The equivalence of centro-equiaffine curves

Yasemin Sağıroğlu, Ömer Peksen

Abstract

The motivation of this paper is to find formulation of the $S L(n, R)$-equivalence of curves. The types for centro-equiaffine curves and for every type all invariant parametrizations for such curves are introduced. The problem of $S L(n, R)$-equivalence of centro-equiaffine curves is reduced to that of paths. The centroequiaffine curvatures of path as a generating system of the differential ring of $S L(n, R)$-invariant differential polinomial functions of path are found. Global conditions of $S L(n, R)$-equivalence of curves are given in terms of the types and invariants. It is proved that the invariants are independent.

Key Words: Centro-equiaffine geometry, centro-equiaffine type of a curve, differential invariants of a curve, centro-equiaffine equivalence of curves

1. Preliminaries

The invariant theory provides a method to find differential invariants of a curve to solve the equivalence problem of curves. In [8] the problem investigated for equiaffine curves and in [13] it is solved for centro-affine curves. The first comprehensive treatment of affine geometry is given in the seminal work of Blaschke [3]. For further developments of the subject, we refer the reader to [14], and the more modern texts [11], [20], the commentaries [16], [17] and survey papers [19], [2], [18]. The fundamental theorem of curves in centroaffine geometry is obtained in [4]. A discussion of centro-affine plane and space curves can be found in [15], [12]. A detailed discussion of plane curves in centro-affine geometry can be obtained in [10]. In [6] equiaffine invariants of 3 -dimensional curves and in [5,pp.170-172] and [12] equiaffine curvatures of n-dimensional curves are investigated. Complete systems of global equiaffine invariants for plane and space paths are obtained in [1]. The global $S L(n)$-equivalence of path in R^{n} and C^{n} is considered in [7] and in [21].

This paper is concerned with the problem of the global equivalence of centro-equiaffine curves. Centroequiaffine types of a curve is introduced. For every centro-equiaffine type of a curve all possible invariant parametrizations are described. We obtain a generating system of the differential ring of all centro-equiaffine invariant differential polinomials of a path. The conditions of the global centro-equiaffine equivalence of curves are given in terms of the centro-equiaffine type and invariants of a curve. The independence of the invariants is proved.

[^0]
SAĞIROĞLU, PEKふ̧EN

2. The centro-equiaffine type of a curve

Let R be the field of real numbers and $I=(a, b)$ be an open interval of R.

Definition $1 A C^{\infty}$-map $x: I \rightarrow R^{n}$ will be called an I-path (shortly, a path) in R^{n}.

Definition 2 An I_{1}-path $x(t)$ and an I_{2}-path $y(r)$ in R^{n} will be called D-equivalent if there exists a C^{∞} diffeomorphism $\varphi: I_{2} \rightarrow I_{1}$ such that $\varphi^{\prime}(r)>0$ and $y(r)=x(\varphi(r))$ for all $r \in I_{2}$. A class of D-equivalent paths in R^{n} will be called a curve in R^{n}, ([9], p.9). A path $x \in \alpha$ will be called a parametrization of a curve α 。

Remark 1 There exist different definitions of a curve ([5], p.2, [7]).
We denote the group $\{g \in G L(n, R) \mid \operatorname{det} g=1\}$ of all $n \times n$ matrices by $S L(n, R)$.
If $x(t)$ is an I-path in R^{n} then $g x(t)$ is an I-path in R^{n} for any $g \in S L(n, R)$.
Definition 3 Two I-paths x and y in R^{n} will be called $S L(n, R)$-equivalent and written $x \stackrel{S L(n, R)}{\sim} y$ if there exists $g \in S L(n, R)$ such that $y(t)=g x(t)$.

Let α be a curve in R^{n}, that is, $\alpha=\left\{h_{\tau}, \tau \in Q\right\}$, where h_{τ} is a parametrization of α. Then $g \alpha=\left\{g h_{\tau}, \tau \in Q\right\}$ is a curve in R^{n} for any $g \in S L(n, R)$.

Definition 4 Two curves α and β in R^{n} will be called $S L(n, R)$-equivalent (or $S L(n, R)$-congruent) and written $\alpha \stackrel{S L(n, R)}{\sim} \beta$ if $\beta=g \alpha$ for some $g \in S L(n, R)$.

Remark 2 Our definition is essentially different from the definition ([5], p.21) of a congruence of curves for the group of euclidean motions. By the definition ([5], p.21), two curves with different lengths may be congruent.

Let x be an I-path in R^{n} and $x^{\prime}(t)$ be the derivative of $x(t)$. Put $x^{(0)}=x, x^{(n)}=\left(x^{(n-1)}\right)^{\prime}$. For $a_{k} \in R^{n}, k=1, \ldots, n$, the determinant $\operatorname{det}\left(a_{i j}\right)$ (where $a_{k i}$ are coordinates of a_{k}) will be denoted by $\left[a_{1} a_{2} \ldots a_{n}\right]$. So $\left[x(t) x^{\prime}(t) \ldots x^{(n-1)}(t)\right]$ is the determinant of the vectors $x(t), x^{\prime}(t), \ldots, x^{(n-1)}(t)$. For $I=(a, b), q, p \in I$, put

$$
l_{x}(q, p)=\int_{q}^{p}\left|\left[x(t) x^{\prime}(t) \ldots x^{(n-1)}(t)\right]\right|^{\frac{2}{(n-1) n}} d t
$$

and $l_{x}(a, p)=\lim _{q \rightarrow a} l_{x}(q, p), l_{x}(q, b)=\lim _{p \rightarrow b} l_{x}(q, p)$. There are only four possible cases:
(i) $l_{x}(a, p)<+\infty, l_{x}(q, b)<+\infty$; (ii) $l_{x}(a, p)<+\infty, l_{x}(q, b)=+\infty$;
(iii) $l_{x}(a, p)=+\infty, l_{x}(q, b)<+\infty$; (iv) $l_{x}(a, p)=+\infty, l_{x}(q, b)=+\infty$.

Suppose that the case (i) or (ii) holds for some $q, p \in I$. Then $l=l_{x}(a, p)+l_{x}(q, b)-l_{x}(q, p)$, where $0 \leq l \leq+\infty$, does not depend on q, p. In this case, we say that x belongs to the centro-equiaffine type of $(0, l)$. The cases (iii) and (iv) do not depend on q, p. In these cases, we say that x belongs to the centro-equiaffine types of $(-\infty, 0)$ and $(-\infty,+\infty)$, respectively. There exist paths of all types $(0, l)$ (where $0 \leq l \leq+\infty)$, $(-\infty, 0)$ and $(-\infty,+\infty)$. The centro-equiaffine type of a path x will be denoted by $L(x)$.

SAĞIROĞLU, PEKŞEN

Proposition 1 (i) If $x \stackrel{S L(n, R)}{\sim} y$ then $L(x)=L(y)$;
(ii) Let α be a curve and $x, y \in \alpha$. Then $L(x)=L(y)$.

Proof. It is obvious.

The centro-equiaffine type of a path $x \in \alpha$ will be called the centro-equiaffine type of the curve α and denoted by $L(\alpha)$. According to Proposition $1, L(\alpha)$ is an $S L(n, R)$-invariant of a curve α.

3. Invariant parametrization and reduction theorem

Definition 5 An I-path $x(t)$ in R^{n} will be called centro-equiaffine regular (shortly, regular) if $\left[x(t) x^{\prime}(t) \ldots x^{(n-1)}(t)\right] \neq 0$ for all $t \in I$. A curve will be called regular if it contains a regular path.

Now we define an invariant parametrization of a regular curve in R^{n}.
Let $I=(a, b)$ and $x(t)$ be a regular I-path in R^{n}. We define the centro-equiaffine arc length function $s_{x}(t)$ for each centro-equiaffine type as follows. We put $s_{x}(t)=l_{x}(a, t)$ for the case $L(x)=(0, l)$, where $0<l \leq+\infty$, and $s_{x}(t)=-l_{x}(t, b)$ for the case $L(x)=(-\infty, 0)$. Let $L(x)=(-\infty,+\infty)$. We choose a fixed point in every interval $I=(a, b)$ of R and denote it by a_{I}. Let $a_{I}=0$ for $I=(-\infty,+\infty)$. We set $s_{x}(t)=$ $l_{x}\left(a_{I}, t\right)$.

Since $s_{x}^{\prime}(t)>0$ for all $t \in I$, the inverse function of $s_{x}(t)$ exists. Let us denote it by $t_{x}(s)$. The domain of $t_{x}(s)$ is $L(x)$ and $t_{x}^{\prime}(s)>0$ for all $s \in L(x)$.

Proposition 2 Let $I=(a, b)$ and x be a regular I-path in R^{n}. Then
(i) $s_{g x}(t)=s_{x}(t)$ and $t_{g x}(s)=t_{x}(s)$ for all $g \in S L(n, R)$;
(ii) the equalities $s_{x(\varphi)}(r)=s_{x}(\varphi(r))+s_{0}$ and $\varphi\left(t_{x(\varphi)}\left(s+s_{0}\right)\right)=t_{x}(s)$ hold for any C^{∞}-diffeomorphism $\varphi: J=(c, d) \rightarrow I$ such that $\varphi^{\prime}(r)>0$ for all $r \in J$, where $s_{0}=0$ for $L(x) \neq(-\infty,+\infty)$ and $s_{0}=l_{x}\left(\varphi\left(a_{J}\right), a_{I}\right)$ for $L(x)=(-\infty,+\infty)$.

Proof. The proof of (i) is obvious. We prove (ii). Let $L(x)=(-\infty,+\infty)$. Then we have

$$
\begin{aligned}
s_{x(\varphi)}(r) & =\int_{a_{J}}^{r}\left|\left[x(\varphi(r)) \frac{d}{d r}(x(\varphi(r))) \ldots \frac{d^{n-1}}{d r^{n-1}}(x(\varphi(r)))\right]\right|^{\frac{2}{(n-1) n}} d r \\
& =\int_{a_{J}}^{r} \frac{d \varphi}{d r}\left|\left[x(\varphi(r)) \frac{d}{d \varphi}(x(\varphi(r))) \ldots \frac{d^{n-1}}{d \varphi^{n-1}}(x(\varphi(r)))\right]\right|^{\frac{2}{(n-1) n}} d r \\
& =l_{x}\left(\varphi\left(a_{J}\right), \varphi(r)\right)=l_{x}\left(a_{I}, \varphi(r)\right)+l_{x}\left(\varphi\left(a_{J}\right), a_{I}\right)
\end{aligned}
$$

So $s_{x(\varphi)}(r)=s_{x}(\varphi(r))+s_{0}$, where $s_{0}=l_{x}\left(\varphi\left(a_{J}\right), a_{I}\right)$. This implies that $\varphi\left(t_{x(\varphi)}\left(s+s_{0}\right)\right)=t_{x}(s)$. For $L(x) \neq(-\infty,+\infty)$, it is easy to see that $s_{0}=0$.

SAĞIROĞLU, PEKŞEN

Let α be a regular curve and $x \in \alpha$. Then $x\left(t_{x}(s)\right)$ is a parametrization of α.

Definition 6 The parametrization $x\left(t_{x}(s)\right)$ of a regular curve α will be called an invariant parametrization of α.

We denote the set of all invariant parametrizations of α by ϕ_{α}. Every $y \in \phi_{\alpha}$ is I-path, where $I=L(\alpha)$.

Proposition 3 Let α be a regular curve, $x \in \alpha$ and x be an I-path, where $I=L(\alpha)$. Then the following conditions are equivalent:
(i) x is an invariant parametrization of α;
(ii) $\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]^{2}=1$ for all $s \in L(\alpha)$;
(iii) $s_{x}(s)=s$ for all $s \in L(\alpha)$.

Proof. $\quad(i) \Rightarrow(i i)$. Let $x \in \phi_{\alpha}$.Then there exists $y \in \alpha$ such that $x(s)=y\left(t_{y}(s)\right)$. By Proposition 2, $s_{x}(s)=s_{y\left(t_{y}\right)}(s)=s_{y}\left(t_{y}(s)\right)+s_{0}=s+s_{0}$, where s_{0} is as in Proposition 2. Since s_{0} does not depend on s, $\frac{d s_{x}(s)}{d s}=\left|\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]\right|^{\frac{2}{(n-1) n}}=1$. Hence $\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]^{2}=1$ for all $s \in L(\alpha)$.
$(i i) \Rightarrow(i i i)$. Let $\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]^{2}=1$ for all $s \in L(\alpha)$. By the definition of $s_{x}(t)$, we have $\frac{d s_{x}(s)}{d s}=\left|\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]\right|^{\frac{2}{(n-1) n}}=1$. Therefore $s_{x}(s)=s+c$ for some $c \in R$. In the case $L(x) \neq(-\infty,+\infty), s_{x}(s)=s+c$ and $s_{x}(s) \in L(\alpha)$ for all $s \in L(\alpha)$ implies $c=0$, that is, $s_{x}(s)=s$. In the case $L(x)=(-\infty,+\infty), s_{x}(s)=l_{x}\left(a_{I}, s\right)=l_{x}(0, s)=s+c$ implies $0=l_{x}(0,0)=c$, that is, $s_{x}(s)=s$.
$(i i i) \Rightarrow(i)$. The equality $s_{x}(s)=s$ implies $t_{x}(s)=s$. Therefore $x(s)=x\left(t_{x}(s)\right) \in \phi_{\alpha}$.

Proposition 4 Let α be a regular curve and $L(\alpha) \neq(-\infty,+\infty)$. Then there exists the unique invariant parametrization of α.

Proof. Let $x, y \in \alpha, x$ be an I_{1}-path and y be an I_{2}-path. Then there exists a C^{∞}-diffeomorphism $\varphi: I_{2} \rightarrow I_{1}$ such that $\varphi^{\prime}(r)>0$ and $y(r)=x(\varphi(r))$ for all $r \in I_{2}$. By Proposition 2 and $L(\alpha) \neq(-\infty,+\infty)$, we obtain $y\left(t_{y}(s)\right)=x\left(\varphi\left(t_{y}(s)\right)=x\left(\varphi\left(t_{x(\varphi)}(s)\right)\right)=x\left(t_{x}(s)\right)\right.$.

Let α be a regular curve and $L(\alpha)=(-\infty,+\infty)$. Then it is easy to see that the set ϕ_{α} is not countable.

Proposition 5 Let α be a regular curve, $L(\alpha)=(-\infty,+\infty)$ and $x \in \phi_{\alpha}$. Then $\phi_{\alpha}=\{y: y(s)=$ $\left.x\left(s+s^{\prime}\right), s^{\prime} \in(-\infty,+\infty)\right\}$.

Proof. Let $x, y \in \phi_{\alpha}$. Then there exist $h, k \in \alpha$ such that $x(s)=h\left(t_{h}(s)\right), y(s)=k\left(t_{k}(s)\right)$, where h be an I_{1}-path and k be an I_{2}-path. Since $h, k \in \alpha$ there exists $\varphi: I_{2} \rightarrow I_{1}$ such that $\varphi^{\prime}(r)>0$ and $k(r)=h(\varphi(r))$ for all $r \in I_{2}$. By Proposition 2, $y(s)=k\left(t_{k}(s)\right)=h\left(\varphi\left(t_{k}(s)\right)=h\left(\varphi\left(t_{h(\varphi)}(s)\right)\right)=h\left(t_{h}\left(s-s_{0}\right)\right)=x\left(s-s_{0}\right)\right.$.

SAĞIROĞLU, PEKŞEN

Let $x \in \phi_{\alpha}$ and $s^{\prime} \in(-\infty,+\infty)$. We prove $x(\psi) \in \phi_{\alpha}$, where $\psi(s)=s+s^{\prime}$. By Proposition $3,\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]^{2}=1$ and $s_{x}(s)=s$. Put $z(s)=x(\psi(s))$. Since ψ is a C^{∞}-diffeomorphism of $(-\infty,+\infty)$ onto $(-\infty,+\infty)$, then $z=x(\psi) \in \alpha$. Using Proposition 2 and $s_{x}(s)=s$, we get $s_{z}(s)=$ $s_{x(\psi)}(s)=s_{x}(\psi(s))+s_{1}=\left(s+s^{\prime}\right)+s_{1}$, where

$$
s_{1}=\int_{\psi(0)}^{0}\left|\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]\right|^{\frac{2}{(n-1) n}} d s
$$

This, in view of $\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]^{2}=1$, implies $s_{1}=-\psi(0)=-s^{\prime}$. Then $s_{z}(s)=\left(s+s^{\prime}\right)-s^{\prime}=s$. By Proposition 3, $z \in \phi_{\alpha}$.

Theorem 1 Let α, β be regular curves and $x \in \phi_{\alpha}, y \in \phi_{\beta}$. Then,
(i) for $L(\alpha)=L(\beta) \neq(-\infty,+\infty), \alpha \stackrel{S L(n, R)}{\sim} \beta$ if and only if $x(s) \stackrel{S L(n, R)}{\sim} y(s)$;
(ii) for $L(\alpha)=L(\beta)=(-\infty,+\infty), \alpha \stackrel{S L(n, R)}{\sim} \beta$ if and only if $x(s) \stackrel{S L(n, R)}{\sim} y\left(s+s^{\prime}\right)$ for some $s^{\prime} \in$ $(-\infty,+\infty)$.
Proof. (i) Let $\alpha \stackrel{S L(n, R)}{\sim} \beta$ and $h \in \alpha$. Then there exists $g \in S L(n, R)$ such that $\beta=g \alpha$. This implies $g h \in \beta$. Using Propositions 2 and 4, we get $x(s)=h\left(t_{h}(s)\right), y(s)=(g h)\left(t_{g h}(s)\right)$ and $g x(s)=g\left(h\left(t_{h}(s)\right)\right)=$ $(g h)\left(t_{h}(s)\right)=(g h)\left(t_{g h}(s)\right)=y(s)$. Thus $x \stackrel{S L(n, R)}{\sim} y$. Conversely, let $x \stackrel{S L(n, R)}{\sim} y$, that is, there exists $g \in S L(n, R)$ such that $g x=y$. Then $\alpha \stackrel{S L(n, R)}{\sim} \beta$.
(ii) Let $\alpha \stackrel{S L(n, R)}{\sim} \beta$. Then there exist I-paths $h \in \alpha, k \in \beta$ and $g \in S L(n, R)$ such that $k(t)=g h(t)$. We have $k\left(t_{k}(s)\right)=k\left(t_{g h}(s)\right)=k\left(t_{h}(s)\right)=(g h)\left(t_{h}(s)\right)$. By Proposition $5, x(s)=k\left(t_{k}\left(s+s_{1}\right)\right)$, $y(s)=h\left(t_{h}\left(s+s_{2}\right)\right)$ for some $s_{1}, s_{2} \in(-\infty,+\infty)$. Therefore $x\left(s-s_{1}\right)=g y\left(s-s_{2}\right)$. This implies that $x(s) \stackrel{S L(n, R)}{\sim} y\left(s+s^{\prime}\right)$, where $s^{\prime}=s_{1}-s_{2}$. Conversely, let $x(s) \stackrel{S L(n, R)}{\sim} y\left(s+s^{\prime}\right)$ for some $s^{\prime} \in(-\infty,+\infty)$. Then there exists $g \in S L(n, R)$ such that $y\left(s+s^{\prime}\right)=g x(s)$. Since $y\left(s+s^{\prime}\right) \in \beta$, then $\alpha \stackrel{S L(n, R)}{\sim} \beta$.

Theorem 1 reduces the problem of the $S L(n, R)$-equivalence of regular curves to that of paths.

4. The generating system

Let $x(t)$ be an I-path in R^{n}.

Definition 7 A polynomial $p\left(x, x^{\prime}, \ldots, x^{(k)}\right)$ of x and a finite number of derivatives $x, x^{\prime}, \ldots, x^{(k)}$ of x with the coefficients from R will be called a differential polynomial of x. It will be denoted by $p\{x\}$.

SAĞIROĞLU, PEKŞEN

We denote the set of all differential polynomials of x by $R\{x\}$. It is a differential R-algebra. Let G be a subgroup of $S L(n, R)$.

Definition 8 A differential polynomial $p\{x\}$ will be called G-invariant if $p\{g x\}=p\{x\}$ for all $g \in G$.
The set of all G-invariant differential polynomials of x will be denoted by $R\{x\}^{G}$. It is a differential R-subalgebra of $R\{x\}$.

By Proposition 3, an I-path x is an invariant parametrization of a regular curve α if and only if $I=L(\alpha)$ and $\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]^{2}=1$ for all $s \in L(\alpha)$.

Let I be one of the sets $(0, l), 0<l \leq+\infty,(-\infty, 0),(-\infty,+\infty)$. Put $W=\left\{x:\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]^{2}=\right.$ 1 for all s in $I\}$. The restriction of the $S L(n, R)$-invariant differential polynomial $p\{x\}$ to the set W will be denoted by $p\{x\} / W$. We put $R\{x\}^{S L(n, R)} / W=\left\{p / W, p \in R\{x\}^{S L(n, R)}\right\}$. It is a differential R-algebra.

Definition 9 A subset S of $R\{x\}^{S L(n, R)} / W$ will be called a generating system of $R\{x\}^{S L(n, R)} /{ }_{W}$ if the smallest differential R-subalgebra with the unit containing S is $R\{x\}^{S L(n, R)} / W$.

Theorem 2 The system

$$
\left[x x^{\prime} \ldots x^{(n-1)}\right] / W,\left[x x^{\prime} \ldots x^{(i-1)} x^{(n)} x^{(i+1)} \ldots x^{(n-1)}\right] / W, i=1, \ldots n-2
$$

is a generating system of $R\{x\}^{S L(n, R)} / W$.
Proof. For the proof, we need several lemmas.
By the First Main Theorem for $S L(n)\left([22]\right.$, p.45), the system U of $\left[x^{\left(i_{1}\right)} \ldots x^{\left(i_{n}\right)}\right]$, where $0 \leq i_{1}<$ $i_{2}<\ldots<i_{n-1}<+\infty$, is a generating system of $R\left\{x^{\prime}\right\}^{S L(n, R)}$. For the determinant $u=\left[x^{\left(i_{1}\right)} \ldots x^{\left(i_{n}\right)}\right]$, we denote the number of elements of the set $\left\{x^{\left(i_{1}\right)}, \ldots, x^{\left(i_{n}\right)}\right\} \backslash\left\{x, x^{\prime}, \ldots, x^{(n-1)}\right\}$ by $\delta(u)$ and we put $\tau(u)=$ $\max \left(i_{1}, \ldots, i_{n}\right)$.

Lemma 1 Let $u=\left[x^{\left(i_{1}\right)} \ldots x^{\left(i_{n}\right)}\right]$ and $\delta(u) \geq 2$. Then u / W is a polynomial of elements $v / W=\left[x^{\left(j_{1}\right)} \ldots x^{\left(j_{n}\right)}\right] / W$ such that $\delta(v)<\delta(u)$ and $\tau(v) \leq \tau(u)$.

Proof. By $\delta(u) \geq 2$, there exists $x^{(k)}, 1 \leq k \leq n-1$, such that $x^{(k)} \notin\left\{x^{\left(i_{1}\right)}, \ldots, x^{\left(i_{n}\right)}\right\}$. We need the following lemma ([22], p.70):

Lemma 2 For any vectors $x_{0}, x_{1}, \ldots, x_{n}, y_{2}, \ldots y_{n}$ in R^{n}, the following equality holds:

$$
\begin{aligned}
& {\left[x_{1} x_{2} \ldots x_{n}\right] \times\left[x_{0} y_{2} \ldots y_{n}\right]-\left[x_{0} x_{2} \ldots x_{n}\right] \times\left[x_{1} y_{2} \ldots y_{n}\right]-} \\
& \ldots-\left[x_{1} x_{2} \ldots x_{n-1} x_{0}\right] \times\left[x_{n} y_{2} \ldots y_{n}\right]=0
\end{aligned}
$$

SAĞIROĞLU, PEKŞEN

Proof. In Lemma 3, we put $x_{1}=x^{\left(i_{1}\right)}, \ldots, x_{n}=x^{\left(i_{n}\right)}, y_{3}=x^{\prime}, \ldots, y_{k+1}=x^{(k-1)}, y_{k+2}=x^{(k+1)}, \ldots$, $y_{n}=x^{(n-1)}$. Then

$$
\left.\begin{array}{l}
{\left[x^{\left(i_{1}\right)} \ldots x^{\left(i_{n}\right)}\right] \times\left[x^{(k)} x x^{\prime} \ldots x^{(k-1)} x^{(k+1)} \ldots x^{(n-1)}\right]-} \tag{1}\\
{\left[x^{(k)} x^{\left(i_{2}\right)} \ldots x^{\left(i_{n}\right)}\right] \times\left[x^{\left(i_{1}\right)} x x^{\prime} \ldots x^{(k-1)} x^{(k+1)} \ldots x^{(n-1)}\right]-\ldots} \\
-\left[x^{\left(i_{1}\right)} \ldots x^{\left(i_{n-1}\right)} x^{(k)}\right] \times\left[x^{\left(i_{n}\right)} x x^{\prime} \ldots x^{(k-1)} x^{(k+1)} \ldots x^{(n-1)}\right]=0
\end{array}\right\}
$$

Put $v_{0}=\left[x^{(k)} x x^{\prime} \ldots x^{(k-1)} x^{(k+1)} \ldots x^{(n-1)}\right], v_{r}=\left[x^{\left(i_{r}\right)} x x^{\prime} \ldots x^{(k-1)} x^{(k+1)} \ldots x^{(n-1)}\right]$, $h_{m}=\left[x^{\left(i_{1}\right)} \ldots x^{\left(i_{m-1}\right)} x^{(k)} x^{\left(i_{m+1}\right)} \ldots x^{\left(i_{n}\right)}\right]$. Then $\delta\left(v_{0}\right)=0, \tau\left(v_{0}\right) \leq \tau(u), \delta\left(v_{r}\right) \leq 1, \tau\left(h_{m}\right) \leq \tau(u)$. From equality (1), using $\left[x x^{\prime} \ldots x^{(n-1)}\right]^{2}=1$, we get $u / W=v_{1} h_{1} v_{0} / W+\ldots+v_{n} h_{n} v_{0} / W$. By $\delta(u) \geq 2$, the number of multiplications $v_{j} h_{j} v_{0} \neq 0$ is $\delta(u)+1 \geq 3$. For h_{j} such that $v_{j} h_{j} v_{0} \neq 0$, we have $\delta\left(h_{j}\right)<\delta(u)$. Therefore u / W is a polynomial of the system $v_{0} / W, v_{j} / W, h_{j} / W$, with $\delta\left(v_{0}\right)=0, \tau\left(v_{0}\right) \leq \tau(u), \delta\left(v_{j}\right) \leq 1$, $\tau\left(v_{j}\right) \leq \tau(u), \delta\left(h_{j}\right)<\delta(u), \tau\left(h_{j}\right) \leq \tau(u)$. So the proof of Lemma 2 is completed.

Lemma 3 Let $u=\left[x x^{\prime} \ldots x^{(i-1)} x^{(m)} x^{(i+1)} \ldots x^{(n-1)}\right]$ and $m>n$. Then u is a differential polynomial of elements $v=\left[x^{\left(j_{1}\right)} \ldots x^{\left(j_{n}\right)}\right]$ such that $\tau(v)<\tau(u)$.
Proof. We have

$$
\begin{aligned}
& {\left[x x^{\prime} \ldots x^{(i-1)} x^{(m-1)} x^{(i+1)} \ldots x^{(n-1)}\right]^{\prime}=\left[x^{\prime} x^{\prime} \ldots x^{(i-1)} x^{(m-1)} x^{(i+1)} \ldots x^{(n-1)}\right]+\ldots} \\
& +\left[x x^{\prime} \ldots x^{(i-2)} x^{(i)} x^{(m-1)} x^{(i+1)} \ldots x^{(n-1)}\right]+\left[x x^{\prime} \ldots x^{(i-1)} x^{(m)} x^{(i+1)} \ldots x^{(n-1)}\right]+\ldots \\
& +\left[x x^{\prime} \ldots x^{(i-1)} x^{(m)} x^{(i+1)} \ldots x^{(n-2)} x^{(n)}\right]
\end{aligned}
$$

In this equality, only the following determinants are nonzero:

$$
\begin{aligned}
& v_{1}=\left[x x^{\prime} \ldots x^{(i-1)} x^{(m-1)} x^{(i+1)} . . x^{(n-1)}\right], v_{2}=\left[x x^{\prime} . . x^{(i-2)} x^{(i)} x^{(m-1)} x^{(i+1)} \ldots x^{(n-1)}\right] \\
& v_{3}=\left[x x^{\prime} . . x^{(i-1)} x^{(m-1)} x^{(i+1)} . . x^{(n-2)} x^{(n)}\right], u=\left[x x^{\prime} . . x^{(i-1)} x^{(m)} x^{(i+1)} . . x^{(n-1)}\right] .
\end{aligned}
$$

So we obtain $u=v_{1}^{\prime}-v_{2}-v_{3}$. By $\tau(u)=m, \tau\left(v_{1}\right)=\tau\left(v_{2}\right)=\tau\left(v_{3}\right)=m-1$, the lemma is proved.
Now the proof of Theorem 2 follows from Lemmas 1, 2 and 4 by induction on $\tau(u)$ and $\delta(u)$.

Theorem 3 Let α, β be regular curves in R^{n} and $x \in \phi_{\alpha}, y \in \phi_{\beta}$. Then,
(i) for $L(\alpha)=L(\beta) \neq(-\infty,+\infty), \alpha \stackrel{S L(n, R)}{\sim} \beta$ if and only if

$$
\left.\begin{array}{l}
\operatorname{sgn}\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]=\operatorname{sgn}\left[y(s) y^{\prime}(s) \ldots y^{(n-1)}(s)\right] \tag{2}\\
{\left[x(s) x^{\prime}(s) \ldots x^{(i-1)}(s) x^{(n)}(s) x^{(i+1)}(s) \ldots x^{(n-1)}(s)\right]} \\
=\left[y(s) y^{\prime}(s) \ldots y^{(i-1)}(s) y^{(n)}(s) y^{(i+1)}(s) \ldots y^{(n-1)}(s)\right]
\end{array}\right\}
$$

SAĞIROĞLU, PEKŞEN

for all $s \in L(\alpha)=L(\beta)$ and $i=1, \ldots, n-2$.
(ii) for $L(\alpha)=L(\beta)=(-\infty,+\infty), \alpha \stackrel{S L(n, R)}{\sim} \beta$ if and only if there exists $a \in(-\infty,+\infty)$ such that

$$
\begin{aligned}
& \operatorname{sgn}\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]=\operatorname{sgn}\left[y(s+a) y^{\prime}(s+a) \ldots y^{(n-1)}(s+a)\right] \\
& {\left[x(s) x^{\prime}(s) \ldots x^{(i-1)}(s) x^{(n)}(s) x^{(i+1)}(s) \ldots x^{(n-1)}(s)\right]=} \\
& {\left[y(s+a) y^{\prime}(s+a) \ldots y^{(i-1)}(s+a) y^{(n)}(s+a) y^{(i+1)}(s+a) \ldots y^{(n-1)}(s+a)\right]}
\end{aligned}
$$

for all $s \in(-\infty,+\infty)$ and $i=1, \ldots, n-2$.
Proof. (i) Let $\alpha \stackrel{S L(n, R)}{\sim} \beta$. By claim (i) of Theorem 1, $x \stackrel{S L(n, R)}{\sim} y$. By Proposition 3, $\left|\left[x x^{\prime} \ldots x^{(n-1)}\right]\right|=$ $\left|\left[y y^{\prime} \ldots y^{(n-1)}\right]\right|=1$. This, in view of $x \stackrel{S L(n, R)}{\sim} y$, yields (2). Now suppose that (2) holds. By Proposition 3, we have $\left|\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]\right|=\left|\left[y(s) y^{\prime}(s) \ldots y^{(n-1)}(s)\right]\right|=1$ we obtain

$$
\begin{aligned}
& {\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]=\left[y(s) y^{\prime}(s) \ldots y^{(n-1)}(s)\right],} \\
& {\left[x(s) x^{\prime}(s) \ldots x^{(i-1)}(s) x^{(n)}(s) x^{(i+1)}(s) \ldots x^{(n-1)}(s)\right]} \\
& =\quad\left[y(s) y^{\prime}(s) \ldots y^{(i-1)}(s) y^{(n)}(s) y^{(i+1)}(s) \ldots y^{(n-1)}(s)\right] .
\end{aligned}
$$

This, in view of claim (i) of Theorem 1 and Theorems 10.7, 10.8 in [7], implies $\alpha \stackrel{S L(n, R)}{\sim} \beta$.
The proof of (ii) follows similarly from claim (ii) of Theorem 1.

Let T be one of the sets $(0, l)$ (where $l \leq+\infty),(-\infty, 0),(-\infty,+\infty)$.
Theorem 4 Let $h_{1}(s), \ldots, h_{n}(s)$ be C^{∞}-functions on T, where $\left|h_{n}(s)\right|=1$ for all $s \in T$. Then there exists an invariant parametrization y of a regular curve such that

$$
\begin{gathered}
\operatorname{sgn}\left[y(s) y^{\prime}(s) \ldots y^{(n-1)}(s)\right]=h_{n}(s) \\
{\left[y(s) y^{\prime}(s) \ldots y^{(i-1)}(s) y^{(n)}(s) y^{(i+1)}(s) \ldots y^{(n-1)}(s)\right]=h_{i}(s)}
\end{gathered}
$$

for all $s \in T$ and $i=0, \ldots, n-2$.
Proof. Let $C(s)$ be the matrix $\left\|c_{i j}(s)\right\|$, where $c_{j+1 j}(s)=1$ for all $s \in T, 0 \leq j \leq n-2 ; c_{i j}(s)=0$ for all $s \in T, j \neq n, i \neq j+1,0 \leq i \leq n-1 ; c_{i n}(s)=\frac{h_{i}(s)}{h_{n}(s)}, i=0, \ldots, n-2, c_{n n}(s)=\frac{h_{n}^{\prime}(s)}{h_{n}(s)}$. It is known from the theory of differential equations that there exists a solution of the differential equation

$$
\begin{equation*}
A_{x}^{\prime}(s)=A_{x}(s) C(s) \tag{3}
\end{equation*}
$$

such that $\operatorname{det} A_{x}(s) \neq 0$ for all $s \in T$, where $A_{x}(s)=\left\|x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right\|$ is the matrix of column vectors $x(s), x^{\prime}(s), \ldots, x^{(n-1)}(s)$. Let $A_{x}(s)$ be one of such solutions. Put $\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]=\varphi(s)$. By

SAĞIROĞLU, PEKふ̧EN

$\operatorname{det} A_{x}(s) \neq 0$ for all $s \in T$, we get $\varphi(s) \neq 0$ for all $s \in T$. By $\left|h_{n}(s)\right|=1$ for all $s \in T$, we have $h_{n}^{\prime}(s)=0$ for all $s \in T$. Then, from (3), we obtain

$$
\frac{\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]^{\prime}}{\left[x(s) x^{\prime}(s) \ldots x^{(n-1)}(s)\right]}=\frac{h_{n}^{\prime}(s)}{h_{n}(s)}=0
$$

Therefore $\varphi^{\prime}(s)=0$. Put $\varphi(s)=\lambda_{1}, \lambda_{1} \in R, \lambda_{1} \neq 0$ and $h_{n}(s)=\lambda_{2}, \lambda_{2} \in R$. By $\left|h_{n}(s)\right|=1$, we get $\left|\lambda_{2}\right|=$ 1. We consider $g \in S L(n, R)$ such that $\operatorname{det} g=\frac{\lambda_{2}}{\lambda_{1}}$. So $\left[g x(g x)^{\prime} \ldots(g x)^{(n-1)}\right]=\operatorname{det} g\left[x x^{\prime} \ldots x^{(n-1)}\right]=h_{n}(s)$. For $y=g x$, we have

$$
\frac{\left[y y^{\prime} \ldots y^{(i-1)} y^{(n)} y^{(i+1)} \ldots y^{(n-1)}\right]}{\left[y y^{\prime} \ldots y^{(n-1)}\right]}=\frac{\operatorname{det} g\left[x x^{\prime} \ldots x^{(i-1)} x^{(n)} x^{(i+1)} \ldots x^{(n-1)}\right]}{\operatorname{det} g\left[x x^{\prime} \ldots x^{(n-1)}\right]}=\frac{h_{i}(s)}{h_{n}(s)}
$$

$i=0, \ldots, n-2$. Hence

$$
\begin{aligned}
{\left[y(s) y^{\prime}(s) \ldots y^{(n-1)}(s)\right] } & =h_{n}(s) \\
{\left[y(s) y^{\prime}(s) \ldots y^{(i-1)}(s) y^{(n)}(s) y^{(i+1)}(s) \ldots y^{(n-1)}(s)\right] } & =h_{i}(s)
\end{aligned}
$$

for all $s \in T, i=0, \ldots, n-2$. Then by $\left|\left[y(s) y^{\prime}(s) \ldots y^{(n-1)}(s)\right]\right|=\left|h_{n}(s)\right|=1$ and Proposition $3, y \in \phi_{\alpha}$ for some regular curve α.

References

[1] De Angelis E., Moons T., Van Gool L., Verstraelen P.: Complete systems of affine semi-differential invariants for plane and space curves, In: Dillen, F.(ed.) et al., Geometry and topology of submanifolds, VIII. Proceedings of the international meeting on geometry of submanifolds, Brussels, Belgium, July 13-14, 1995 and Nordfjordeid, Norway, July 18-August 7, 1995. Singapore: World Scientific, 85-94 (1996).
[2] Barthel W.: Zur affinen Differentialgeometrie -Kurventheorie in der allgemeinen Affingeometrie, Proceedings of the Congress of Geometry, Thessaloniki, 5-19 (1987).
[3] Blaschke W.: Affine Differentialgeometrie, Berlin, 1923.
[4] Gardner R.B., Wilkens G.R.: The fundamental theorems of curves and hypersurfaces in centro-affine geometry, Bull. Belg. Math. Soc.4, 379-401 (1997).
[5] Guggenheimer H.W.: Differential Geometry, McGraw-Hill, New York, 1963.
[6] Izumiya S., Sano T.: Generic affine differential geometry of space curves, Proceedings of the Royal Society of Edinburg, 128A, 301-314 (1998).
[7] Khadjiev Dj.: The Application of Invariant Theory to Differential Geometry of Curves, Fan Publ., Tashkent,1988.

SAĞIROĞLU, PEKŞEN

[8] Khadjiev Dj., Pekşen Ö.: The complete system of global integral and differential invariants for equi-affine curves, Diff. Geom. and its Applications 20, 167-175 (2004).
[9] Klingenberg W.: A Course in Differential Geometry, Springer-Verlag, New York, 1978.
[10] Laugwitz D.: Differentialgeometrie in Vectorraumen, Friedr. Vieweg and Sohn, Braunschweig, 1965.
[11] Nomizu K., Sasaki T.: Affine Differential Geometry, Cambridge Univ. Press, 1994.
[12] Paukowitsch H.P: Begleitfiguren und Invariantensystem minimaler Differentiationsordnung von Kurven im reellen n-dimensionalen affinen Raum, Mh. Math. 85, No.2, 137-148 (1978).
[13] Pekşen Ö., Khadjiev Dj.: On invariants of curves in centro-affine geometry, J.Math. Kyoto Univ. 44 (3), 603-613 (2004).
[14] Salkowski E.: Affine Differentialgeometrie, W. de Gruyter, Berlin, 1934.
[15] Schirokow P.A., Schirokow A.P.: Affine Differentialgeometrie, Teubner, Leipzig, 1962.
[16] Simon U., Burau W.: Blaschkes Beitrage zur affinen Differentialgeometrie, Ibid., Vol.IV, 11-34 (1985).
[17] Simon U.: Entwicklung der affinen Differentialgeometrie nach Blaschkes, Ibid., Vol.IV, 35-88 (1985).
[18] Simon U.: Recent developments in affine differential geometry, Diff. Geom. and its Applications, Proc. Conf. Dubrovnik/Yugosl. 1988, 327-347 (1989).
[19] Simon U., Liu H.L., Magid M. and Scharlach Ch.: Recent developments in affine differential geometry, In: Geometry and Topology of Submanifolds VIII, World Scientific, Singapore, 1-15 and 293-408 (1966).
[20] Su B.: Affine Differential Geometry, Science Press, Beijing, Gordon and Breach, New York, 1983.
[21] Suhtaeva A.M.: On the equivalence of curves in C^{n} with respect to the action of groups $S L(n, C)$ and $G L(n, C)$, Dokl. Akad. Nauk of SSRUz, N6 ,11-13 (1987) .
[22] Weyl H.: The Classical Groups, Princeton Univ. Press, Princeton, New Jersey, 1946.
Yasemin SAĞIROĞLU, Ömer PEKŞEN
Received 15.10.2008
Department of Mathematics,
Karadeniz Technical University,
61080, Trabzon-TURKEY
e-mail: sagiroglu.yasemin@gmail.com,peksen@ktu.edu.tr

[^0]: AMS Mathematics Subject Classification: 53A15, 53A55.

