1(p, Ω) with respect to the

domain Ω [8] that there exist a domain Ω̃ ⊃ Ω = Ω ∪ ∂Ω such that λ̃1 := λ1(p, Ω̃) satisfies

1 < λ̃1 < λ1. (3.3)

If Φ̃1 is the positive eigenfunction associated with λ̃1 and normalized by
∥∥∥Φ̃1

∥∥∥
∞

= 1, then, as in (3.1), Φ̃1

satisfies

−ΔP,pΦ̃1 = λ1(p, Ω̃)a(x)ψp(Φ̃1) = λ1(p, Ω̃)a(x)(Φ̃1)p−1, Φ̃1 > 0 in Ω̃,

Φ̃1 = 0 on ∂ Ω̃

}
(3.4)

and will be bounded below on Ω̃ by a positive number:

β = inf{Φ̃1(x) : x ∈ Ω̃} > 0. (3.5)

Let us define the operator T as

T : u −→ (−ΔP,p)−1[a(x)ψp(u) + f(x, u)], (3.6)

and let us choose δ such that

a(x)(δβ)p−1[λ1(p, Ω̃) − 1] ≥ M(1 + (δ)σ(p−1)), (3.7)

for all x ∈ Ω̃.

It is proved that the operator T is well defined in Lp(Ω), (see [7]).

Theorem 4 Assume that (3.2)–(3.7) hold. Then (T) has a positive weak solution if

λa(p, Ω̃) > 1.

64



SERAG, KHAFAGY

Proof. We proceed in three steps.

a) Construction of sub-super solutions for (T):

We claim that (u0, u
0) = (0, δΦ̃1) is a coupled sub-super solution. For this we prove that

−ΔP,pu
◦ − a(x)ψp(u◦) − f(x, u◦) ≥ 0. (3.8)

We obtain from (T), (3.4), (3.5), (3.7) and
∥∥∥Φ̃1

∥∥∥
∞

= 1 that

−ΔP,pu
◦ − a(x)ψp(u◦) − f(x, u◦) = −ΔP,p(δΦ̃1) − a(x)ψp(δΦ̃1) − f(x, δΦ̃1)

≥ λ1(p, Ω̃)a(x)ψp(δΦ̃1) − a(x)ψp(δΦ̃1) − M(1 +
∣∣∣δΦ̃1

∣∣∣σ(p−1)

)

= [λ1(p, Ω̃) − 1]a(x)
∣∣∣δΦ̃1

∣∣∣p−1

− M(1 + |δ|σ(p−1))

≥ [λ1(p, Ω̃) − 1]a(x) |δβ|p−1 − M(1 + |δ|σ(p−1)),

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
and hence, using (3.7), (3.8) is proved.

b) The operator T defined in (3.6) sends the interval [0, δΦ̃1] into itself, i.e.,

T ([0, δΦ̃1]) ⊆ [0, δΦ̃1], (3.9)

To prove that: let u ∈ [0, δΦ̃1] and let v = Tu; then from (T), (3.4) and (3.5), we obtain∫
Ω

[−ΔP,pv + ΔP,p(δΦ̃1)](v − δΦ̃1)+

=
∫
Ω

[a(x)ψp(u) + f(x, u) − λ1(p, Ω̃)a(x)ψp(δΦ̃1)](v − δΦ̃1)+

≤
∫
Ω

[a(x)ψp(δΦ̃1) + M(1 +
∣∣∣δΦ̃1

∣∣∣σ(p−1)

) − λ1(p, Ω̃)a(x)ψp(δΦ̃1)](v − δΦ̃1)+

=
∫
Ω

[−a(x)(λ1(p, Ω̃) − 1)
∣∣∣δΦ̃1

∣∣∣p−1

+ M(1 + |δ|σ(p−1))](v − δΦ̃1)+,

≤
∫
Ω

[−a(x)(λ1(p, Ω̃) − 1)(δβ)p−1 + M(1 + |δ|σ(p−1))](v − Φ̃1)+.

Using (3.7), we have ∫
Ω

[−ΔP,pv + ΔP,p(δΦ̃1)](v − δΦ̃1)+ ≤ 0.

From the monotonicity of the degenerated p-Laplacian [7], we have (v − δΦ̃1)+ = 0. Hence we deduce that

v ≤ δΦ̃1. Similarly ( or by Maximum Principle) v ≥ 0, and ( 3.9) is proved.

c) T is compact.
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Since the imbedding of W 1,p
0 (P, Ω) into Lp(Ω) is compact, then T is compact.

Hence, it follows from Schauder’s Fixed Point Theorem that there is at least a positive weak solution for
(T). �

4. The case of a system for the degenerated p-Laplacian

The aim of this section is to extend Theorem (3) and (4) to the following system:

−ΔP,pui = −div[P (x)|∇ui|p−2∇ui] =
∑n

j=1 aij(x)|uj|p−2uj + fi(x, u1, u2, . . . , un) in Ω,

ui = 0, i = 1, 2, . . .n on ∂Ω,

}
(S)

where P (x) is still weight function given by (2.2) and (2.3) and aij(x) (1 ≤ i, j ≤ n) is a smooth bounded

weight functions satisfying– besides (2.9) – also the condition

aij(x) < (aii(x))
1
p (ajj(x))

1
p∗ . ∀ 1 ≤ i, j ≤ n (4.1)

System (S) can be written shortly as

−ΔP,pU = AΨp(U) + F in Ω,
U = 0, on ∂Ω,

}
(I)

where U (resp., F ) denotes a column matrix with elements ui (resp. fi(x)), Ψp(U) is the column matrix with

elements ψp(uj) := |uj|p−2uj and A = (aij) ∈ Mn×n.

We say that system (S) satisfies the Maximum Principle if any nonnegative data: fi ≥ 0 ∀ 1 ≤ i ≤ n,

implies that any solution U := (u1, u2, . . . , un) for system (S) is non negative: ui ≥ 0.

4.1. Maximum principle

For proving the validity of the Maximum Principle, we denote by D the diagonal matrix with diagonal
elements (λ1(p, Ω) − 1) and by G the matrix defined by

G = (gij) =
{

1 if i �= j,
0 if i = j.

Theorem 5 Assume that (4.1) is satisfied. Then, the Maximum Principle holds for system (S) if the matrix

(D − G) is a nonsingular M-matrix.

Proof. Let U = (ui) ∈ (W 1,p
0 (P, Ω))n satisfying (S) for F = (fi) ≥ 0. Multiplying (S) by u−

i , and integrating
over Ω, we obtain∫

Ω

P (x)|∇u−
i |p = −

n∑
j �=i

∫
Ω

aij(x)|u+
j |p−2u+

j u−
i +

n∑
j=1

∫
Ω

aij(x)|u−
j |p−2u−

j u−
i −

∫
Ω

fiu
−
i

≤
n∑

j=1

∫
Ω

aij(x)|u−
j |p−2u−

j u−
i =

∫
Ω

aii(x)|u−
i |p +

n∑
j �=i

∫
Ω

aij(x)|u−
j |p−2u−

j u−
i ,
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Using (2.11), we get

(λ1(p, Ω)− 1)
∫
Ω

aii(x)|u−
i |p ≤

n∑
j �=i

∫
Ω

aij(x)|u−
j |p−2u−

j u−
i .

From (4.1), we obtain

(λ1(p, Ω) − 1)
∫
Ω

aii(x)|u−
i |p ≤

n∑
j �=i

∫
Ω

(aii(x))
1
p (ajj(x))

1
p∗ |u−

j |p−2u−
j u−

i .

Applying Hölder’s inequality, we get

(λ1(p, Ω)− 1)
∫
Ω

aii(x)|u−
i |p ≤

n∑
j �=i

⎛⎝∫
Ω

aii(x)|u−
i |p

⎞⎠
1
p

⎛⎝∫
Ω

ajj(x)(|u−
j |p−1)p∗

⎞⎠
1

p∗

.

If ∫
Ω

aii(x)|u−
i |p �= 0,

we obtain

(λ1(p, Ω) − 1)

⎛⎝∫
Ω

aii(x)|u−
i |p

⎞⎠
1

p∗

≤
n∑

j �=i

⎛⎝∫
Ω

ajj(x)|u−
j |p

⎞⎠
1

p∗

.

Hence, the column matrix Z, with elements (
∫
Ω

aii(x)|u−
i |p)1/p∗

, satisfies (D − G)Z ≤ 0. Since (D − G) is a

nonsingular M-matrix, then Lemma 2 implies u−
i = 0 ∀ i = 1, 2, . . . , n, and hence U = (ui) ≥ 0. �

4.2. Existence of positive weak solutions

In this subsection, we prove the existence of positive weak solutions for system (S), where P (x) is still

weight function given by (2.2) and (2.3), the coefficients aij(x) are still smooth bounded weight functions given

by (2.9) and (4.1) and fi(x, U), 1 ≤ i ≤ n, are Caratheodory functions, and there exist M > 0 and 0 ≤ σ < 1
satisfying

0 < fi(x, U) ≤ M(1 + |U |σ(p−1)), for any x ∈ Ω and any U ≥ 0. (4.2)

To prove the existence theorem, we make use of “sub-super solutions”. Following [10], we introduce the following
definition.

Definition 4 Write A = C + E , where C is a diagonal matrix and E is with diagonal zero. We say that

(U◦, U◦) ∈ (W 1,p
0 (P, Ω))2n is a sub-super solutions for (S) if

U◦ ≤ U◦ in Ω,
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and for any U ∈ (W 1,p
0 (P, Ω))n , such that U◦ ≤ U ≤ U◦, we have

−ΔP,pU
◦ − CΨp(U◦) − EΨp(U) − F (x, U ∪ U◦) ≥ 0

≥ −ΔP,pU◦ − CΨp(U◦) − EΨp(U) − F (x, U ∪ U◦) in Ω,
U◦ ≤ 0 ≤ U◦ on ∂Ω,

⎫⎬⎭ (4.3)

where, for any U, V ∈ (W 1,p
0 (P, Ω))n, the k-th component of F (x, U ∪ V ) is given by (F (x, U ∪ V ))k :=

fk(x, u1, . . . , uk−1,vk, uk+1, . . . , un).

We claim now the following theorem.

Theorem 6 Assume that (D − G) is a nonsingular M-matrix; where D, G as in subsection 4.1, then for any

F ∈ (Lp∗
(Ω))n , system (S) admits a positive weak solution.

Proof. We proceed in three steps

a) Construction of sub-super solutions of (S):

By hypothesis (D − G) is a nonsingular M-matrix. Then, as in the scalar case, we make use of the

monotonicity and continuity of the first eigenvalue λ1(p, Ω) w.r.t. Ω. It follows from [8] that one can choose

Ω̃ ⊃ Ω = Ω ∪ ∂Ω such that λ1(p, Ω) > λ1(p, Ω̃). Hence by use of the same Theorem in [8], (D̃ − G) is also a

nonsingular M-matrix, where D̃ is a diagonal matrix with elements λ1(p, Ω̃) − 1. As in the previous section,

we denote by Φ̃1 the positive eigenfunction associated with λ1(p, Ω̃) and normalized by ‖Φ̃1‖∞ = 1 and by β

the lower bound of Φ̃1 on Ω̃. Choose 0 < Y = M
β

(1 + |δ|σ(p−1))(1, 1, . . . , 1) ∈ �N . The solution X ∈ �N of

(D̃ − G)X = Y , (4.4)

is positive by Lemma 2. Set U◦ = 0 ∈ �n and U◦ = Ψp∗(X) Φ̃1. Combining (4.2) and (4.4 ), for U ∈ [U◦, U◦],

we have

−ΔP,pU
◦ − CΨp(U◦) − EΨp(U) − F (x, U ∪ U◦) ≥ −ΔP,pU

◦ − CΨp(U◦) − EΨp(U) − βY

= [(λ1(p, Ω̃) − 1)C − CG + CG]Ψp(U◦) − EΨp(U◦) + E[Ψp(U◦) − Ψp(U)] − βY

≥ C[(λ1(p, Ω̃) − 1)I − G]Ψp(U◦) + (CG − E)Ψp(U◦) − βY

≥ C[(λ1(p, Ω̃) − 1)I − G]Ψp(U◦) − βY

= C[(λ1(p, Ω̃) − 1)I − G]Xψp(Φ̃1) − βY

= C(D̃ − G)X (Φ̃1)p−1 − βY.

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Using (3.5) and (4.4), we get

−ΔP,pU
◦ − CΨp(U◦) − EΨp(U) − F (x, U ∪ U◦) ≥ 0,

hence (U◦, U◦) satisfies (4.3).

b) Construction of an invariant set.

Let us introduce K = [0, U◦] and Σ = (Lp(Ω))n. Next, we define the nonlinear operator T : K −→ Σ,

where V = TU for any U ∈ K.

Now, we prove that T (K) ⊂ K.
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Since U ∈ [0, U◦], it follows from (4.2) and (4.3 ) that

0 ≥ −ΔP,pV − AΨp(U) − F (x, U) + ΔP,pU
◦ + CΨp(U◦) + EΨp(U) + βY

≥ −ΔP,pV + ΔP,pU
◦ − C[Ψp(U) − Ψp(U◦] + βY − F (x, U)

≥ −ΔP,pV + ΔP,pU
◦.

⎫⎬⎭ (4.5)

Multiplying (4.5) by (V − U◦)+ and integrating over Ω, we obtain∫
Ω

P (x)[Ψp(∇V ) − Ψp(∇U◦)][∇(V − U◦)+] ≤ 0.

By the monotonicity of Ψp(·) = | · |p−2· and the positivity of P (x), we have ∇(V − U◦)+ = 0 and hence,

0 ≤ V ≤ U◦ .

c) T is completely continuous

First, we prove that T is compact, let Uj be a bounded sequence in (Lp(Ω))n, hence Ψp(Uj) is bounded

in (Lp∗
(Ω))n . Multiplying (S) by Vj := TUj , and applying Hölder’s inequality, we obtain∫

Ω

P (x) |∇Vj|p =
∫
Ω

AΨp(Uj)Vj + F (x, Uj)Vj ≤ C[
∫
Ω

|Vj |p ]1/p.

Therefore Vj is bounded in (W 1,pi

0 (Pi, Ω))n and it posses a convergent subsequence in (Lp(Ω))n.

Now, we proof the continuity of T , let Uj −→ U in (Lp(Ω))n. Then, by Dominated Convergence

Theorem, we have

F (x, Uj) −→ F (x, U) in (Lp∗
(Ω))n. (4.6)

AΨp(Uj) −→ AΨp(U) in (Lp∗
(Ω))n. (4.7)

Multiplying (4.7) by (Vj − V ) and integrating over Ω, we obtain

∫
Ω

P (x)[Ψp(∇Vj) − Ψp(∇V )][∇(Vj − V )] =
∫
Ω

A[Ψp(Uj) − Ψp(U)][Vj − V ]

+
∫
Ω

[F (x, Uj) − F (x, U)][Vj − V ].

(4.8)

It follows from (4.6) and (4.7) that the right hand side of (4.8) tends to zero as j tends to +∞.

It is well known [16] that the following inequality holds:

|x − y|p ≤ C{(|x|p−2
x − |y|p−2

y)(x − y)} γ
2 (|x|p + |y|p)1− γ

2 , (4.9)

for all x, y ∈ �N , where γ = p if 1 < p ≤ 2 and γ = 2 if p > 2.

Using (4.9), we obtain ∫
Ω

P (x) |∇(Vj − V )|p → 0 as j → +∞,
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and hence T is continuous.
Since K is a convex, bounded and closed subset of (Lp(Ω))n , we can apply Schauder’s Fixed Point

Theorem to obtain the existence of a fixed point for T , which gives the existence of, at least, one solution of
(S), and this completes the proof. �
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[2] Boccardo, L., Fleckinger, J. and de Thélin, F.: Existence of Solutions for Some Nonlinear Cooperative Systems and

Some Applications, Diff. and Int. Eqns., Vol. 7, No. 3, 689-698, (1994).
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[8] Fleckinger, J. Hernándes, J. and de Thélin, F.: On Maximum Principle and Existence of Positive Solutions for

Cooperative Elliptic Systems, Diff. and Int. Eqns. Vol. 8, 69-85, (1995).

[9] Fleckinger, J. and Serag, H.: Semilinear Cooperative Elliptic Systems on Rn , Rend. di Mat.,Vol. Seri VII 15 Roma,

89-108, (1995).

[10] Hernández, J.: Some Existence and Stability Results for Solutions of Reaction-Diffusion Systems with Nonlinear

Boundary Conditions, P. de Mottoni, L. Salvadori (eds.), Nonlinear Differential Equations: Invariance Stability and

Bifurcation, New York, Acad. Press, 161-173, 1981.

[11] Khafagy, S. and Serag, H.: Maximum Principle and Existence of Positive Solutions for Nonlinear Systems Involving

Degenerated p-Laplacian operators, Electron. J. Diff. Eqns., Vol. 2007, No. 66, 1-14, (2007).
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