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The equivalence of centro-equiaffine curves

Yasemin Sağıroğlu, Ömer Pekşen

Abstract

The motivation of this paper is to find formulation of the SL(n, R)-equivalence of curves. The types

for centro-equiaffine curves and for every type all invariant parametrizations for such curves are introduced.

The problem of SL(n, R)-equivalence of centro-equiaffine curves is reduced to that of paths. The centro-

equiaffine curvatures of path as a generating system of the differential ring of SL(n, R)-invariant differential

polinomial functions of path are found. Global conditions of SL(n, R)-equivalence of curves are given in

terms of the types and invariants. It is proved that the invariants are independent.

Key Words: Centro-equiaffine geometry, centro-equiaffine type of a curve, differential invariants of a curve,

centro-equiaffine equivalence of curves.

1. Preliminaries

The invariant theory provides a method to find differential invariants of a curve to solve the equivalence
problem of curves. In [8] the problem investigated for equiaffine curves and in [13] it is solved for centro-affine

curves. The first comprehensive treatment of affine geometry is given in the seminal work of Blaschke [3].

For further developments of the subject, we refer the reader to [14], and the more modern texts [11], [20],

the commentaries [16], [17] and survey papers [19], [2], [18] . The fundamental theorem of curves in centro-

affine geometry is obtained in [4]. A discussion of centro-affine plane and space curves can be found in [15],

[12]. A detailed discussion of plane curves in centro-affine geometry can be obtained in [10]. In [6] equiaffine

invariants of 3-dimensional curves and in [5,pp.170-172] and [12] equiaffine curvatures of n-dimensional curves

are investigated. Complete systems of global equiaffine invariants for plane and space paths are obtained in [1].

The global SL(n)-equivalence of path in Rn and Cn is considered in [7] and in [21].

This paper is concerned with the problem of the global equivalence of centro-equiaffine curves. Centro-
equiaffine types of a curve is introduced. For every centro-equiaffine type of a curve all possible invariant
parametrizations are described. We obtain a generating system of the differential ring of all centro-equiaffine
invariant differential polinomials of a path. The conditions of the global centro-equiaffine equivalence of curves
are given in terms of the centro-equiaffine type and invariants of a curve. The independence of the invariants is
proved.
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2. The centro-equiaffine type of a curve

Let R be the field of real numbers and I = (a, b) be an open interval of R .

Definition 1 A C∞ -map x : I → Rn will be called an I -path (shortly, a path) in Rn .

Definition 2 An I1 -path x (t) and an I2 -path y (r) in Rn will be called D -equivalent if there exists a C∞ -

diffeomorphism ϕ : I2 → I1 such that ϕ
′
(r) > 0 and y(r) = x(ϕ(r)) for all r ∈ I2 . A class of D -equivalent

paths in Rn will be called a curve in Rn , ( [9] , p.9). A path x ∈ α will be called a parametrization of a curve
α .

Remark 1 There exist different definitions of a curve ( [5] , p.2, [7]).

We denote the group {g ∈ GL(n, R) | detg = 1} of all n × n matrices by SL(n, R).

If x (t) is an I -path in Rn then gx (t) is an I -path in Rn for any g ∈ SL(n, R).

Definition 3 Two I -paths x and y in Rn will be called SL(n, R)-equivalent and written x
SL(n,R)∼ y if there

exists g ∈ SL(n, R) such that y(t) = gx(t) .

Let α be a curve in Rn , that is, α = {hτ , τ ∈ Q} , where hτ is a parametrization of α . Then

gα = {ghτ , τ ∈ Q} is a curve in Rn for any g ∈ SL(n, R).

Definition 4 Two curves α and β in Rn will be called SL(n, R)-equivalent (or SL(n, R)-congruent) and

written α
SL(n,R)∼ β if β = gα for some g ∈ SL(n, R) .

Remark 2 Our definition is essentially different from the definition ( [5], p.21) of a congruence of curves for

the group of euclidean motions. By the definition ( [5], p.21), two curves with different lengths may be congruent.

Let x be an I -path in Rn and x
′
(t) be the derivative of x(t). Put x(0) = x , x(n) = (x(n−1))

′
. For

ak ∈ Rn , k = 1, ..., n , the determinant det(aij) (where aki are coordinates of ak ) will be denoted by [a1a2...an] .

So
[
x(t)x

′
(t)...x(n−1)(t)

]
is the determinant of the vectors x(t),x

′
(t), ... ,x(n−1)(t). For I = (a, b), q, p ∈ I ,

put

lx(q, p) =
∫ p

q

∣∣∣[x(t)x
′
(t)...x(n−1)(t)

]∣∣∣
2

(n−1)n
dt

and lx(a, p) = limq→a lx(q, p), lx(q, b) = limp→b lx(q, p). There are only four possible cases:

(i) lx(a, p) < +∞ , lx(q, b) < +∞ ; (ii) lx(a, p) < +∞ , lx(q, b) = +∞ ;

(iii) lx(a, p) = +∞ , lx(q, b) < +∞ ; (iv) lx(a, p) = +∞ , lx(q, b) = +∞ .

Suppose that the case (i) or (ii) holds for some q , p ∈ I . Then l = lx(a, p) + lx(q, b) − lx(q, p), where

0 ≤ l ≤ +∞ , does not depend on q , p . In this case, we say that x belongs to the centro-equiaffine type of (0, l).

The cases (iii) and (iv) do not depend on q , p . In these cases, we say that x belongs to the centro-equiaffine

types of (−∞, 0) and (−∞, +∞), respectively. There exist paths of all types (0, l) (where 0 ≤ l ≤ +∞),

(−∞, 0) and (−∞, +∞). The centro-equiaffine type of a path x will be denoted by L(x).
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Proposition 1 (i) If x
SL(n,R)∼ y then L(x) = L(y) ;

(ii) Let α be a curve and x, y ∈ α . Then L(x) = L(y) .

Proof. It is obvious. �

The centro-equiaffine type of a path x ∈ α will be called the centro-equiaffine type of the curve α and
denoted by L(α). According to Proposition 1, L(α) is an SL(n, R)-invariant of a curve α .

3. Invariant parametrization and reduction theorem

Definition 5 An I -path x(t) in Rn will be called centro-equiaffine regular (shortly, regular) if[
x(t)x

′
(t)...x(n−1)(t)

]
�= 0 for all t ∈ I . A curve will be called regular if it contains a regular path.

Now we define an invariant parametrization of a regular curve in Rn .

Let I = (a, b) and x(t) be a regular I -path in Rn . We define the centro-equiaffine arc length function

sx(t) for each centro-equiaffine type as follows. We put sx(t) = lx(a, t) for the case L(x) = (0, l), where

0 < l ≤ +∞ , and sx(t) = − lx(t, b) for the case L(x) = (−∞, 0). Let L(x) = (−∞, +∞). We choose a fixed

point in every interval I = (a, b) of R and denote it by aI . Let aI = 0 for I = (−∞, +∞). We set sx(t) =

lx(aI , t).

Since s
′
x(t) > 0 for all t ∈ I , the inverse function of sx(t) exists. Let us denote it by tx(s). The domain

of tx(s) is L(x) and t
′
x(s) > 0 for all s ∈ L(x).

Proposition 2 Let I = (a, b) and x be a regular I -path in Rn . Then

(i) sgx(t) = sx(t) and tgx(s) = tx(s) for all g ∈ SL(n, R) ;

(ii) the equalities sx(ϕ)(r) = sx(ϕ(r)) + s0 and ϕ(tx(ϕ)(s + s0)) = tx(s) hold for any C∞ -diffeomorphism

ϕ : J = (c, d) → I such that ϕ
′
(r) > 0 for all r ∈ J , where s0 = 0 for L(x) �= (−∞, +∞) and

s0 = lx (ϕ (aJ) , aI) for L(x) = (−∞, +∞).

Proof. The proof of (i) is obvious. We prove (ii). Let L(x) = (−∞, +∞). Then we have

sx(ϕ)(r) =
∫ r

aJ

∣∣∣∣
[
x(ϕ(r))

d

dr
(x(ϕ(r)))...

dn−1

drn−1
(x(ϕ(r)))

]∣∣∣∣
2

(n−1)n

dr

=
∫ r

aJ

dϕ

dr

∣∣∣∣
[
x(ϕ(r))

d

dϕ
(x(ϕ(r)))...

dn−1

dϕn−1
(x(ϕ(r)))

]∣∣∣∣
2

(n−1)n

dr

= lx (ϕ (aJ) , ϕ (r)) = lx (aI , ϕ (r)) + lx (ϕ (aJ) , aI) .

So sx(ϕ)(r) = sx(ϕ(r)) + s0 , where s0 = lx (ϕ (aJ) , aI). This implies that ϕ(tx(ϕ)(s + s0)) = tx(s). For

L(x) �= (−∞, +∞), it is easy to see that s0 = 0. �
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Let α be a regular curve and x ∈ α . Then x(tx(s)) is a parametrization of α .

Definition 6 The parametrization x(tx(s)) of a regular curve α will be called an invariant parametrization of
α .

We denote the set of all invariant parametrizations of α by φα . Every y ∈ φα is I -path, where I = L(α).

Proposition 3 Let α be a regular curve, x ∈ α and x be an I -path, where I = L(α) . Then the following
conditions are equivalent:

(i) x is an invariant parametrization of α ;

(ii)
[
x(s)x

′
(s)...x(n−1)(s)

]2

= 1 for all s ∈ L(α) ;

(iii) sx(s) = s for all s ∈ L(α).

Proof. (i) ⇒ (ii) . Let x ∈ φα .Then there exists y ∈ α such that x(s) = y (ty(s)) . By Proposition 2,

sx(s) = sy(ty)(s) = sy(ty(s)) + s0 = s + s0, where s0 is as in Proposition 2. Since s0 does not depend on s ,

dsx(s)
ds =

∣∣∣[x(s)x
′
(s)...x(n−1)(s)

]∣∣∣
2

(n−1)n
= 1. Hence

[
x(s)x

′
(s)...x(n−1)(s)

]2

= 1 for all s ∈ L(α).

(ii) ⇒ (iii) . Let
[
x(s)x

′
(s)...x(n−1)(s)

]2

= 1 for all s ∈ L(α). By the definition of sx(t), we

have dsx(s)
ds

=
∣∣∣[x(s)x

′
(s)...x(n−1)(s)

]∣∣∣
2

(n−1)n
= 1. Therefore sx(s) = s + c for some c ∈ R . In the case

L(x) �= (−∞, +∞), sx(s) = s + c and sx(s) ∈ L(α) for all s ∈ L(α) implies c = 0, that is, sx(s) = s . In the

case L(x) = (−∞, +∞), sx(s) = lx(aI , s) = lx(0, s) = s + c implies 0 = lx(0, 0) = c , that is, sx(s) = s .

(iii) ⇒ (i) . The equality sx(s) = s implies tx(s) = s . Therefore x(s) = x(tx(s)) ∈ φα . �

Proposition 4 Let α be a regular curve and L(α) �= (−∞, +∞) . Then there exists the unique invariant
parametrization of α .

Proof. Let x, y ∈ α , x be an I1 -path and y be an I2 -path. Then there exists a C∞ -diffeomorphism

ϕ : I2 → I1 such that ϕ
′
(r) > 0 and y(r) = x(ϕ(r)) for all r ∈ I2 . By Proposition 2 and L(α) �= (−∞, +∞),

we obtain y(ty(s)) = x(ϕ(ty(s)) = x(ϕ(tx(ϕ)(s))) = x(tx(s)). �

Let α be a regular curve and L(α) = (−∞, +∞). Then it is easy to see that the set φα is not countable.

Proposition 5 Let α be a regular curve, L(α) = (−∞, +∞) and x ∈ φα . Then φα = {y : y (s) =

x
(
s + s

′
)

, s
′ ∈ (−∞, +∞)} .

Proof. Let x, y ∈ φα . Then there exist h, k ∈ α such that x (s) = h(th(s)), y (s) = k(tk(s)), where h be an

I1 -path and k be an I2 -path. Since h, k ∈ α there exists ϕ : I2 → I1 such that ϕ
′
(r) > 0 and k(r) = h(ϕ(r))

for all r ∈ I2 . By Proposition 2, y (s) = k(tk(s)) = h(ϕ(tk(s)) = h(ϕ(th(ϕ)(s))) = h(th(s − s0)) = x (s − s0) .
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Let x ∈ φα and s
′ ∈ (−∞, +∞). We prove x (ψ) ∈ φα , where ψ(s) = s + s

′
. By Proposition

3,
[
x(s)x

′
(s)...x(n−1)(s)

]2

= 1 and sx(s) = s . Put z (s) = x (ψ(s)) . Since ψ is a C∞ -diffeomorphism

of (−∞, +∞) onto (−∞, +∞), then z = x(ψ) ∈ α. Using Proposition 2 and sx(s) = s , we get sz(s) =

sx(ψ) (s) = sx(ψ(s)) + s1 =
(
s + s

′
)

+ s1 , where

s1 =
∫ 0

ψ(0)

∣∣∣[x(s)x
′
(s)...x(n−1)(s)

]∣∣∣
2

(n−1)n
ds.

This, in view of
[
x(s)x

′
(s)...x(n−1)(s)

]2

= 1, implies s1 = −ψ(0) = −s
′
. Then sz(s) =

(
s + s

′
)
− s

′
= s . By

Proposition 3, z ∈ φα . �

Theorem 1 Let α , β be regular curves and x ∈ φα , y ∈ φβ . Then,

(i) for L(α) = L(β) �= (−∞, +∞), α
SL(n,R)∼ β if and only if x (s)

SL(n,R)∼ y (s) ;

(ii) for L(α) = L(β) = (−∞, +∞), α
SL(n,R)∼ β if and only if x (s)

SL(n,R)∼ y
(
s + s

′
)

for some s
′ ∈

(−∞, +∞).

Proof. (i) Let α
SL(n,R)∼ β and h ∈ α . Then there exists g ∈ SL(n, R) such that β = gα . This implies

gh ∈ β . Using Propositions 2 and 4, we get x(s) = h(th(s)), y (s) = (gh)(tgh(s)) and gx(s) = g(h(th(s))) =

(gh)(th(s)) = (gh)(tgh(s)) = y (s). Thus x
SL(n,R)∼ y . Conversely, let x

SL(n,R)∼ y , that is, there exists

g ∈ SL(n, R) such that gx = y . Then α
SL(n,R)∼ β .

(ii) Let α
SL(n,R)∼ β . Then there exist I -paths h ∈ α , k ∈ β and g ∈ SL(n, R) such that

k(t) = gh(t). We have k(tk(s)) = k(tgh(s)) = k(th(s)) = (gh)(th(s)). By Proposition 5, x(s) = k(tk(s + s1)),

y (s) = h(th(s + s2)) for some s1 , s2 ∈ (−∞, +∞). Therefore x(s − s1) = gy (s− s2). This implies that

x(s)
SL(n,R)∼ y

(
s + s

′
)

, where s
′
= s1 − s2 . Conversely, let x (s)

SL(n,R)∼ y
(
s + s

′
)

for some s
′ ∈ (−∞, +∞).

Then there exists g ∈ SL(n, R) such that y
(
s + s

′
)

= gx(s). Since y
(
s + s

′
)
∈ β , then α

SL(n,R)∼ β . �

Theorem 1 reduces the problem of the SL(n, R)-equivalence of regular curves to that of paths.

4. The generating system

Let x(t) be an I -path in Rn .

Definition 7 A polynomial p(x, x
′
, ..., x(k)) of x and a finite number of derivatives x, x

′
, ..., x(k) of x with the

coefficients from R will be called a differential polynomial of x . It will be denoted by p{x} .
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We denote the set of all differential polynomials of x by R{x} . It is a differential R -algebra. Let G be

a subgroup of SL(n, R).

Definition 8 A differential polynomial p{x} will be called G-invariant if p{gx} = p{x} for all g ∈ G .

The set of all G -invariant differential polynomials of x will be denoted by R{x}G . It is a differential

R -subalgebra of R{x} .

By Proposition 3, an I -path x is an invariant parametrization of a regular curve α if and only if

I = L (α) and
[
x(s)x

′
(s)...x(n−1)(s)

]2

= 1 for all s ∈ L (α).

Let I be one of the sets (0, l), 0 < l ≤ +∞ , (−∞, 0), (−∞, +∞). Put W = {x :
[
x(s)x

′
(s)...x(n−1)(s)

]2

=

1 for all s in I} . The restriction of the SL(n, R)-invariant differential polynomial p{x} to the set W will be

denoted by p{x}/W . We put R{x}SL(n,R)/W =
{
p/W , p ∈ R{x}SL(n,R)

}
. It is a differential R -algebra.

Definition 9 A subset S of R{x}SL(n,R)/W will be called a generating system of R{x}SL(n,R)/W if the smallest

differential R -subalgebra with the unit containing S is R{x}SL(n,R)/W .

Theorem 2 The system

[
xx

′
...x(n−1)

]
/W ,

[
xx

′
...x(i−1)x(n)x(i+1)...x(n−1)

]
/W , i = 1, ...n− 2,

is a generating system of R{x}SL(n,R)/W .

Proof. For the proof, we need several lemmas.

By the First Main Theorem for SL (n) ([22], p.45), the system U of
[
x(i1)...x(in)

]
, where 0 ≤ i1 <

i2 < ... < in−1 < +∞ , is a generating system of R
{
x

′
}SL(n,R)

. For the determinant u =
[
x(i1)...x(in)

]
, we

denote the number of elements of the set
{
x(i1), ..., x(in)

}
\

{
x, x

′
, ..., x(n−1)

}
by δ (u) and we put τ (u) =

max (i1, ..., in). �

Lemma 1 Let u =
[
x(i1)...x(in)

]
and δ (u) ≥ 2 . Then u/W is a polynomial of elements v/W =

[
x(j1)...x(jn)

]
/W

such that δ (v) < δ (u) and τ (v) ≤ τ (u) .

Proof. By δ (u) ≥ 2, there exists x(k) , 1 ≤ k ≤ n − 1, such that x(k) /∈
{
x(i1), ..., x(in)

}
. We need the

following lemma ([22], p.70): �

Lemma 2 For any vectors x0, x1, ..., xn, y2, ...yn in Rn , the following equality holds:

[x1x2...xn] × [x0y2...yn] − [x0x2...xn] × [x1y2...yn]−
...− [x1x2...xn−1x0] × [xny2...yn] = 0
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Proof. In Lemma 3, we put x1 = x(i1) ,..., xn = x(in) , y3 = x′ ,..., yk+1 = x(k−1) , yk+2 = x(k+1) ,...,

yn = x(n−1) . Then

[
x(i1)...x(in)

]
×

[
x(k)xx

′
...x(k−1)x(k+1)...x(n−1)

]
−[

x(k)x(i2)...x(in)
]
×

[
x(i1)xx

′
...x(k−1)x(k+1)...x(n−1)

]
− ...

−
[
x(i1)...x(in−1)x(k)

]
×

[
x(in)xx

′
...x(k−1)x(k+1)...x(n−1)

]
= 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(1)

Put v0 =
[
x(k)xx

′
...x(k−1)x(k+1)...x(n−1)

]
, vr =

[
x(ir)xx

′
...x(k−1)x(k+1)...x(n−1)

]
,

hm =
[
x(i1)...x(im−1)x(k)x(im+1)...x(in)

]
. Then δ (v0) = 0, τ (v0) ≤ τ (u), δ (vr) ≤ 1, τ (hm) ≤ τ (u). From

equality (1), using
[
xx

′
...x(n−1)

]2

= 1, we get u/W = v1h1v0/W + ... + vnhnv0/W . By δ (u) ≥ 2, the number

of multiplications vjhjv0 �= 0 is δ (u) + 1 ≥ 3. For hj such that vjhjv0 �= 0, we have δ (hj) < δ (u).

Therefore u/W is a polynomial of the system v0/W , vj/W , hj/W , with δ (v0) = 0, τ (v0) ≤ τ (u), δ (vj) ≤ 1,

τ (vj) ≤ τ (u), δ (hj) < δ (u), τ (hj) ≤ τ (u). So the proof of Lemma 2 is completed. �

Lemma 3 Let u =
[
xx

′
...x(i−1)x(m)x(i+1)...x(n−1)

]
and m > n . Then u is a differential polynomial of

elements v =
[
x(j1)...x(jn)

]
such that τ (v) < τ (u) .

Proof. We have

[
xx

′
...x(i−1)x(m−1)x(i+1)...x(n−1)

]′

=
[
x

′
x

′
...x(i−1)x(m−1)x(i+1)...x(n−1)

]
+ ...

+
[
xx

′
...x(i−2)x(i)x(m−1)x(i+1)...x(n−1)

]
+

[
xx

′
...x(i−1)x(m)x(i+1)...x(n−1)

]
+ ...

+
[
xx

′
...x(i−1)x(m)x(i+1)...x(n−2)x(n)

]
.

In this equality, only the following determinants are nonzero:

v1 =
[
xx

′
..x(i−1)x(m−1)x(i+1)..x(n−1)

]
, v2 =

[
xx

′
..x(i−2)x(i)x(m−1)x(i+1)..x(n−1)

]
,

v3 =
[
xx

′
..x(i−1)x(m−1)x(i+1)..x(n−2)x(n)

]
, u =

[
xx

′
..x(i−1)x(m)x(i+1)..x(n−1)

]
.

So we obtain u = v
′
1 − v2 − v3 . By τ (u) = m , τ (v1) = τ (v2) = τ (v3) = m − 1, the lemma is proved.

Now the proof of Theorem 2 follows from Lemmas 1, 2 and 4 by induction on τ (u) and δ (u). �

Theorem 3 Let α, β be regular curves in Rn and x ∈ φα , y ∈ φβ . Then,

(i) for L (α) = L(β) �= (−∞, +∞) , α
SL(n,R)∼ β if and only if

sgn[x(s)x
′
(s) ...x(n−1) (s)] = sgn[y(s)y

′
(s) ...y(n−1) (s)],

[x(s)x
′
(s) ...x

(i−1)
(s) x(n) (s) x

(i+1)
(s) ...x(n−1) (s)]

= [y(s)y
′
(s) ...y

(i−1)
(s) y(n) (s) y

(i+1)
(s) ...y(n−1) (s)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2)
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for all s ∈ L (α) = L(β) and i = 1, ..., n− 2 .

(ii) for L (α) = L(β) = (−∞, +∞) , α
SL(n,R)∼ β if and only if there exists a ∈ (−∞, +∞) such that

sgn
[
x(s)x′(s)...x(n−1)(s)

]
= sgn

[
y(s + a)y′(s + a)...y(n−1)(s + a)

]
[
x(s)x′(s)...x(i−1)(s)x(n)(s)x(i+1)(s)...x(n−1)(s)

]
=

[
y(s + a)y′(s + a)...y(i−1)(s + a)y(n)(s + a)y(i+1)(s + a)...y(n−1)(s + a)

]

for all s ∈ (−∞, +∞) and i = 1, ..., n− 2 .

Proof. (i) Let α
SL(n,R)∼ β . By claim (i) of Theorem 1, x

SL(n,R)∼ y . By Proposition 3,
∣∣∣[xx

′
...x(n−1)]

∣∣∣ =
∣∣∣[yy

′
...y(n−1)]

∣∣∣ = 1. This, in view of x
SL(n,R)∼ y , yields (2). Now suppose that (2) holds. By Proposition 3,

we have
∣∣[x(s)x′(s)...x(n−1)(s)

]∣∣ =
∣∣[y(s)y′(s)...y(n−1)(s)

]∣∣ = 1 we obtain

[x(s)x
′
(s) ...x(n−1) (s)] = [y(s)y

′
(s) ...y(n−1) (s)],

[x(s)x
′
(s) ...x

(i−1)
(s) x(n) (s) x

(i+1)
(s) ...x(n−1) (s)]

= [y(s)y
′
(s) ...y

(i−1)
(s) y(n) (s) y

(i+1)
(s) ...y(n−1) (s)].

This, in view of claim (i) of Theorem 1 and Theorems 10.7, 10.8 in [7], implies α
SL(n,R)∼ β .

The proof of (ii) follows similarly from claim (ii) of Theorem 1. �

Let T be one of the sets (0, l) (where l ≤ +∞), (−∞, 0), (−∞, +∞).

Theorem 4 Let h1 (s) , ..., hn (s) be C∞ -functions on T , where |hn (s)| = 1 for all s ∈ T . Then there exists
an invariant parametrization y of a regular curve such that

sgn[y(s)y
′
(s) ...y(n−1) (s)] = hn (s) ,

[y(s)y
′
(s) ...y

(i−1)
(s) y(n) (s) y

(i+1)
(s) ...y(n−1) (s)] = hi (s)

for all s ∈ T and i = 0, ..., n− 2 .

Proof. Let C (s) be the matrix ‖cij (s)‖ , where cj+1j (s) = 1 for all s ∈ T , 0 ≤ j ≤ n − 2; cij (s) = 0 for

all s ∈ T , j �= n , i �= j + 1, 0 ≤ i ≤ n − 1; cin (s) = hi(s)
hn(s) , i = 0, ..., n− 2, cnn (s) = h

′
n(s)

hn(s) . It is known from

the theory of differential equations that there exists a solution of the differential equation

A
′
x (s) = Ax (s)C (s) (3)

such that det Ax (s) �= 0 for all s ∈ T , where Ax (s) =
∥∥∥x(s)x

′
(s) ...x(n−1) (s)

∥∥∥ is the matrix of column

vectors x(s),x
′
(s) , ... ,x(n−1) (s) . Let Ax (s) be one of such solutions. Put [x(s)x

′
(s) ...x(n−1) (s)] = ϕ (s) . By
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SAĞIROĞLU, PEKŞEN

det Ax (s) �= 0 for all s ∈ T , we get ϕ (s) �= 0 for all s ∈ T . By |hn (s)| = 1 for all s ∈ T , we have h
′
n (s) = 0

for all s ∈ T . Then, from (3), we obtain

[x(s)x
′
(s) ...x(n−1) (s)]

′

[x(s)x′ (s) ...x(n−1) (s)]
=

h
′
n (s)

hn (s)
= 0.

Therefore ϕ
′
(s) = 0. Put ϕ (s) = λ1 , λ1 ∈ R , λ1 �= 0 and hn (s) = λ2 , λ2 ∈ R . By |hn (s)| = 1, we get |λ2| =

1. We consider g ∈ SL(n, R) such that det g = λ2
λ1

. So [gx(gx)
′
...(gx)(n−1)] = det g[xx

′
...x(n−1)] = hn (s) . For

y = gx , we have

[
yy

′
...y(i−1)y(n)y(i+1)...y(n−1)

]
[
yy′ ...y(n−1)

] =
det g

[
xx

′
...x(i−1)x(n)x(i+1)...x(n−1)

]
det g

[
xx′ ...x(n−1)

] =
hi (s)
hn (s)

i = 0, ..., n− 2. Hence

[
y(s)y

′
(s) ...y(n−1) (s)

]
= hn (s) ,

[
y(s)y

′
(s) ...y(i−1) (s) y(n) (s) y(i+1) (s) ...y(n−1) (s)

]
= hi (s)

for all s ∈ T , i = 0, ..., n− 2. Then by
∣∣∣[y(s)y

′
(s) ...y(n−1) (s)

]∣∣∣ = |hn (s)| = 1 and Proposition 3, y ∈ φα for

some regular curve α . �
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Department of Mathematics,
Karadeniz Technical University,
61080, Trabzon-TURKEY
e-mail: sagiroglu.yasemin@gmail.com,peksen@ktu.edu.tr

Received 15.10.2008

104


