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doi:10.3906/mat-0807-16

A note on the Lyapunov exponent in continued fraction expansions

Jianzhong Cheng and Lu-Ming Shen

Abstract

Let T : [0, 1) → [0,1) be the Gauss transformation. For any irrational x ∈ [0,1), the Lyapunov exponent

α(x) of x is defined as

α(x) = lim
n→∞

1

n
log |(Tn)′(x)|.

By Birkoff Average Theorem, one knows that α(x) exists almost surely. However, in this paper, we will see

that the non-typical set

{x ∈ [0, 1) : lim
n→∞

1

n
log |(Tn)′(x)| does not exist}

carries full Hausdorff dimension.
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1. Introduction

In the numerical study of a dynamical system, one is often interested in the asymptotic behavior of typical
points (with respect to some measure). This study gives important information about the observable properties
of the dynamical system, and typical points with respect to some measure give complementary information.

However, the set of non-typical points has rarely been considered in the literature. The first pioneer
work in this field is the result given by L. Barreira and J. Schmeling [1, 2], where they showed that, in several
situations central in the theory of dynamical system, the set of non-typical points contains complete information
about some observable properties. Namely, the set of non-typical points carries full topological entropy and full
Hausdorff dimension. L. Barreira and J. Schmeling’s efforts are mainly focused on the subshift of finite type,
conformal repellers and conformal horseshores.

Then it is natural to ask what happens in the case of infinite symbolic space, or when the underling
dynamic system is no longer continuous. As it is known, the example of continued fraction is related to some
infinite symbolic space and its underling dynamic system is not continuous.
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It is known that the Gauss transformation T : [0, 1) → [0, 1), given as

T (0) := 0, T (x) :=
1
x

(mod 1), for x ∈ (0, 1), (1.1)

leads to the continued fraction expansions. For any irrational x ∈ [0, 1), there is a unique infinite continued
fraction expansion of the form

x =
1

a1(x) +
1

a2(x) + T 2(x)

=
1

a1(x) +
1

a2(x) +
1

a3(x) +
. . .

, (1.2)

where a1(x) = �1/x� , an(x) = a1(Tn−1(x)), for n ≥ 2, are called the partial quotients of x .

For any n ≥ 1, the n-th convergent pn(x)
qn(x)

of x is obtained by the finite truncation on (1.2) given as

pn(x)
qn(x)

=
1

a1(x) +
1

. . . + an(x)

,

where pn(x) and qn(x) can be obtained recursively by the relations

p−1 = 1; p0 = 0; pk = akpk−1 + pk−2, 1 ≤ k ≤ n.

q−1 = 0; q0 = 1; qk = akqk−1 + qk−2, 1 ≤ k ≤ n. (1.3)

It is known that the Gauss transformation is invariant and ergodic with respect to the Gauss measure
given by

dμ =
1

log 2
1

1 + x
dx.

So, an application of Birkhoff Ergodic Theorem yields that the Lyapunov exponent of x ∈ [0, 1) exists almost
surely. However, it is not difficult, if not evidently, that there do exist non-typical points which do not obey the
above law. So it would be a natural to consider the size of the exceptional set of such non-typical points. More
precisely, we would like to investigate the size of the set

D = {x ∈ [0, 1) : lim
n→∞

1
n

n−1∑
j=0

log T j(x) does not exists}.

We show the following theorem.

Theorem 1.1 dimH D = 1 , where dimH denotes the Hausdorff dimension.

The famous result due to P. Lévy [8] asserts that

Theorem 1.2 [8] For almost all x ∈ [0, 1) , the constant of x exists.
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Now it is known that Lévy’s theorem is a direct consequence of the fact that T is an ergodic transformation of
measure space [0, 1] endowed with the Gauss measure which is invariant under T , see [see 3].

Inspired by L. Barreira and J. Schmeling’s work [1, 2], we would like to ask how about the size of the set
of non-typical points

D = {x ∈ [0, 1) : lim
n→∞

1
n

n−1∑
j=0

log T j(x) does not exists}.

2. Preliminary

In this section, we will gather some elementary properties shared by continued fractions.

For any n ≥ 1 and (a1, · · · , an) ∈ Nn , then

I(a1 , · · · , an) =

⎧⎪⎪⎨
⎪⎪⎩

[
pn

qn
,
pn + pn−1

qn + qn−1

)
, if n is odd;(

pn + pn−1

qn + qn−1
,
pn

qn

]
, if n is odd

is called an n-th order cylinder, where pk, qk (1 ≤ k ≤ n) are determined by following recurrence relations

pk = akpk−1 + pk−2, qk = akqk−1 + qk−2, 1 ≤ k ≤ n, (2.4)

with the conventions that p−1 = 1, p0 = 0, q−1 = 0, q0 = 1, and pk

qk
convergent to ξ . It is well known, (see [7])

that I(a1, · · · , an) just represents the set of points in [0, 1) which have a continued fraction expansions begins
with a1, · · · , an . By the recursive relation (2.4), it is easy to see that

Proposition 2.1 [7, 10] For any n ≥ 1 , 1 ≤ k ≤ n and (a1, · · · , an) ∈ N
n , one has

qn ≥ 2
n−1

2 ,

n∏
k=1

ak ≤ qn ≤
n∏

k=1

(ak + 1). (2.5)

1 ≤ qn(a1, · · · , an)
qk(a1, · · · , ak)qn−k(ak+1, · · · , an)

≤ 2. (2.6)

ak + 1
2

≤ qn(a1, a2, · · · , an)
qn−1(a1, · · · , ak−1, ak+1, · · · , an)

≤ ak + 1. (2.7)

|I(a1, · · · , an)| =
1

qn(qn + qn−1)
, (2.8)

where |I(a1, · · · , an)| denotes the length of I(a1, · · · , an) .

Lemma 2.2 [5] Let {An, n ≥} be a sequence of nonempty subset of N . Set

S = {x ∈ [0, 1) : an(x) ∈ An, for all n ≥ 1}.
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Then for any N ≥ 1 and ak ∈ Ak for 1 ≤ k ≤ N , one has

dimH S = dimH S ∩ I(a1, · · · , aN).

For any B ≥ 2, let E(B) = {x ∈ [0, 1) : an(x) ≤ B, for all n ≥ 1} . Considering Diophantine problems, Jarnik
[6] estimated the Hausdorff dimension dimH E(B) of the set E(B) related to the set of points which do not
have good rational approximations. More precisely, he proved the following Lemma:

Lemma 2.3 [6] For any B ≥ 8 ,

1 − 4
B log 2

< dimH E(B) < 1 − 1
8B logB

.

We end this section with the following lemma:

Lemma 2.4 [4] Let E ∈ R
n . If f : E → R

m is α-Hölder, i.e., there exists constant c > 0 such that for all
x, y ∈ E ,

|f(x) − f(y)| ≤ c|x − y|α,

then dimH f(E) ≤ 1
α dimH E .

3. Proof of Theorem 1.1

If x ∈ [0, 1] is irrational, then the for any the Lévy constant of x is the number

β(x) = lim
n→∞

log qn(x)
n

,

from the algorithm (1.2), it easy to see that

n−1∏
j=0

T j(x) ≤ 1
qn(x)

≤ 2
n−1∏
j=0

T j(x).

So, it follows

D = {x ∈ [0, 1) : lim
n→∞

1
n

n−1∑
j=0

log T j(x) does not exists}

= {x ∈ [0, 1) : lim
n→∞

log qn(x)
n

does not exists}.

The proof of Theorem 1.1 is established in the following steps. First, we construct a subset D(B) of
D . Second, we a define a surjective map f between D(B) and E(B). Last, we check that the map f is

1
1+ε

-Hölder.
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Step I. Fix 0 < δ < 1
4 . Choose an integer sequence {nk, k ≥ 1} with (n1 + · · · + nk−1) = o(nk). For

any k ≥ 1, set �k = �δnk� and mk = nk − �k . For any B ≥ 3, set

D
(
{nk}∞k=1, δ, B

)
=

{
x ∈ [0, 1) : amk+1 = · · · = ank = B + 2, for all k ≥ 1,

and 1 ≤ an(x) ≤ B for all other n ≥ 1

}
.

We claim that D
(
{nk}∞k=1, δ, B

)
⊂ D . It suffices to check that, for any x ∈ D

(
{nk}∞k=1, δ, B

)
,

lim sup
k→∞

(
log qnk(x)

nk
− log qmk(x)

mk

)
> 0.

By Proposition 2.1, it follows that qnk(x) ≥ qmk(x)(B + 2)�k and qmk(x) ≤ (B + 1)mk . So,

log qnk(x)
nk

− log qmk(x)
mk

≥ log qmk(x) + �k log(B + 2)
nk

− log qmk (x)
nk

(1 +
�k

mk
)

=
�k log(B + 2)

nk
− log qmk(x)

nk

�k

mk

≥ �k

nk
log

B + 2
B + 1

.

Step II. By the choice of nk , we have

lim
k→∞

�1 + · · ·+ �k

nk − (�1 + · · ·+ �k) − 1
=

δ

1 − δ
.

So, for ε = 4δ
1−δ log2(2B), there exists k0 such that for all k ≥ k0 ,

2
1
2 (nk−(�1+···+�k)−1)ε ≥ (B + 3)�1+···+�k . (3.9)

Take x0 ∈ D
(
{nk}∞k=1, δ, B

)
, let

D
(
{nk}∞k=1, δ, B, x0

)
= D

(
{nk}∞k=1, δ, B

)
∩ I(a1(x0), · · · , ank0

(x0)).

Before presenting the map, we give a notation first. For a sequence (or vector) (a1, a2, · · · ), we denote by
(a1, a2, · · · )∗ for the sequence (or vector) by eliminating the terms amk +1, · · · , ank in the sequence (a1, a2, · · · )
for all k ≥ 1.

Define fε : D
(
{nk}∞k=1, δ, B, x0

)
→ E(B) ∩ I(a1, · · · , ank)∗ ,

x = [a1, a2, · · · ] → y = [b1, b2, · · · ],
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where (b1, b2, · · ·) = (a1, a2, · · ·)∗ .

Step III. We claim that fε is 1
1+ε -Hölder. we note that if this is the case, by Lemma 2.3 and Lemma

2.4, it follows that

dimH D ≥ 1
1 + ε

dimH E(B).

Letting δ → 0 and then B → ∞ , we will get the desired result.

So, to finish the proof, it suffices to check the claim. For any x1, x2 ∈ D
(
{nk}∞k=1, δ, B, x0

)
, let

y1 = fε(x1), y2 = fε(x2). We will estimate the difference between x1 and x2 and the difference between
y1 and y2 .

Let n be the smallest integer such that an+1(x1) �= an+1(x2) and nk ≤ n < nk+1 with some k ≥ k0 .
Since

xi ∈ I(a1(xi), · · · , an+1(xi), an+2(xi)) ⊂
⋃

1≤an+2≤B+2

I(a1(xi), · · · , an+1(xi), an+2)

the difference of x1 and x2 is larger than the gap between

⋃
1≤an+2≤B+2

I(a1(xi), · · · , an+1(xi), an+2), i = 1, 2.

Assume that an+1(x1) > an+1(x2) and n is even (when n is odd, the estimation is same). Then

|x1 − x2| ≥
∣∣∣∣pn+1(x1)
qn+1(x1)

− (B + 3)pn+1(x1) + pn(x1)
(B + 3)qn+1(x1) + qn(x1)

∣∣∣∣ ≥ 1
(2B)4q2

n(x1)
.

For the gap between y1 and y2 , we will distinguish two cases.

(i) nk ≤ n ≤ mk+1 . In this case, by the definition of fε , it follows that

bj(y1) = bj(y2), for 1 ≤ j ≤ n − (�1 + · · ·+ �k).

So, we have

|y1 − y2| ≤
1

q2
n−�1+···+�k

(
a1(x1), · · · , an(x1)

)∗ .

By Proposition 2.1 and (3.9), we have

qn(x1) ≤ (B + 3)�1+···+�kqn−�1+···+�k

(
a1(x1), · · · , an(x1)

)∗
≤ q1+ε

n−�1+···+�k

(
a1(x1), · · · , an(x1)

)∗
Thus, it follows

|fε(x1) − fε(x2)| ≤ (2B)4|x1 − x2|
1

1+ε .

(ii). mk+1 < n < nk+1 . In this case,

bj(y1) = bj(y2), for 1 ≤ j ≤ mk+1 − (�1 + · · ·+ �k).
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In this case, we have

|x1 − x2| ≥
1

(2B)4q2
nk+1

(x1)
, |y1 − y2| ≤

1
q2
mk+1−(�1+···+�k)(a1(x1), · · · , amk+1 (x1))

.

A similar estimation on qnk+1 gives that

|fε(x1) − fε(x2)| ≤ (2B)4|x1 − x2|
1

1+ε .

This completes the proof. �
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[8] Lévy, P.: Sur les lois de probabilité dont dépent les quotients complets et incomplets d’une fraction continue, Bull.

Soc. Math. 57, 178-194 (1929).
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