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The equivalence of centro-equiaffine curves

Yasemin Sagiroglu, Omer Peksen

Abstract

The motivation of this paper is to find formulation of the SL(n, R)-equivalence of curves. The types
for centro-equiaffine curves and for every type all invariant parametrizations for such curves are introduced.
The problem of SL(n, R)-equivalence of centro-equiaffine curves is reduced to that of paths. The centro-
equiaffine curvatures of path as a generating system of the differential ring of SL(n, R)-invariant differential
polinomial functions of path are found. Global conditions of SL(n,R)-equivalence of curves are given in

terms of the types and invariants. It is proved that the invariants are independent.

Key Words: Centro-equiaffine geometry, centro-equiaffine type of a curve, differential invariants of a curve,

centro-equiaffine equivalence of curves.

1. Preliminaries

The invariant theory provides a method to find differential invariants of a curve to solve the equivalence
problem of curves. In [8] the problem investigated for equiaffine curves and in [13] it is solved for centro-affine
curves. The first comprehensive treatment of affine geometry is given in the seminal work of Blaschke [3].
For further developments of the subject, we refer the reader to [14], and the more modern texts [11], [20],
the commentaries [16], [17] and survey papers [19], [2], [18]. The fundamental theorem of curves in centro-
affine geometry is obtained in [4]. A discussion of centro-affine plane and space curves can be found in [15],
[12]. A detailed discussion of plane curves in centro-affine geometry can be obtained in [10]. In [6] equiaffine
invariants of 3-dimensional curves and in [5,pp.170-172] and [12] equiaffine curvatures of n-dimensional curves
are investigated. Complete systems of global equiaffine invariants for plane and space paths are obtained in [1].
The global SL(n)-equivalence of path in R™ and C™ is considered in [7] and in [21].

This paper is concerned with the problem of the global equivalence of centro-equiaffine curves. Centro-
equiaffine types of a curve is introduced. For every centro-equiaffine type of a curve all possible invariant
parametrizations are described. We obtain a generating system of the differential ring of all centro-equiaffine
invariant differential polinomials of a path. The conditions of the global centro-equiaffine equivalence of curves
are given in terms of the centro-equiaffine type and invariants of a curve. The independence of the invariants is

proved.
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2. The centro-equiaffine type of a curve
Let R be the field of real numbers and I = (a,b) be an open interval of R.
Definition 1 A C*®°-map x : I — R™ will be called an I-path (shortly, a path) in R™.

Definition 2 An I -path x (t) and an Is-path y(r) in R™ will be called D -equivalent if there exists a C*° -

diffeomorphism ¢ : Iy — I such that ¢ (r) > 0 and y(r) = x(o(r)) for all v € I. A class of D-equivalent
paths in R™ will be called a curve in R™, ([9], p.9). A path x € a will be called a parametrization of a curve
a.

Remark 1 There exist different definitions of a curve ([5], p.2, [7]).

We denote the group {g € GL(n, R) | detg = 1} of all n x n matrices by SL(n, R).
If 2 (t) is an I-path in R™ then gz (t) is an [-path in R™ for any g € SL(n, R).

SL(

Definition 3 Two I -paths  and y in R™ will be called SL(n, R) -equivalent and written x @R y if there

exists g € SL(n, R) such that y(t) = gx(t).

Let « be a curve in R™, that is, « = {h,,7 € Q}, where h, is a parametrization of «. Then

ga = {gh,,7 € Q} is a curve in R™ for any g € SL(n, R).

Definition 4 Two curves a and  in R™ will be called SL(n, R)-equivalent (or SL(n,R)-congruent) and

written « SHR) B if B = ga for some g € SL(n,R).

Remark 2 Our definition is essentially different from the definition ([5], p.21) of a congruence of curves for
the group of euclidean motions. By the definition (5], p.21), two curves with different lengths may be congruent.

Let x be an I-path in R" and z'(t) be the derivative of z(t). Put 2 = 2, 2z = (2(»=1)" . For

ar € R, k =1,...,n, the determinant det(a;;) (where ay; are coordinates of ay ) will be denoted by [a1as...ay)].

So [w (t)x

’

(t)..z=D(t)| is the determinant of the vectors x(t),z (t),...,z"=V(t). For I = (a,b), ¢,p € I,

l+(q, p) =/qp

and lz(a,p) = limg_q 2 (q,p), lz(q,b) = lim,_p 5 (g, p). There are only four possible cases:
(1) Iz (a,p) < 400, lx(g,b) < +o0; (i1) lz(a,p) < 400, lx(g,b) = +o00;
(7i) lz(a,p) = 400, Iz(q,b) < +o0; () Iz(a,p) =400, lz(¢,b) = +o0.
Suppose that the case (i) or (#¢) holds for some ¢, p € I. Then [ = I (a,p) + lz(q,b) — lx(¢,p), where

put

—2
/ (n—1)n

dt

[x(t)x (t)...:c("_l)(t)]

0 <1< +00, does not depend on ¢, p. In this case, we say that = belongs to the centro-equiaffine type of (0,1).
The cases (iii) and (iv) do not depend on ¢, p. In these cases, we say that = belongs to the centro-equiaffine
types of (—00,0) and (—oo,+00), respectively. There exist paths of all types (0,1) (where 0 <[ < +o00),
(—00,0) and (—o0,+00). The centro-equiaffine type of a path x will be denoted by L(z).
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SL(n,R)

Proposition 1 (i) If x y then L(z)= L(y);

(#) Let o be a curve and x,y € a. Then L(x) = L(y).

Proof. It is obvious. O

The centro-equiaffine type of a path z € o will be called the centro-equiaffine type of the curve « and

denoted by L(«). According to Proposition 1, L(a) is an SL(n, R)-invariant of a curve «.

3. Invariant parametrization and reduction theorem

Definition 5 An I-path x(t) in R™ will be called centro-equiaffine reqular (shortly, regular) if

{x(t)x,(t)...x("_l)(t) #0 forallt € I. A curve will be called regular if it contains a regular path.

Now we define an invariant parametrization of a regular curve in R™.

Let I = (a,b) and z(t) be a regular [-path in R™. We define the centro-equiaffine arc length function
sz (t) for each centro-equiaffine type as follows. We put s,(t) = I;(a,t) for the case L(z) = (0,1), where
0 <l < +00,and sgz(t) = — I5(t,b) for the case L(x) = (—00,0). Let L(x) = (—o0,+00). We choose a fixed
point in every interval I = (a,b) of R and denote it by ay. Let ay = 0 for I = (—o0,+00). We set s,(t) =
l(ar,t).

Since s, (t) > 0 for all ¢ € I, the inverse function of s, (t) exists. Let us denote it by t,(s). The domain
of ty(s) is L(x) and t,(s) > 0 for all s € L(z).

Proposition 2 Let I = (a,b) and x be a regular I-path in R™. Then
(1) 8gz(t) = 52(t) and tgz(s) =tz(s) for all g € SL(n, R);

(i) the equalities s,(,)(r) = s:(¢(r)) + s0 and @(ty(x)(s + s0)) = tz(s) hold for any C* -diffeomorphism
¢ :J = (c,;d) — I such that ¢ (r) > 0 for all 7 € J, where sy = 0 for L(z) # (—o0,+00) and
so =1y (¢ (ay),ar) for L(z) = (—o0, +00).

Proof. The proof of (i) is obvious. We prove (ii). Let L(z) = (—o0,+00). Then we have

T m—1 ﬁ
i) = [ ||etet) e g ot | ar
T n—1 (nfljn
- [ E|[rern et S| @

= lL(p(as), ¢ (r) =l (ar,¢ () + L (¢ (as), ar).

S0 54(4)(r) = 82(0(7)) + 80, where so =l (¢ (as),ar). This implies that o(t, () (s + s0)) = tz(s). For
L(zx) # (—o0,+00), it is easy to see that sp = 0. O
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Let « be aregular curve and = € o. Then z(t;(s)) is a parametrization of .

Definition 6 The parametrization x(t;(s)) of a regular curve o will be called an invariant parametrization of
a.

We denote the set of all invariant parametrizations of a by ¢ . Every y € ¢,, is I-path, where I = L(«).

Proposition 3 Let a be a regular curve, © € o and x be an I-path, where I = L(a)) . Then the following

conditions are equivalent:

(1) x is an invariant parametrization of «;

, 2
(i) [w(s)x (8)..sD(s)| =1 forall s € L(a);

(751) Sz(s) =s forall s € L(«).

Proof. (i) = (#). Let = € ¢,.Then there exists y € o such that z(s) = y (t,(s)). By Proposition 2,

5:(8) = 8y(2,)(8) = sy(ty(s)) + 80 = s + 8o, where sy is as in Proposition 2. Since sy does not depend on s,

—2
(n—1)n

ds;—s(s) = Hx(s)x,(s)x("_l)(s)} = 1. Hence [x(s)x,(s)...x("_l)(s) ’ =1 for all s € L(w).

, 2
(#6) = (it7). Let [w(s)x (s)...x("_l)(s)} = 1 for all s € L(a). By the definition of s,(t), we

2
have ds;—s(s) = Hx(s)x,(s)x("_l)(s)} """ — 1. Therefore s,(s) = s + ¢ for some ¢ € R. In the case

L(z) # (—00,400), s5(5) = s+ ¢ and s;(s) € L(«) for all s € L(«) implies ¢ = 0, that is, sz(s) = s. In the
case L(z) = (—o0,+0), sz(s) = lz(ar,s) = 1,(0,s) = s+ ¢ implies 0 =1,(0,0) = ¢, that is, s,(s) = s.
(79i) = (i). The equality s;(s) = s implies t5(s) = s. Therefore x(s) = z(tz(s)) € ¢a - O

Proposition 4 Let « be a regular curve and L(a) # (—o00,4+00). Then there exists the unique invariant

parametrization of .

Proof. Let z,y € a, = be an [;-path and y be an Is-path. Then there exists a C°°-diffeomorphism
@ : Iy — I, such that ¢ (r) > 0 and y(r) = z(¢(r)) for all r € I. By Proposition 2 and L(a) # (—o0, +0),
we obtain y(ty (s)) = z(p(ty(s)) = z(p(ta(p)(s))) = 2(ta(s)). o

Let a be a regular curve and L(a) = (—o0, +00). Then it is easy to see that the set ¢, is not countable.
Proposition 5 Let « be a regular curve, L(a) = (—00,+00) and © € ¢o. Then ¢o = {y : y(s) =

x (s + s,) ,s € (—00,+00)}.

Proof. Let z,y € ¢o. Then there exist h, k € o such that z (s) = h(tn(s)), v (s) = k(tx(s)), where h be an
I -path and k be an Io-path. Since h, k € a there exists ¢ : Iy — I; such that ¢ (r) > 0 and k(r) = h(e(r))
for all r € Io. By Proposition 2, y (s) = k(tx(s)) = h(¢(tr(s)) = h(@(thp)(s))) = h(trh(s — s0)) = x (s — s0) .
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Let 2 € ¢o and s € (=00, +00). We prove z () € ¢, where ¥(s) = s + s . By Proposition

, 2
3, [x(s)x (s)...x("_l)(s)} =1 and s,(s) = s. Put z(s) = z(¥(s)). Since @ is a C*°-diffeomorphism
of (—oo,+00) onto (—oo,400), then z = x(¢p) € a. Using Proposition 2 and sz(s) = s, we get s.(s) =

S () (8) = s5:(Y(s)) + 81 = (S + s,) + s1, where

) 2
> :/ Hw(s)x’ (8)--.1:("_1)(8)} =0
(0)

¥

’ 2 ’ ’ ’
This, in view of [x(s)x (s)...x("_l)(s)} =1, implies 57 = —¢(0) = —s . Then s.(s) = (s +s ) —s =s. By

Proposition 3, z € ¢, . a

Theorem 1 Let o, 8 be regular curves and x € ¢, y € ¢pg. Then,

SL(n,R) SL(n,R)

(i) for L(a) = L(B) # (—o0,+00), « 0 if and only if z (s) y(s);

SL(n,R)

(i) for L(a) = L(B) = (—o0,+00), « B if and only if z(s) SR y(s—i—s,) for some s €

(=00, +00).

Proof. (i) Let « SLR) 0 and h € a. Then there exists g € SL(n, R) such that 8 = ga. This implies

gh € . Using Propositions 2 and 4, we get x(s) = h(tn(s)), y(s) = (gh)(tgn(s)) and gz(s) = g(h(tn(s))) =

(gh)(tn(s)) = (gh)(tgn(s)) = y(s). Thus z SE R Conversely, let x SE R y, that is, there exists
g € SL(n, R) such that gr =y. Then « SL.R) G.
1) Let « SLR) B. Then there exist I-paths h € a, k € § and g € SL(n,R) such that

k(t) = gh(t). We have k(tx(s)) = k(tgn(s)) = k(tn(s)) = (gh)(tn(s)). By Proposition 5, z(s) = k(tx(s + s1)),
y(s) = h(tnh(s + s2)) for some s1, so € (—00,+00). Therefore z(s — s1) = gy (s —s2). This implies that

z(s) SE R Y (s + s,) , where s' = s; — s5. Conversely, let x (s) SR Y (s + s,) for some s € (—00,400).

SL(n,R)

Then there exists g € SL(n, R) such that y (s + s,) = gz(s). Since y (s + s,) € 3, then « 3. O

Theorem 1 reduces the problem of the SL(n, R)-equivalence of regular curves to that of paths.

4. The generating system

Let z(t) be an I-path in R™.

Definition 7 A polynomial p(x,x,, .., zF)) of & and a finite number of derivatives 2,z .., z® of © with the

coefficients from R will be called a differential polynomial of x. It will be denoted by p{z}.
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We denote the set of all differential polynomials of by R{z}. It is a differential R-algebra. Let G be
a subgroup of SL(n, R).

Definition 8 A differential polynomial p{x} will be called G -invariant if p{gz} = p{z} for all g € G.

The set of all G-invariant differential polynomials of z will be denoted by R{x}“. It is a differential
R-subalgebra of R{z}.

By Proposition 3, an I-path z is an invariant parametrization of a regular curve « if and only if

I=L(a) and [x(s)x, (s)...gc("_l)(s)}2 =1 for all s € L(a).

, 2
Let I be one of the sets (0,1), 0 < [ < 400, (—00,0), (—00,400). Put W = {z: [w(s)x (5).. 2= (s)

1 for all s in I}. The restriction of the SL(n, R)-invariant differential polynomial p{z} to the set W will be
denoted by p{z}/w. We put R{z}5("R) /y, = {p/w,p € R{z} LB} Tt is a differential R-algebra.

Definition 9 A subset S of R{x}5L™ %) /v, will be called a generating system of R{x}ySL(™8) /v, if the smallest

differential R-subalgebra with the unit containing S is R{x}SF(mH) /[y,

Theorem 2 The system
[xx,...x("_l)] /w, [xx,...x(i_l)x(")x(”l)...x("_l)] Jw,i=1,..n—2,

is a generating system of R{x}SL(R) [y,
Proof. For the proof, we need several lemmas.

By the First Main Theorem for SL(n) ([22], p.45), the system U of [2(")..z(n)]  where 0 < i1 <
,\ SL(n,R) . .
iy < ... < ip—1 < +00, is a generating system of R {x } . For the determinant u = [x(“)...x(z")] , wWe

denote the number of elements of the set {x(il), ...796(1'")} \ {x,x,, ...,x("_l)} by ¢ (u) and we put 7 (u) =

max (41, ..., ) - O

Lemma 1 Let u = [z()..20)] and 6 (u) > 2. Then u/W is a polynomial of elements v/w = [xUV)..20")] [y,
such that § (v) <6 (u) and 7 (v) <7 (u).

Proof. By §(u) > 2, there exists +*), 1 < k < n — 1, such that ) ¢ {x(il), ...,x(in)}, We need the
following lemma ([22], p.70): 0

Lemma 2 For any vectors xg,T1, ..., Tn, Y2, ...Yn in R™, the following equality holds:

[T122... 0] X [Toy2..-Yn] — [ToT2...Tn] X [T1Y2...Yn] —
o — 122 2 —10) X [ZnY2...Yn] =0
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Proof. In Lemma 3, we put z; = z(") ... z, = 2z ys = a2 ..., Yktl = k1) Ykt = gkt
yn = (™. Then

[260..a)] x [¢®za’.. 2= Dg+D), gD -

[xFz(2) | 2] x [x(il)xx,...x(k_l)x(k“)...x(”_l) — (1)

— [#0) 2 tr0g®)] x [a6)ga’ g ® Vgt gD = 0

Put vy = [xwm’...x<k—1>x<k+1>...x<n—1>} v = [x<u>m’...x<k—1>x<k+1>...x<n—1>} ,
b = [z, gm0 g®) pmi)  20)] Then 6 (vg) = 0, 7(vo) < 7(u), 6(vy) <1, 7(hy) < 7(u). From

, 2
equality (1), using [ww ...x(”_l)} =1, we get u/w = vih1vg/w + ... + Vphnvo/w. By 6 (u) > 2, the number

of  multiplications vjhjvy # 0 is d(u) +1 > 3. For h; such that vjhjvg # 0, we have 0(h;) < 6 (u).
Therefore u/w is a polynomial of the system vo/w, v;/w, hj/w, with § (vo) =0, 7 (vo) <7 (u), § (vj) <1,
T (v;) < 7(u), d(h;) <6 (u), 7(h;) <7 (u). So the proof of Lemma 2 is completed. O

Lemma 3 Let u = [:c:c,...x(i_l):c(m)x(”l)...x("_l) and m > n. Then u is a differential polynomial of
elements v = [x(jl)...x(j")] such that T (v) < 7 (u).

Proof. We have

’

[m’...x<i—1>x<m—1>x<i+1>...x<n—1>} = [o'a . 2 Dgpm=1) 3G+ pn-D)]| 4
1 [aa 22 g g (m=1)4(i+1)  p(n-D] 4 [xx,...x(i_l)x(m)x(”l)...x("_l)] T

+ m'...x<i—1>x<m>x<i+1>...x<n—2>x<n>} .

In this equality, only the following determinants are nonzero:

V1 {xx,..x(i_l)x(m_l)x(i"’l)..x("_l)} , Ug = [xx,..x(i_z)x(i)x(m_l)x(”l)..x("_l)] ,

V3 [xx,..x(i_l)x(m_l)x(“ﬂ)..x("_z)x(")} , U= [xac,..x(i_l)x(m)x(”l)..x("_l)] .

So we obtain u = v; — vy —vs. By 7 (u) =m, 7(v1) =7 (v2) = 7 (v3) = m — 1, the lemma is proved.

Now the proof of Theorem 2 follows from Lemmas 1, 2 and 4 by induction on 7 (u) and § (u). O

Theorem 3 Let o, 3 be reqular curves in R™ and x € ¢o, y € ¢g. Then,

SL(n,R)

(1) for L(a) = L(B) # (—o0, +00), « B if and only if

sgnla(s)a’ (s)...x1 ()] = sgnly(s)y (s) ..y ()],
).z (s) 2™ (s) 2" (s) ..x®D ()] )
)y Y (98 ()4 (9)]
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forall se L(a) =L(B) andi=1,...,n—2.

SL(n,R)
« ~

(#) for L(a) = L(f) = (—o0, +00), B if and only if there exists a € (—o0,+00) such that

sgn [z(s)2'(s)...2" D (s)] = sgn [y(s + a)y'(s + a)..y " V(s + a)]
[2()2 (). D (5)z™ ()2 (s)..a(" =D (s)] =

[y(s + @)y (s + @)y =D (s + a)y™ (s + a)y ™+ (s + a)..y " D(s + a)]

forall s € (—o0,+0) and i =1,...,n— 2.

Proof. (i) Let « SE R SE R

8. By claim (i) of Theorem 1, x [gggg’_,,gg(n—l)] —

y. By Proposition 3,

‘[yy,-.-y("‘n]‘ = 1. This, in view of z SL(n.R)

y, yields (2). Now suppose that (2) holds. By Proposition 3,
we have |[z(s)/(s).. 2= (s ()] = |[y(s )y (s (s)]| =1 we obtain

’

[x(s)a () .a® D ()] = [y(s)y (s)..y" "V (s)],

’ (i—1 (i+1)

(s) ..z (s)]
(s) .y 1 (s)].

' (s) 2™ (s) @
= [y(9)y (s) Y (s) y™ (s) 0

This, in view of claim (i) of Theorem 1 and Theorems 10.7, 10.8 in [7], implies « SE R

3.

The proof of (ii) follows similarly from claim (i7) of Theorem 1. O

Let T be one of the sets (0,1) (where [ < +00), (—00,0), (—o0, +00).

Theorem 4 Let hi (), ..., hn (s) be C-functions on T, where |hy, (s)] =1 for all s € T. Then there exists

an invariant parametrization y of a reqular curve such that

’

sgnly(s)y (s)..y™ "V (s)] = ha (s),

’ (i—1)

)y (s) .y (5)y™ (s)y
forall seT and i =0,....,n—2.

(i+1)

(5) .y "V (8)] = hi (s)

Proof. Let C(s) be the matrix ||¢;; (s)||, where cjt15(s) =1 forall se€e T, 0<j<n-—2; ¢;(s) =0 for

all seT, j#n,i#j+1,0<i<n—1; ¢n(s) = Z:l((ss)), 1=0,..,n—2, Cpp (s) = ZZ z% It is known from

the theory of differential equations that there exists a solution of the differential equation
A, (s) = Az (5) C (s) 3)

such that det A, (s) # 0 for all s € T, where A, = H .x("_l)(s)H is the matrix of column

vectors (s),z (s),...,2" " (s). Let A, (s) be one of such solutions. Put [z(s)z" (s)...2" D (s)] = ¢ (s). By
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det A, (s) #0 for all s € T, we get @ (s) #0 for all s € T. By |hy, (s)] =1 for all s € T', we have h,, (s) =0
for all s € T'. Then, from (3), we obtain

[z(s)z (s)..z""D (s)], B
[z(s)x’ (s)...x(n=1) (s)]

Therefore ¢ (s) = 0. Put @ (s) = A1, A1 € R, A1 #0 and h, (s) = A2, A2 € R. By |h, (s)| = 1, we get |\o] =
1. We consider g € SL(n, R) such that detg = i—f So [gx(gz) ...(gx)" V] = det glzz ...z~ V] = h,, (s). For

y = gx, we have

[yy’...y<z‘—1>y<n>y<z‘+1>...y<n—1>} det g [m’...x<i—1>x<n>x<i+1>...x<n—1>}
[yy' ..y =1] - det g [za’...x(n=1)]

hy (s)

i =0,...,n— 2. Hence

v 5y (5)] = ha(s),
(198 ()00 () 5™ () g+ (5) D (5)] = i)

’

forall s€ T, i=0,...,n—2. Then by Hy(s)y (s) ..yn=b (s)” = |hy, ()] = 1 and Proposition 3, y € ¢, for

some regular curve «. O

(1]

3l

(4]

(7l
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