

The equivalence of centro-equiaffine curves

Yasemin Sağıroğlu, Ömer Pekşen

Abstract

The motivation of this paper is to find formulation of the SL(n, R)-equivalence of curves. The types for centro-equiaffine curves and for every type all invariant parametrizations for such curves are introduced. The problem of SL(n, R)-equivalence of centro-equiaffine curves is reduced to that of paths. The centroequiaffine curvatures of path as a generating system of the differential ring of SL(n, R)-invariant differential polinomial functions of path are found. Global conditions of SL(n, R)-equivalence of curves are given in terms of the types and invariants. It is proved that the invariants are independent.

Key Words: Centro-equiaffine geometry, centro-equiaffine type of a curve, differential invariants of a curve, centro-equiaffine equivalence of curves.

1. Preliminaries

The invariant theory provides a method to find differential invariants of a curve to solve the equivalence problem of curves. In [8] the problem investigated for equiaffine curves and in [13] it is solved for centro-affine curves. The first comprehensive treatment of affine geometry is given in the seminal work of Blaschke [3]. For further developments of the subject, we refer the reader to [14], and the more modern texts [11], [20], the commentaries [16], [17] and survey papers [19], [2], [18]. The fundamental theorem of curves in centroaffine geometry is obtained in [4]. A discussion of centro-affine plane and space curves can be found in [15], [12]. A detailed discussion of plane curves in centro-affine geometry can be obtained in [10]. In [6] equiaffine invariants of 3-dimensional curves and in [5,pp.170-172] and [12] equiaffine curvatures of n-dimensional curves are investigated. Complete systems of global equiaffine invariants for plane and space paths are obtained in [1]. The global SL(n)-equivalence of path in \mathbb{R}^n and \mathbb{C}^n is considered in [7] and in [21].

This paper is concerned with the problem of the global equivalence of centro-equiaffine curves. Centroequiaffine types of a curve is introduced. For every centro-equiaffine type of a curve all possible invariant parametrizations are described. We obtain a generating system of the differential ring of all centro-equiaffine invariant differential polynomials of a path. The conditions of the global centro-equiaffine equivalence of curves are given in terms of the centro-equiaffine type and invariants of a curve. The independence of the invariants is proved.

AMS Mathematics Subject Classification: 53A15, 53A55.

2. The centro-equiaffine type of a curve

Let R be the field of real numbers and I = (a, b) be an open interval of R.

Definition 1 A C^{∞} -map $x: I \to R^n$ will be called an I-path (shortly, a path) in R^n .

Definition 2 An I_1 -path x(t) and an I_2 -path y(r) in \mathbb{R}^n will be called *D*-equivalent if there exists a \mathbb{C}^{∞} diffeomorphism $\varphi: I_2 \to I_1$ such that $\varphi'(r) > 0$ and $y(r) = x(\varphi(r))$ for all $r \in I_2$. A class of *D*-equivalent paths in \mathbb{R}^n will be called a curve in \mathbb{R}^n , ([9], p.9). A path $x \in \alpha$ will be called a parametrization of a curve α .

Remark 1 There exist different definitions of a curve ([5], p.2, [7]).

We denote the group $\{g \in GL(n, R) \mid detg = 1\}$ of all $n \times n$ matrices by SL(n, R). If x(t) is an *I*-path in R^n then gx(t) is an *I*-path in R^n for any $g \in SL(n, R)$.

Definition 3 Two I-paths x and y in \mathbb{R}^n will be called $SL(n, \mathbb{R})$ -equivalent and written $x \stackrel{SL(n, \mathbb{R})}{\sim} y$ if there exists $g \in SL(n, \mathbb{R})$ such that y(t) = gx(t).

Let α be a curve in \mathbb{R}^n , that is, $\alpha = \{h_{\tau}, \tau \in Q\}$, where h_{τ} is a parametrization of α . Then $g\alpha = \{gh_{\tau}, \tau \in Q\}$ is a curve in \mathbb{R}^n for any $g \in SL(n, \mathbb{R})$.

Definition 4 Two curves α and β in \mathbb{R}^n will be called $SL(n, \mathbb{R})$ -equivalent (or $SL(n, \mathbb{R})$ -congruent) and written $\alpha \overset{SL(n,\mathbb{R})}{\sim} \beta$ if $\beta = g\alpha$ for some $g \in SL(n, \mathbb{R})$.

Remark 2 Our definition is essentially different from the definition ([5], p.21) of a congruence of curves for the group of euclidean motions. By the definition ([5], p.21), two curves with different lengths may be congruent.

Let x be an *I*-path in \mathbb{R}^n and x'(t) be the derivative of x(t). Put $x^{(0)} = x$, $x^{(n)} = (x^{(n-1)})'$. For $a_k \in \mathbb{R}^n$, k = 1, ..., n, the determinant $\det(a_{ij})$ (where a_{ki} are coordinates of a_k) will be denoted by $[a_1a_2...a_n]$. So $[x(t)x'(t)...x^{(n-1)}(t)]$ is the determinant of the vectors $x(t), x'(t), ..., x^{(n-1)}(t)$. For $I = (a, b), q, p \in I$, put

$$l_{x}(q,p) = \int_{q}^{p} \left| \left[x(t)x^{'}(t)...x^{(n-1)}(t) \right] \right|^{\frac{2}{(n-1)n}} dt$$

and $l_x(a,p) = \lim_{q \to a} l_x(q,p)$, $l_x(q,b) = \lim_{p \to b} l_x(q,p)$. There are only four possible cases:

(i) $l_x(a, p) < +\infty$, $l_x(q, b) < +\infty$; (ii) $l_x(a, p) < +\infty$, $l_x(q, b) = +\infty$;

(*iii*) $l_x(a,p) = +\infty$, $l_x(q,b) < +\infty$; (*iv*) $l_x(a,p) = +\infty$, $l_x(q,b) = +\infty$.

Suppose that the case (i) or (ii) holds for some $q, p \in I$. Then $l = l_x(a, p) + l_x(q, b) - l_x(q, p)$, where $0 \leq l \leq +\infty$, does not depend on q, p. In this case, we say that x belongs to the centro-equiaffine type of (0, l). The cases (iii) and (iv) do not depend on q, p. In these cases, we say that x belongs to the centro-equiaffine types of $(-\infty, 0)$ and $(-\infty, +\infty)$, respectively. There exist paths of all types (0, l) (where $0 \leq l \leq +\infty$), $(-\infty, 0)$ and $(-\infty, +\infty)$. The centro-equiaffine type of a path x will be denoted by L(x).

Proposition 1 (i) If $x \overset{SL(n,R)}{\sim} y$ then L(x) = L(y);

(ii) Let α be a curve and $x, y \in \alpha$. Then L(x) = L(y).

Proof. It is obvious.

The centro-equiaffine type of a path $x \in \alpha$ will be called the centro-equiaffine type of the curve α and denoted by $L(\alpha)$. According to Proposition 1, $L(\alpha)$ is an SL(n, R)-invariant of a curve α .

3. Invariant parametrization and reduction theorem

Definition 5 An *I*-path x(t) in \mathbb{R}^n will be called centro-equiaffine regular (shortly, regular) if $\left[x(t)x^{'}(t)...x^{(n-1)}(t)\right] \neq 0$ for all $t \in I$. A curve will be called regular if it contains a regular path.

Now we define an invariant parametrization of a regular curve in \mathbb{R}^n .

Let I = (a, b) and x(t) be a regular *I*-path in \mathbb{R}^n . We define the centro-equiaffine arc length function $s_x(t)$ for each centro-equiaffine type as follows. We put $s_x(t) = l_x(a, t)$ for the case L(x) = (0, l), where $0 < l \leq +\infty$, and $s_x(t) = -l_x(t, b)$ for the case $L(x) = (-\infty, 0)$. Let $L(x) = (-\infty, +\infty)$. We choose a fixed point in every interval I = (a, b) of R and denote it by a_I . Let $a_I = 0$ for $I = (-\infty, +\infty)$. We set $s_x(t) = l_x(a_I, t)$.

Since $s'_x(t) > 0$ for all $t \in I$, the inverse function of $s_x(t)$ exists. Let us denote it by $t_x(s)$. The domain of $t_x(s)$ is L(x) and $t'_x(s) > 0$ for all $s \in L(x)$.

Proposition 2 Let I = (a, b) and x be a regular I-path in \mathbb{R}^n . Then

- (i) $s_{gx}(t) = s_x(t)$ and $t_{gx}(s) = t_x(s)$ for all $g \in SL(n, R)$;
- (ii) the equalities $s_{x(\varphi)}(r) = s_x(\varphi(r)) + s_0$ and $\varphi(t_{x(\varphi)}(s+s_0)) = t_x(s)$ hold for any C^{∞} -diffeomorphism $\varphi: J = (c,d) \to I$ such that $\varphi'(r) > 0$ for all $r \in J$, where $s_0 = 0$ for $L(x) \neq (-\infty, +\infty)$ and $s_0 = l_x(\varphi(a_J), a_I)$ for $L(x) = (-\infty, +\infty)$.

Proof. The proof of (i) is obvious. We prove (ii). Let $L(x) = (-\infty, +\infty)$. Then we have

$$s_{x(\varphi)}(r) = \int_{a_J}^{r} \left| \left[x(\varphi(r)) \frac{d}{dr} (x(\varphi(r))) \dots \frac{d^{n-1}}{dr^{n-1}} (x(\varphi(r))) \right] \right|^{\frac{2}{(n-1)n}} dr$$
$$= \int_{a_J}^{r} \frac{d\varphi}{dr} \left| \left[x(\varphi(r)) \frac{d}{d\varphi} (x(\varphi(r))) \dots \frac{d^{n-1}}{d\varphi^{n-1}} (x(\varphi(r))) \right] \right|^{\frac{2}{(n-1)n}} dr$$
$$= l_x \left(\varphi \left(a_J \right), \varphi \left(r \right) \right) = l_x \left(a_I, \varphi \left(r \right) \right) + l_x \left(\varphi \left(a_J \right), a_I \right).$$

So $s_{x(\varphi)}(r) = s_x(\varphi(r)) + s_0$, where $s_0 = l_x(\varphi(a_J), a_I)$. This implies that $\varphi(t_{x(\varphi)}(s+s_0)) = t_x(s)$. For $L(x) \neq (-\infty, +\infty)$, it is easy to see that $s_0 = 0$.

Let α be a regular curve and $x \in \alpha$. Then $x(t_x(s))$ is a parametrization of α .

Definition 6 The parametrization $x(t_x(s))$ of a regular curve α will be called an invariant parametrization of α .

We denote the set of all invariant parametrizations of α by ϕ_{α} . Every $y \in \phi_{\alpha}$ is *I*-path, where $I = L(\alpha)$.

Proposition 3 Let α be a regular curve, $x \in \alpha$ and x be an I-path, where $I = L(\alpha)$. Then the following conditions are equivalent:

(i) x is an invariant parametrization of α ;

(*ii*) $\left[x(s)x'(s)...x^{(n-1)}(s)\right]^2 = 1 \text{ for all } s \in L(\alpha);$

(*iii*) $s_x(s) = s$ for all $s \in L(\alpha)$.

Proof. $(i) \Rightarrow (ii)$. Let $x \in \phi_{\alpha}$. Then there exists $y \in \alpha$ such that $x(s) = y(t_y(s))$. By Proposition 2, $s_x(s) = s_{y(t_y)}(s) = s_y(t_y(s)) + s_0 = s + s_0$, where s_0 is as in Proposition 2. Since s_0 does not depend on s, $\frac{ds_x(s)}{ds} = \left| \left[x(s)x'(s)...x^{(n-1)}(s) \right] \right|^{\frac{2}{(n-1)n}} = 1$. Hence $\left[x(s)x'(s)...x^{(n-1)}(s) \right]^2 = 1$ for all $s \in L(\alpha)$. $(ii) \Rightarrow (iii)$. Let $\left[x(s)x'(s)...x^{(n-1)}(s) \right]^2 = 1$ for all $s \in L(\alpha)$. By the definition of $s_x(t)$, we

have $\frac{ds_x(s)}{ds} = \left| \left[x(s)x'(s)...x^{(n-1)}(s) \right] \right|^{\frac{2}{(n-1)n}} = 1$. Therefore $s_x(s) = s + c$ for some $c \in R$. In the case $L(x) \neq (-\infty, +\infty), \ s_x(s) = s + c$ and $s_x(s) \in L(\alpha)$ for all $s \in L(\alpha)$ implies c = 0, that is, $s_x(s) = s$. In the case $L(x) = (-\infty, +\infty), \ s_x(s) = l_x(a_I, s) = l_x(0, s) = s + c$ implies $0 = l_x(0, 0) = c$, that is, $s_x(s) = s$.

$$(iii) \Rightarrow (i)$$
. The equality $s_x(s) = s$ implies $t_x(s) = s$. Therefore $x(s) = x(t_x(s)) \in \phi_{\alpha}$.

Proposition 4 Let α be a regular curve and $L(\alpha) \neq (-\infty, +\infty)$. Then there exists the unique invariant parametrization of α .

Proof. Let $x, y \in \alpha$, x be an I_1 -path and y be an I_2 -path. Then there exists a C^{∞} -diffeomorphism $\varphi: I_2 \to I_1$ such that $\varphi'(r) > 0$ and $y(r) = x(\varphi(r))$ for all $r \in I_2$. By Proposition 2 and $L(\alpha) \neq (-\infty, +\infty)$, we obtain $y(t_y(s)) = x(\varphi(t_y(s)) = x(\varphi(t_{x(\varphi)}(s))) = x(t_x(s))$.

Let α be a regular curve and $L(\alpha) = (-\infty, +\infty)$. Then it is easy to see that the set ϕ_{α} is not countable.

Proposition 5 Let α be a regular curve, $L(\alpha) = (-\infty, +\infty)$ and $x \in \phi_{\alpha}$. Then $\phi_{\alpha} = \{y : y(s) = x(s+s'), s' \in (-\infty, +\infty)\}$.

Proof. Let $x, y \in \phi_{\alpha}$. Then there exist $h, k \in \alpha$ such that $x(s) = h(t_h(s)), y(s) = k(t_k(s))$, where h be an I_1 -path and k be an I_2 -path. Since $h, k \in \alpha$ there exists $\varphi : I_2 \to I_1$ such that $\varphi'(r) > 0$ and $k(r) = h(\varphi(r))$ for all $r \in I_2$. By Proposition 2, $y(s) = k(t_k(s)) = h(\varphi(t_k(s)) = h(\varphi(t_{h(\varphi)}(s))) = h(t_h(s - s_0)) = x(s - s_0)$.

Let $x \in \phi_{\alpha}$ and $s' \in (-\infty, +\infty)$. We prove $x(\psi) \in \phi_{\alpha}$, where $\psi(s) = s + s'$. By Proposition 3, $\left[x(s)x'(s)...x^{(n-1)}(s)\right]^2 = 1$ and $s_x(s) = s$. Put $z(s) = x(\psi(s))$. Since ψ is a C^{∞} -diffeomorphism of $(-\infty, +\infty)$ onto $(-\infty, +\infty)$, then $z = x(\psi) \in \alpha$. Using Proposition 2 and $s_x(s) = s$, we get $s_z(s) = s_{x(\psi)}(s) = s_x(\psi(s)) + s_1 = (s + s') + s_1$, where

$$s_{1} = \int_{\psi(0)}^{0} \left| \left[x(s)x'(s)...x^{(n-1)}(s) \right] \right|^{\frac{2}{(n-1)n}} ds.$$

This, in view of $\left[x(s)x'(s)...x^{(n-1)}(s)\right]^2 = 1$, implies $s_1 = -\psi(0) = -s'$. Then $s_z(s) = \left(s+s'\right) - s' = s$. By Proposition 3, $z \in \phi_{\alpha}$.

Theorem 1 Let α , β be regular curves and $x \in \phi_{\alpha}$, $y \in \phi_{\beta}$. Then,

- (i) for $L(\alpha) = L(\beta) \neq (-\infty, +\infty)$, $\alpha \overset{SL(n,R)}{\sim} \beta$ if and only if $x(s) \overset{SL(n,R)}{\sim} y(s)$;
- (*ii*) for $L(\alpha) = L(\beta) = (-\infty, +\infty)$, $\alpha \overset{SL(n,R)}{\sim} \beta$ if and only if $x(s) \overset{SL(n,R)}{\sim} y(s+s')$ for some $s' \in (-\infty, +\infty)$.

Proof. (i) Let $\alpha \overset{SL(n,R)}{\sim} \beta$ and $h \in \alpha$. Then there exists $g \in SL(n,R)$ such that $\beta = g\alpha$. This implies $gh \in \beta$. Using Propositions 2 and 4, we get $x(s) = h(t_h(s)), y(s) = (gh)(t_{gh}(s))$ and $gx(s) = g(h(t_h(s))) = (gh)(t_h(s)) = (gh)(t_{gh}(s)) = y(s)$. Thus $x \overset{SL(n,R)}{\sim} y$. Conversely, let $x \overset{SL(n,R)}{\sim} y$, that is, there exists $g \in SL(n,R)$ such that gx = y. Then $\alpha \overset{SL(n,R)}{\sim} \beta$.

(*ii*) Let $\alpha \overset{SL(n,R)}{\sim} \beta$. Then there exist *I*-paths $h \in \alpha$, $k \in \beta$ and $g \in SL(n,R)$ such that k(t) = gh(t). We have $k(t_k(s)) = k(t_{gh}(s)) = k(t_h(s)) = (gh)(t_h(s))$. By Proposition 5, $x(s) = k(t_k(s+s_1))$, $y(s) = h(t_h(s+s_2))$ for some $s_1, s_2 \in (-\infty, +\infty)$. Therefore $x(s-s_1) = gy(s-s_2)$. This implies that $x(s) \overset{SL(n,R)}{\sim} y(s+s')$, where $s' = s_1 - s_2$. Conversely, let $x(s) \overset{SL(n,R)}{\sim} y(s+s')$ for some $s' \in (-\infty, +\infty)$. Then there exists $g \in SL(n,R)$ such that y(s+s') = gx(s). Since $y(s+s') \in \beta$, then $\alpha \overset{SL(n,R)}{\sim} \beta$. \Box

Theorem 1 reduces the problem of the SL(n, R)-equivalence of regular curves to that of paths.

4. The generating system

Let x(t) be an *I*-path in \mathbb{R}^n .

Definition 7 A polynomial $p(x, x', ..., x^{(k)})$ of x and a finite number of derivatives $x, x', ..., x^{(k)}$ of x with the coefficients from R will be called a differential polynomial of x. It will be denoted by $p\{x\}$.

We denote the set of all differential polynomials of x by $R\{x\}$. It is a differential R-algebra. Let G be a subgroup of SL(n, R).

Definition 8 A differential polynomial $p\{x\}$ will be called G-invariant if $p\{gx\} = p\{x\}$ for all $g \in G$.

The set of all G-invariant differential polynomials of x will be denoted by $R\{x\}^G$. It is a differential R-subalgebra of $R\{x\}$.

By Proposition 3, an *I*-path x is an invariant parametrization of a regular curve α if and only if $I = L(\alpha)$ and $\left[x(s)x'(s)...x^{(n-1)}(s)\right]^2 = 1$ for all $s \in L(\alpha)$.

Let *I* be one of the sets (0, l), $0 < l \le +\infty$, $(-\infty, 0)$, $(-\infty, +\infty)$. Put $W = \{x : [x(s)x'(s)...x^{(n-1)}(s)]^2 = 1$ for all *s* in *I*}. The restriction of the SL(n, R)-invariant differential polynomial $p\{x\}$ to the set *W* will be denoted by $p\{x\}/_W$. We put $R\{x\}^{SL(n,R)}/_W = \{p/_W, p \in R\{x\}^{SL(n,R)}\}$. It is a differential *R*-algebra.

Definition 9 A subset S of $R\{x\}^{SL(n,R)}/W$ will be called a generating system of $R\{x\}^{SL(n,R)}/W$ if the smallest differential R-subalgebra with the unit containing S is $R\{x\}^{SL(n,R)}/W$.

Theorem 2 The system

$$\left[xx^{'}...x^{(n-1)}\right]/_{W}, \ \left[xx^{'}...x^{(i-1)}x^{(n)}x^{(i+1)}...x^{(n-1)}\right]/_{W}, \ i = 1,...n-2,$$

is a generating system of $R\{x\}^{SL(n,R)}/W$.

Proof. For the proof, we need several lemmas.

By the First Main Theorem for SL(n) ([22], p.45), the system U of $[x^{(i_1)}...x^{(i_n)}]$, where $0 \le i_1 < i_2 < ... < i_{n-1} < +\infty$, is a generating system of $R\{x'\}^{SL(n,R)}$. For the determinant $u = [x^{(i_1)}...x^{(i_n)}]$, we denote the number of elements of the set $\{x^{(i_1)},...,x^{(i_n)}\} \setminus \{x,x',...,x^{(n-1)}\}$ by $\delta(u)$ and we put $\tau(u) = \max(i_1,...,i_n)$.

Lemma 1 Let $u = [x^{(i_1)}...x^{(i_n)}]$ and $\delta(u) \ge 2$. Then u/W is a polynomial of elements $v/_W = [x^{(j_1)}...x^{(j_n)}]/_W$ such that $\delta(v) < \delta(u)$ and $\tau(v) \le \tau(u)$.

Proof. By $\delta(u) \ge 2$, there exists $x^{(k)}$, $1 \le k \le n-1$, such that $x^{(k)} \notin \{x^{(i_1)}, ..., x^{(i_n)}\}$. We need the following lemma ([22], p.70):

Lemma 2 For any vectors $x_0, x_1, ..., x_n, y_2, ..., y_n$ in \mathbb{R}^n , the following equality holds:

$$[x_1x_2...x_n] \times [x_0y_2...y_n] - [x_0x_2...x_n] \times [x_1y_2...y_n] - ... - [x_1x_2...x_{n-1}x_0] \times [x_ny_2...y_n] = 0$$

Proof. In Lemma 3, we put $x_1 = x^{(i_1)}, ..., x_n = x^{(i_n)}, y_3 = x', ..., y_{k+1} = x^{(k-1)}, y_{k+2} = x^{(k+1)}, ..., y_n = x^{(n-1)}$. Then

$$\begin{bmatrix} x^{(i_1)} \dots x^{(i_n)} \end{bmatrix} \times \begin{bmatrix} x^{(k)} x x' \dots x^{(k-1)} x^{(k+1)} \dots x^{(n-1)} \end{bmatrix} - \\ \begin{bmatrix} x^{(k)} x^{(i_2)} \dots x^{(i_n)} \end{bmatrix} \times \begin{bmatrix} x^{(i_1)} x x' \dots x^{(k-1)} x^{(k+1)} \dots x^{(n-1)} \end{bmatrix} - \\ - \begin{bmatrix} x^{(i_1)} \dots x^{(i_{n-1})} x^{(k)} \end{bmatrix} \times \begin{bmatrix} x^{(i_n)} x x' \dots x^{(k-1)} x^{(k+1)} \dots x^{(n-1)} \end{bmatrix} = 0$$

$$(1)$$

 $\begin{array}{l} \text{Put } v_0 = \left[x^{(k)} x x' \dots x^{(k-1)} x^{(k+1)} \dots x^{(n-1)} \right], \ v_r = \left[x^{(i_r)} x x' \dots x^{(k-1)} x^{(k+1)} \dots x^{(n-1)} \right], \\ h_m = \left[x^{(i_1)} \dots x^{(i_{m-1})} x^{(k)} x^{(i_{m+1})} \dots x^{(i_n)} \right]. \ \text{Then } \delta \left(v_0 \right) = 0, \ \tau \left(v_0 \right) \leq \tau \left(u \right), \ \delta \left(v_r \right) \leq 1, \ \tau \left(h_m \right) \leq \tau \left(u \right). \ \text{From equality (1), using } \left[x x' \dots x^{(n-1)} \right]^2 = 1, \ \text{we get } u/_W = v_1 h_1 v_0 /_W + \dots + v_n h_n v_0 /_W. \ \text{By } \delta \left(u \right) \geq 2, \ \text{the number of multiplications } v_j h_j v_0 \neq 0 \ \text{is } \delta \left(u \right) + 1 \geq 3. \ \text{For } h_j \ \text{such that } v_j h_j v_0 \neq 0, \ \text{we have } \delta \left(h_j \right) < \delta \left(u \right). \\ \text{Therefore } u/_W \ \text{is a polynomial of the system } v_0 /_W, \ v_j /_W, \ h_j /_W, \ \text{with } \delta \left(v_0 \right) = 0, \ \tau \left(v_0 \right) \leq \tau \left(u \right), \ \delta \left(v_j \right) \leq 1, \ \tau \left(v_j \right) \leq \tau \left(u \right), \ \delta \left(h_j \right) < \delta \left(u \right), \ \tau \left(h_j \right) \leq \tau \left(u \right). \ \text{So the proof of Lemma 2 is completed.} \end{array} \right]$

Lemma 3 Let $u = \left[xx'...x^{(i-1)}x^{(m)}x^{(i+1)}...x^{(n-1)}\right]$ and m > n. Then u is a differential polynomial of elements $v = \left[x^{(j_1)}...x^{(j_n)}\right]$ such that $\tau(v) < \tau(u)$. **Proof.** We have

$$\begin{bmatrix} xx' \dots x^{(i-1)}x^{(m-1)}x^{(i+1)} \dots x^{(n-1)} \end{bmatrix}' = \begin{bmatrix} x'x' \dots x^{(i-1)}x^{(m-1)}x^{(i+1)} \dots x^{(n-1)} \end{bmatrix} + \dots \\ + \begin{bmatrix} xx' \dots x^{(i-2)}x^{(i)}x^{(m-1)}x^{(i+1)} \dots x^{(n-1)} \end{bmatrix} + \begin{bmatrix} xx' \dots x^{(i-1)}x^{(m)}x^{(i+1)} \dots x^{(n-1)} \end{bmatrix} + \dots \\ + \begin{bmatrix} xx' \dots x^{(i-1)}x^{(m)}x^{(i+1)} \dots x^{(n-2)}x^{(n)} \end{bmatrix} .$$

In this equality, only the following determinants are nonzero:

$$v_{1} = \left[xx'..x^{(i-1)}x^{(m-1)}x^{(i+1)}..x^{(n-1)}\right], v_{2} = \left[xx'..x^{(i-2)}x^{(i)}x^{(m-1)}x^{(i+1)}..x^{(n-1)}\right],$$

$$v_{3} = \left[xx'..x^{(i-1)}x^{(m-1)}x^{(i+1)}..x^{(n-2)}x^{(n)}\right], u = \left[xx'..x^{(i-1)}x^{(m)}x^{(i+1)}..x^{(n-1)}\right].$$

So we obtain $u = v'_1 - v_2 - v_3$. By $\tau(u) = m$, $\tau(v_1) = \tau(v_2) = \tau(v_3) = m - 1$, the lemma is proved.

Now the proof of Theorem 2 follows from Lemmas 1, 2 and 4 by induction on $\tau(u)$ and $\delta(u)$.

Theorem 3 Let α, β be regular curves in \mathbb{R}^n and $x \in \phi_{\alpha}, y \in \phi_{\beta}$. Then,

(i) for
$$L(\alpha) = L(\beta) \neq (-\infty, +\infty)$$
, $\alpha \overset{SL(n,R)}{\sim} \beta$ if and only if

$$sgn[x(s)x'(s) \dots x^{(n-1)}(s)] = sgn[y(s)y'(s) \dots y^{(n-1)}(s)],$$

$$[x(s)x'(s) \dots x^{(i-1)}(s) x^{(n)}(s) x^{(i+1)}(s) \dots x^{(n-1)}(s)]$$

$$= [y(s)y'(s) \dots y^{(i-1)}(s) y^{(n)}(s) y^{(i+1)}(s) \dots y^{(n-1)}(s)]$$

$$(2)$$

for all $s \in L(\alpha) = L(\beta)$ and i = 1, ..., n-2.

(ii) for
$$L(\alpha) = L(\beta) = (-\infty, +\infty)$$
, $\alpha \overset{SL(n,R)}{\sim} \beta$ if and only if there exists $a \in (-\infty, +\infty)$ such that
 $sgn \left[x(s)x'(s)...x^{(n-1)}(s) \right] = sgn \left[y(s+a)y'(s+a)...y^{(n-1)}(s+a) \right]$
 $\left[x(s)x'(s)...x^{(i-1)}(s)x^{(n)}(s)x^{(i+1)}(s)...x^{(n-1)}(s) \right] =$
 $\left[y(s+a)y'(s+a)...y^{(i-1)}(s+a)y^{(n)}(s+a)y^{(i+1)}(s+a)...y^{(n-1)}(s+a) \right]$

for all $s \in (-\infty, +\infty)$ and i = 1, ..., n - 2.

Proof. (i) Let $\alpha \overset{SL(n,R)}{\sim} \beta$. By claim (i) of Theorem 1, $x \overset{SL(n,R)}{\sim} y$. By Proposition 3, $\left| [xx'...x^{(n-1)}] \right| = \left| [yy'...y^{(n-1)}] \right| = 1$. This, in view of $x \overset{SL(n,R)}{\sim} y$, yields (2). Now suppose that (2) holds. By Proposition 3, we have $\left| [x(s)x'(s)...x^{(n-1)}(s)] \right| = \left| [y(s)y'(s)...y^{(n-1)}(s)] \right| = 1$ we obtain

$$[x(s)x^{'}(s)...x^{(n-1)}(s)] = [y(s)y^{'}(s)...y^{(n-1)}(s)],$$

$$[x(s)x^{'}(s)...x^{(i-1)}(s)x^{(n)}(s)x^{(i+1)}(s)...x^{(n-1)}(s)]$$

=
$$[y(s)y^{'}(s)...y^{(i-1)}(s)y^{(n)}(s)y^{(i+1)}(s)...y^{(n-1)}(s)].$$

This, in view of claim (i) of Theorem 1 and Theorems 10.7, 10.8 in [7], implies $\alpha \overset{SL(n,R)}{\sim} \beta$.

The proof of (ii) follows similarly from claim (ii) of Theorem 1.

Let T be one of the sets (0, l) (where $l \leq +\infty$), $(-\infty, 0)$, $(-\infty, +\infty)$.

Theorem 4 Let $h_1(s), ..., h_n(s)$ be C^{∞} -functions on T, where $|h_n(s)| = 1$ for all $s \in T$. Then there exists an invariant parametrization y of a regular curve such that

$$sgn[y(s)y'(s) \dots y^{(n-1)}(s)] = h_n(s),$$
$$[y(s)y'(s) \dots y^{(i-1)}(s)y^{(n)}(s)y^{(i+1)}(s) \dots y^{(n-1)}(s)] = h_i(s)$$

for all $s \in T$ and i = 0, ..., n - 2.

Proof. Let C(s) be the matrix $||c_{ij}(s)||$, where $c_{j+1j}(s) = 1$ for all $s \in T$, $0 \le j \le n-2$; $c_{ij}(s) = 0$ for all $s \in T$, $j \ne n$, $i \ne j+1$, $0 \le i \le n-1$; $c_{in}(s) = \frac{h_i(s)}{h_n(s)}$, i = 0, ..., n-2, $c_{nn}(s) = \frac{h'_n(s)}{h_n(s)}$. It is known from the theory of differential equations that there exists a solution of the differential equation

$$A'_{x}(s) = A_{x}(s)C(s) \tag{3}$$

such that det $A_x(s) \neq 0$ for all $s \in T$, where $A_x(s) = \|x(s)x'(s)...x^{(n-1)}(s)\|$ is the matrix of column vectors $x(s), x'(s), ..., x^{(n-1)}(s)$. Let $A_x(s)$ be one of such solutions. Put $[x(s)x'(s)...x^{(n-1)}(s)] = \varphi(s)$. By

102

det $A_x(s) \neq 0$ for all $s \in T$, we get $\varphi(s) \neq 0$ for all $s \in T$. By $|h_n(s)| = 1$ for all $s \in T$, we have $h'_n(s) = 0$ for all $s \in T$. Then, from (3), we obtain

$$\frac{\left[x(s)x^{'}\left(s\right)...x^{(n-1)}\left(s\right)\right]^{'}}{\left[x(s)x^{'}\left(s\right)...x^{(n-1)}\left(s\right)\right]} = \frac{h_{n}^{'}\left(s\right)}{h_{n}\left(s\right)} = 0.$$

Therefore $\varphi'(s) = 0$. Put $\varphi(s) = \lambda_1$, $\lambda_1 \in R$, $\lambda_1 \neq 0$ and $h_n(s) = \lambda_2$, $\lambda_2 \in R$. By $|h_n(s)| = 1$, we get $|\lambda_2| = 1$. We consider $g \in SL(n, R)$ such that $\det g = \frac{\lambda_2}{\lambda_1}$. So $[gx(gx)'...(gx)^{(n-1)}] = \det g[xx'...x^{(n-1)}] = h_n(s)$. For y = gx, we have

$$\frac{\left[yy'...y^{(i-1)}y^{(n)}y^{(i+1)}...y^{(n-1)}\right]}{\left[yy'...y^{(n-1)}\right]} = \frac{\det g\left[xx'...x^{(i-1)}x^{(n)}x^{(i+1)}...x^{(n-1)}\right]}{\det g\left[xx'...x^{(n-1)}\right]} = \frac{h_i\left(s\right)}{h_n\left(s\right)}$$

i = 0, ..., n - 2. Hence

$$\left[y(s)y^{'}(s)\dots y^{(n-1)}(s)\right] = h_{n}(s)$$
$$\left[y(s)y^{'}(s)\dots y^{(i-1)}(s)y^{(n)}(s)y^{(i+1)}(s)\dots y^{(n-1)}(s)\right] = h_{i}(s)$$

for all $s \in T$, i = 0, ..., n - 2. Then by $\left| \left[y(s)y'(s) \dots y^{(n-1)}(s) \right] \right| = |h_n(s)| = 1$ and Proposition 3, $y \in \phi_\alpha$ for some regular curve α .

References

- De Angelis E., Moons T., Van Gool L., Verstraelen P.: Complete systems of affine semi-differential invariants for plane and space curves, In: Dillen, F.(ed.) et al., Geometry and topology of submanifolds, VIII. Proceedings of the international meeting on geometry of submanifolds, Brussels, Belgium, July 13-14, 1995 and Nordfjordeid, Norway, July 18-August 7, 1995. Singapore: World Scientific, 85-94 (1996).
- [2] Barthel W.: Zur affinen Differentialgeometrie -Kurventheorie in der allgemeinen Affingeometrie, Proceedings of the Congress of Geometry, Thessaloniki, 5-19 (1987).
- [3] Blaschke W.: Affine Differentialgeometrie, Berlin, 1923.
- [4] Gardner R.B., Wilkens G.R.: The fundamental theorems of curves and hypersurfaces in centro-affine geometry, Bull. Belg. Math. Soc.4, 379-401 (1997).
- [5] Guggenheimer H.W.: Differential Geometry, McGraw-Hill, New York, 1963.
- [6] Izumiya S., Sano T.: Generic affine differential geometry of space curves, Proceedings of the Royal Society of Edinburg, 128A, 301-314 (1998).
- [7] Khadjiev Dj.: The Application of Invariant Theory to Differential Geometry of Curves, Fan Publ., Tashkent, 1988.

- [8] Khadjiev Dj., Pekşen Ö.: The complete system of global integral and differential invariants for equi-affine curves, Diff. Geom. and its Applications 20, 167-175 (2004).
- [9] Klingenberg W.: A Course in Differential Geometry, Springer-Verlag, New York, 1978.
- [10] Laugwitz D.: Differentialgeometrie in Vectorraumen, Friedr. Vieweg and Sohn, Braunschweig, 1965.
- [11] Nomizu K., Sasaki T.: Affine Differential Geometry, Cambridge Univ. Press, 1994.
- [12] Paukowitsch H.P: Begleitfiguren und Invariantensystem minimaler Differentiationsordnung von Kurven im reellen n-dimensionalen affinen Raum, Mh. Math. 85, No.2, 137-148 (1978).
- [13] Pekşen Ö., Khadjiev Dj.: On invariants of curves in centro-affine geometry, J.Math. Kyoto Univ. 44 (3), 603-613 (2004).
- [14] Salkowski E.: Affine Differentialgeometrie, W. de Gruyter, Berlin, 1934.
- [15] Schirokow P.A., Schirokow A.P.: Affine Differentialgeometrie, Teubner, Leipzig, 1962.
- [16] Simon U., Burau W.: Blaschkes Beitrage zur affinen Differentialgeometrie, Ibid., Vol.IV, 11-34 (1985).
- [17] Simon U.: Entwicklung der affinen Differentialgeometrie nach Blaschkes, Ibid., Vol.IV, 35-88 (1985).
- [18] Simon U.: Recent developments in affine differential geometry, Diff. Geom. and its Applications, Proc. Conf. Dubrovnik/Yugosl. 1988, 327-347 (1989).
- [19] Simon U., Liu H.L., Magid M. and Scharlach Ch.: Recent developments in affine differential geometry, In: Geometry and Topology of Submanifolds VIII, World Scientific, Singapore, 1-15 and 293-408 (1966).
- [20] Su B.: Affine Differential Geometry, Science Press, Beijing, Gordon and Breach, New York, 1983.
- [21] Suhtaeva A.M.: On the equivalence of curves in C^n with respect to the action of groups SL(n, C) and GL(n, C), Dokl. Akad. Nauk of SSRUz, N6 ,11-13 (1987).
- [22] Weyl H.: The Classical Groups, Princeton Univ. Press, Princeton, New Jersey, 1946.

Received 15.10.2008

Yasemin SAĞIROĞLU, Ömer PEKŞEN Department of Mathematics, Karadeniz Technical University, 61080, Trabzon-TURKEY e-mail: sagiroglu.yasemin@gmail.com,peksen@ktu.edu.tr