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On purely real surfaces in Kaehler surfaces

Bang-Yen Chen

Abstract

An immersion φ : M → M̃2 of a surface M into a Kaehler surface is called purely real if the complex

structure J on M̃2 carries the tangent bundle of M into a transversal bundle. In the first part of this

article, we prove that the equation of Ricci is a consequence of the equations of Gauss and Codazzi for

purely real surfaces in any Kaehler surface. In the second part, we obtain a necessary condition for a purely

real surface in a complex space form to be minimal. Several applications of this condition are provided. In

the last part, we establish a general optimal inequality for purely real surfaces in complex space forms. We

also obtain three classification theorems for purely real surfaces in C2 which satisfy the equality case of the

inequality.

Key word and phrases: Purely real surfaces; integrability condition; equation of Ricci; equation of

Gauss-Codazzi; Kaehler surface; Wirtinger angle; optimal inequality.

1. Introduction

Let M̃2 be a Kaehler surface; that means M̃2 is endowed with a complex structure J and a Riemannian
metric g̃ which is J -Hermitian. Thus, we have

g̃(JX, JY ) = g̃(X, Y ), ∀X, Y ∈ TpM2, (1.1)

∇̃J = 0 (1.2)

for p ∈ M̃2 , where ∇̃ is the Levi-Civita connection of g̃ .

It is well-known that the curvature tensor R̃ of a Kaehler surface M̃2 satisfies

R̃(X, Y ; Z, W ) = −R̃(Y, X; Z, W ), (1.3)

R̃(X, Y ; Z, W ) = R̃(Z, W ; X, Y ), (1.4)

R̃(X, Y ; JZ, W ) = −R̃(X, Y ; Z, JW ), (1.5)
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where R̃(X, Y ; Z, W ) = g̃(R̃(X, Y )Z, W ).

It is well-known that the three fundamental equations of Gauss, Codazzi and Ricci play fundamental
roles in the theory of Riemannian submanifolds (see, for instance, [1, 5, 9]). Since the three equations provide
conditions for local isometric embeddability, the three equations also play some important roles in physics; in
particular in Kaluza-Klein’s theory (see [10, 11]). For surfaces in Riemannian 4-manifolds, the three fundamental
equations are independent in general.

In the first part of this article, we prove that the equation of Ricci is a consequence of the equations of
Gauss and Codazzi for purely real surfaces in an arbitrary Kaehler surface. In the second part, we obtain a
necessary condition in term of Wirtinger angle for a purely real surface in a complex space form to be minimal.
Several immediate applications of this condition are provided. In the last part, we establish a general optimal
inequality for purely real surfaces in complex space forms. We also obtain three classification theorems for
purely real surfaces in C2 which satisfy the equality case of the inequality.

2. Basic formulas and fundamental equations

Let (M̃2, J, g̃) be a Kaehler surface. Assume that M is a surface in M̃2 . Let g be the induced metric

on M . Denote by ∇ and ∇̃ the Levi-Civita connection on g and g̃ , respectively. And denote by R and R̃ the

curvature tensor of M and M̃2 , respectively. Denote by 〈 , 〉 the inner product associated with g̃ (or with g ).

The formulas of Gauss and Weingarten are given respectively by (cf. [1, 5])

∇̃XY = ∇XY + h(X, Y ), (2.1)

∇̃Xξ = −AξX + DXξ (2.2)

for vector fields X, Y tangent to M and ξ normal to M , where h, A and D are the second fundamental form,
the shape operator and the normal connection.

The shape operator and the second fundamental form are related by

g̃(h(X, Y ), ξ) = g(AξX, Y ) (2.3)

for X, Y tangent to M and ξ normal to M .

The equations of Gauss, Codazzi and Ricci are given respectively by

R(X, Y ; Z, W ) = R̃(X, Y ; Z, W ) + 〈h(X, W ), h(Y, Z)〉 (2.4)

− 〈h(X, Z), h(Y, W )〉 ,

(R̃(X, Y )Z)⊥ = (∇̄Xh)(Y, Z) − (∇̄Y h)(X, Z), (2.5)

g̃(RD(X, Y )ξ, η) = R̃(X, Y ; ξ, η) + g̃([Aξ, Aη]X, Y ), (2.6)

where X, Y, Z, W are vectors tangent to M , and ∇̄h and RD are defined by

(∇̄Xh)(Y, Z) = DXh(Y, Z) − h(∇XY, Z) − h(Y,∇XZ), (2.7)

RD(X, Y ) = [DX , DY ] − D[X,Y ]. (2.8)
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The mean curvature vector
−→
H and the squared mean curvature H2 of the surface are defined respectively

by

−→
H =

1
2
trace h, H2 = g̃(

−→
H,

−→
H). (2.9)

Let M̃2(4ε) denote a complex space form with constant holomorphic sectional curvature 4ε . The

Riemann curvature tensor of M̃2(4ε) satisfies

R̃(X, Y ; Z, W ) =ε
{
〈X, W 〉 〈Y, Z〉 − 〈X, Z〉 〈Y, W 〉 + 〈JX, W 〉 〈JY, Z〉

− 〈JX, Z〉 〈JY, W 〉 + 2 〈X, JY 〉 〈JZ, W 〉
}
.

(2.10)

The ellipse of curvature of a surface M in M̃2 is the subset of the normal plane defined as

{h(v, v) ∈ T⊥
p M : |v| = 1, v ∈ TpM, p ∈ M}.

To see that it is an ellipse, we consider an arbitrary orthogonal tangent frame {e1, e2} . Put hij = h(ei, ej), i, j =
1, 2 and look at the formula

h(v, v) =
−→
H +

h11 − h22

2
cos 2θ + h12 sin 2θ, v = cos θe1 + sin θe2. (2.11)

As v goes once around the unit tangent circle, h(v, v) goes twice around the ellipse. The ellipse of curvature
could degenerate into a line segment or a point.

The center of the ellipse is
−→
H . The ellipse of curvature is a circle if and only if the following two conditions

hold:

|h11 − h22|2 = 4|h12|2, 〈h11 − h22, h12〉 = 0. (2.12)

The property that the ellipse of curvature is a circle is a conformal invariant.

3. Basics on purely real surfaces

An immersion φ : M → M̃2 of a surface M into a Kaehler surface is called purely real if the complex

structure J on M̃2 carries the tangent bundle of M into a transversal bundle (cf. [6], see also [12]). Obviously,
every purely real surface admits no complex points.

A point p on a purely real surface M is called a Lagrangian point if J carries the tangent space TpM

into its normal space T⊥
p M . A purely real surface is called Lagrangian if every point is a Lagrangian point.

For each tangent vector X of a purely real surface M , we put

JX = PX + FX, (3.1)

where PX and FX are the tangential and the normal components of JX .
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For an oriented orthonormal frame {e1, e2} , it follows from (3.1) that

Pe1 = (cosα)e2, P e2 = −(cos α)e1 (3.2)

for some function α . This function α is called the Wirtinger angle. The Wirtinger angle is independent of the
choice of e1, e2 which preserves the orientation.

A purely real surface is called a slant surface if its Wirtinger angle is constant. The Wirtinger angle of a
slant surface is called the slant angle (cf. [2]).

For a purely real surface M , if we put

e3 = (csc α)Fe1, e4 = (csc α)Fe2, (3.3)

then we may derive from (3.1)–(3.3) that

Je1 = cosαe2 + sin αe3, Je2 = − cos αe1 + sin αe4, (3.4)

Je3 = − sin αe1 − cos αe4, Je4 = − sin αe2 + cosαe3, (3.5)

〈e3, e3〉 = 〈e4, e4〉 = 1, 〈e3, e4〉 = 0. (3.6)

We call such a frame {e1, e2, e3, e4} an adapted orthonormal frame for M .

For an adapted orthonormal frame {e1, e2, e3, e4} , we may put

∇Xe1 = ω(X)e1 , ∇Xe2 = −ω(X)e2 , (3.7)

DXe3 = Φ(X)e4 , DXe4 = −Φ(X)e3 (3.8)

for some 1-forms ω and Φ. For the second fundamental form h of M , we put

h(ei, ej) = h3
ije3 + h4

ije4. (3.9)

From (2.3) and (3.9) we have

Ae3ej = h3
1je1 + h3

2je2, Ae4ej = h4
1je1 + h4

2je2. (3.10)

We need the following lemma.

Lemma 3.1 Let M be a purely real surface in a Kaehler surface. Then, with respect to an adapted orthonormal
frame {e1, e2, e3, e4} , we have

e1α = h4
11 − h3

12, e2α = h4
12 − h3

22, (3.11)

Φ1 = ω1 − (h3
11 + h4

12) cot α, Φ2 = ω2 − (h3
12 + h4

22) cotα, (3.12)

where ωj = ω(ej) and Φj = Φ(ej) for j = 1, 2 .

Proof. This is done by straightforward computation using (1.2) and (3.4)–(3.10), as we did in the proof of
Lemma 4.1 and Theorem 4.2 in [2, pages 29–31]. �
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4. Dependence of Gauss-Codazzi and Ricci equations

In this section we prove the following general result for purely real surfaces.

Theorem 4.1 The equation of Ricci is a consequence of the equations of Gauss and Codazzi for any purely real
surface in any Kaehler surface.

Proof. Assume that φ : M → M̃2 is a purely real isometric immersion of a surface M into a Kaehler surface

M̃2 . We may assume that locally M is equipped with the isothermal metric

g = E2(x, y)(dx2 + dy2) (4.1)

for some positive function E . The Levi-Civita connection of g satisfies

∇ ∂
∂x

∂

∂x
=

Ex

E

∂

∂x
− Ey

E

∂

∂y
, ∇ ∂

∂x

∂

∂y
=

Ey

E

∂

∂x
+

Ex

E

∂

∂y
,

∇ ∂
∂y

∂

∂y
= −Ex

E

∂

∂x
+

Ey

E

∂

∂y
.

(4.2)

If we put

e1 =
1
E

∂

∂x
, e2 =

1
E

∂

∂y
, (4.3)

then {e1, e2} is an orthonormal frame. From (4.2) and (4.3) we derive that

∇e1e1 = −Ey

E2
e2, ∇e2e1 =

Ex

E2
e2, ∇e1e2 =

Ey

E2
e1, ∇e2e2 = −Ex

E2
e1. (4.4)

It follows from (3.7) and (4.4) that

ω(e1) = −Ey

E2
, ω(e2) =

Ex

E2
. (4.5)

For simplicity, let us put

h(e1, e1) = βe3 + γe4 , h(e1, e2) = δe3 + ϕe4, h(e2, e2) = λe3 + μe4. (4.6)

In view of (3.6), and (4.6), equation (2.4) of Gauss can be expressed as

K = K̃ + βλ + γμ − δ2 − ϕ2, (4.7)

where K̃(p) is the sectional curvature of the ambient space M̃2 with respect to the tangent plane of TpM of
M at p ∈ M . By applying Lemma 3.1 and (4.6), we have

e1α = γ − δ, e2α = ϕ − λ, (4.8)

Φ1 = −Ey

E2
− (β + ϕ) cot α, Φ2 =

Ex

E2
− (δ + μ) cot α. (4.9)
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By using (3.8) and (4.9) we find

De1e3 = −
(

Ey

E2
+ (β + ϕ) cotα

)
e4, De2e3 =

(
Ex

E2
− (δ + μ) cot α

)
e4,

De1e4 =
(

Ey

E2
+ (β + ϕ) cotα

)
e3, De2e4 =

(
−Ex

E2
+ (δ + μ) cot α

)
e3.

(4.10)

So, it follows from (4.4), (4.6) and (4.10) that

(∇̄e1h)(e1, e2) =
(

δx

E
+

(λ + ϕ − β)Ey

E2
+ ϕ(β + ϕ) cot α

)
e3

+
(

ϕx

E
+

(μ − γ − δ)Ey

E2
− δ(β + ϕ) cotα

)
e4,

(∇̄e2h)(e1, e1) =
(

βy

E
− (γ + 2δ)Ex

E2
+ γ(δ + μ) cot α

)
e3

+
(

γy

E
+

(β − 2ϕ)Ex

E2
− β(δ + μ) cotα

)
e4,

(∇̄e1h)(e2, e2) =
(

λx

E
+

(μ − 2δ)Ey

E2
+ μ(β + ϕ) cot α

)
e3

+
(

μx

E
− (λ + 2ϕ)Ey

E2
− λ(β + ϕ) cot α

)
e4,

(∇̄e2h)(e1, e2) =
(

δy

E
+

(β − λ − ϕ)Ex

E2
+ ϕ(δ + μ) cotα

)
e3

+
(

ϕy

E
+

(γ + δ − μ)Ex

E2
− δ(δ + μ) cotα

)
e4.

(4.11)

On the other hand, from (3.4) we also find

(R̃(e2, e1)e1)⊥ = {(csc α)R̃(e2, e1; e1, Je1) − (cotα)K̃)}e3

+ (csc α)R̃(e2 , e1; e1, Je2)e4,

(R̃(e1, e2)e2)⊥ = (csc α)R̃(e1, e2; e2, Je1)e3

+ {(cot α)K̃ + (csc α)R̃(e1 , e2; e2, Je2)}e4.

(4.12)

By using (3.6), (4.3), (4.11) and (4.12), we find from the equation of Codazzi that

βy − δx = E(csc α)R̃(e2, e1; e1, Je1) + {ϕ(β + ϕ) − γ(δ + μ)}E cot α

+
1
E
{(γ + 2δ)Ex + (λ + ϕ − β)Ey} − E(cotα)K̃,

γy − ϕx = E(csc α)R̃(e2, e1; e1, Je2) + (βμ − δϕ)E cotα

+
1
E
{(2ϕ − β)Ex + (μ − γ − δ)Ey},

(4.13)
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λx − δy = E(csc α)R̃(e1, e2; e2, Je1) + (δϕ − βμ)E cot α

+
1
E
{(β − ϕ − λ)Ex + (2δ − μ)Ey},

μx − ϕy = E(csc α)R̃(e1, e2; e2, Je2) + {λ(β + ϕ) − δ(δ + μ)}E cot α

+
1
E
{(γ + δ − μ)Ex + (2ϕ + λ)Ey} + E(cot α)K̃.

Also, from (3.10), (4.3), (4.6) and (4.8) we have

Ae3 =

(
β δ

δ λ

)
, Ae4 =

(
γ ϕ

ϕ μ

)
, (4.14)

αx = (γ − δ)E, αy = (ϕ − λ)E. (4.15)

By applying (1.3)–(1.5), (3.4), (4.9), and (4.14) we derive that

R̃(e1, e2; e3, e4) = cotα csc α(R̃(e1, e2; Je1, e1) + R̃(e1, e2; Je2, e2)) (4.16)

− (1 + 2 cot2 α)K̃,

〈[Ae3 , Ae4 ]e1, e2〉 = ϕ(λ − β) + δ(γ − μ). (4.17)

From (2.8), (4.4) and (4.10) we find

g̃(RD(e1, e2)e3 , e4) =
(δ + μ)αx − (β + ϕ)αy

E sin2 α
− K

+ {(β + ϕ)Ey − (δ + μ)Ex + E(βy + ϕy − δx − μx)}cotα

E2
.

(4.18)

By substituting (4.13) and (4.15) into (4.18) we obtain

g̃(RD(e1, e2)e3, e4) = (δ + μ)(γ − δ) + (β + ϕ)(λ − ϕ) − K

+ csc α cotα(R̃(e1, e2; Je1, e1) + R̃(e1, e2; Je2, e2)) − 2(cot2 α)K̃.
(4.19)

Thus, it follows from (2.6), (4.16), (4.17) and (4.19) that the equation of Ricci is

K = K̃ + βλ + γμ − δ2 − ϕ2, (4.20)

which is exactly the equation (4.7) of Gauss. Therefore, the equation of Ricci is a consequence of Gauss and
Codazzi. �

Remark 4.1 If the purely real surface is slant, Theorem 4.1 is due to [8].
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5. Wirtinger angle of purely real surfaces

The following result provides a necessary condition for purely real surfaces in complex space forms to be
minimal.

Theorem 5.1 Let M be a purely real surface in a complex space form M̃2(4ε) of constant holomorphic sectional
curvature 4ε. If M is minimal, then the Wirtinger angle α of M satisfies

Δα =
{
||∇α||2 + 6ε sin2 α

}
cotα, (5.1)

where Δ is the Laplace operator of M and ∇α is the gradient of α .

Proof. Let M be a purely real surface in M̃2(4ε). We follow the notations and definitions given in sections
3 and 4. If M is minimal, we get

λ = −β, γ = −μ. (5.2)

So, it follows from (4.15) and (5.2) that

δ = −αx

E
− μ, ϕ =

αy

E
− β. (5.3)

Moreover, it follows from (2.10) that

R̃(e2, e1; e1, Je1) = −R̃(e1, e2; e2, Je2) = 4ε cosα, (5.4)

K̃ = ε(1 + 3 cos2 α). (5.5)

Substituting (5.2)–(5.5) into the first equation in (4.13) gives

E2(μx + βy) = αyEy − αxEx − αxxE − 3E(μEx + βEy)

+ α2
yE cotα − (αxμ + αyβ)E2 cotα + 3εE3 sin α cosα.

(5.6)

Similarly, by substituting (5.2)–(5.5) into the last equation in (4.13) we find

E2(μx + βy) = αyEy − αxEx + αyyE − 3E(μEx + βEy)

− α2
xE cotα − (αxμ + αyβ)E2 cotα − 3εE3 sinα cos α.

(5.7)

Subtracting (5.6) from (5.7) yields

αxx + αyy =
{
α2

x + α2
y + 6εE2 sin2 α

}
cotα. (5.8)

Since the Laplace operator Δ of M with respect to the metric (4.1) is given by

Δ =
1

E2

(
∂2

∂x2
+

∂2

∂y2

)
,

equation (5.8) can be simply expressed as (5.1). �

Some easy consequences of Theorem 5.1 are the following.
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Corollary 5.1 [7] Every slant surface in a complex space form M̃2(4ε) with ε �= 0 is non-minimal unless it is
either Lagrangian or complex.

Proof. Follows immediately from Theorem 5.1. �

Corollary 5.2 Every compact oriented minimal purely real surface in the complex projective plane CP 2(4)
contains some Lagrangian points.

Proof. Let M be a compact oriented minimal purely real surface in CP 2(4). Then we may choose e1, e2 to
be an orthonormal frame which gives the orientation on M . So, the α is a global well-defined function on M .
Thus, it follows from Theorem 5.1 and Hopf’s lemma that

∫
M

cot αdA = 0, which implies that cotα = 0 holds

at some points. Hence, M must admits some Lagrangian points. �

The next two corollaries follows easily from (5.1).

Corollary 5.3 Let M be a purely real minimal surface in C2 . If the Wirtinger angle α is a harmonic function,
then M is slant.

Corollary 5.4 Let M be a purely real minimal surface in CP 2(4) . If the Wirtinger angle α is a harmonic
function, then M is Lagrangian.

A function f on (M, g) is called subharmonic if Δf ≥ 0 holds everywhere on M . The surface M is
called parabolic if there exists non non-constant negative subharmonic function.

Corollary 5.5 Let M be an oriented minimal purely real surface in CP 2(4) . If M is parabolic, then M

contains some Lagrangian points.

Proof. Let M be an oriented minimal purely real surface in the complex projective plane CP 2(4). Then
we have

Δα =
{
||∇α||2 + 6 sin2 α

}
cotα. (5.9)

If M is parabolic and it admits no Lagrangian points, then cotα is either a positive function or a negative
function on M .

When cotα is a positive function, α is subharmonic by (5.9). Hence, α must be constant, which is
impossible according to Corollary 5.1.

Similarly, when cotα is a negative function, −α is subharmonic. This is also impossible by the same
argument. �

6. A general optimal inequality for purely neal surfaces

We prove the following general optimal inequality for purely real surfaces.
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Theorem 6.1 Let M be a purely real surface in a complex space form M̃2(4ε) . Then we have

H2 ≥ 2{K − ||∇α||2 − (1 + 3 cos2 α)ε} + 4 〈∇α, Jh(e1, e2)〉 csc α (6.1)

with respect to an orthonormal frame {e1, e2} satisfying 〈∇α, e2〉 = 0 , where H2 and K are the squared mean
curvature and the Gauss curvature of M , respectively.

The equality case of (6.1) holds at p if and only if, with respect a suitable adapted orthonormal frame
{e1, e2, e3, e4} , the shape operator at p take the forms

Ae3 =

(
3ϕ δ

δ ϕ

)
, Ae4 =

(
δ + e1α ϕ

ϕ 3δ + 3e1α

)
. (6.2)

Proof. Assume that M is a purely real surface in M̃2 . Without loss of generality, we may choose an adapted
orthonormal frame {e1, e2, e3, e4} such that the gradient of α is parallel to e1 at p . So, we have ∇α = (e1α)e1 .
As before, let us put

h(e1, e1) = βe3 + γe4 , h(e1, e2) = δe3 + ϕe4, h(e2, e2) = λe3 + μe4. (6.3)

Then, in view of Lemma 3.1 we have

Ae3 =

(
β δ

δ ϕ

)
, Ae4 =

(
δ + e1α ϕ

ϕ μ

)
. (6.4)

Thus, the squared mean curvature H2 and the Gauss curvature K of M satisfy

4H2 = (β + ϕ)2 + (δ + μ + e1α)2, (6.5)

K = βϕ + δμ + μe1α − δ2 − ϕ2 + (1 + 3 cos2 α)ε. (6.6)

Hence, we obtain

H2 − 2K + 2||∇α||2 =
1
4
{(β − 3ϕ)2 + (μ − 3(δ + e1α))2} − 4δe1α − 2(1 + 3 cos2 α)ε

≥ −4δe1α − 2(1 + 3 cos2 α)ε.
(6.7)

On the other hand, from ∇α = (e1α)e1 and (3.3) we have F (∇α) = (e1α) sin αe3. Hence, we obtain
from (6.3) that

δe1α = 〈J(∇α), h(e1, e2)〉 csc α. (6.8)

Combining this with (6.7) gives inequality (6.1).

If the equality case of (6.1) holds at a point p , then it follows from (6.7) that β = 3ϕ and μ = 3δ +3e1α

hold at p . Hence, we obtain (6.2) from (6.4).

Conversely, if (6.2) holds at a point p ∈ M , then it follows from (6.2) and Lemma 3.1 that we have
e2α = 0 at p . Thus, we get 〈∇α, Jh(e1, e2)〉 = −δe1α sin α at p . Now, it is straight-forward to show that (6.2)
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holds at p implies that the equality case of (6.1) occurs at p . �

The following two corollaries follows immediately from Theorem 6.1.

Corollary 6.1 [4] If M is a slant surface in a complex space form M̃2(4ε) with slant angle θ , then we have

H2 ≥ 2{K − (1 + 3 cos2 θ)ε}. (6.9)

Corollary 6.2 Let M be a purely real surface in C2 . Then we have

H2 ≥ 2{K − ||∇α||2 + 2 〈∇α, Jh(e1, e2)〉 csc α} (6.10)

with respect to an orthonormal frame {e1, e2} satisfying 〈∇α, e2〉 = 0 .

The equality case of (6.10) holds if and only if, with respect a suitable adapted orthonormal frame
{e1, e2, e3, e4} , the shape operators of M take the forms

Ae3 =

(
3ϕ δ

δ ϕ

)
, Ae4 =

(
δ + e1α ϕ

ϕ 3δ + 3e1α

)
. (6.11)

7. Minimal surfaces satisfying the equality

Example 7.1 Let α(x) be a real-valued function with α′ > 0 and 0 < α < π and let b be a nonzero real
number. Consider the map:

L(x, y) =
(
be−ib−1y cot α(x), y

)
.

Then the induced metric is given by

g = b2α′2 csc4 αdx⊗ dx + csc2 αdy ⊗ dy.

This map L defines a purely real minimal surface with Wirtinger angle α which satisfies the equality case of
(6.10). This surface is a helicoid lying in the following real hyperplane of C2 : H = {(z1, z2) ∈ C2 : Im z2 = 0} .

Theorem 7.1 If M is a purely real minimal surface in C2 satisfying the equality case of (6.10), then either
M is an open part of a totally geodesic slant plane or it is congruent to an open part of a helicoid lying in a
real hyperplane of C2 defined by

L(x, y) =
(
be−ib−1y cotα(x), y

)
(7.1)

with non-constant Wirtinger angle α , where b is a nonzero real number.

Proof. Let M be a purely real minimal surface in C2 satisfiying the equality case of (6.10). If M is slant,
then ∇α = 0 holds. So, Theorem 3 of [4] implies that M is either an open portion of a totally geodesic slant
plane or a non-totally geodesic Lagrangian surface. In the later case, M is congruent to an open portion of the
Whitney sphere which is non-minimal (cf. [3]).

285



CHEN

Next, assume that M is non-slant. Then U = {p ∈ M : ∇α(p) �= 0} is a dense open subset of M ,
since M contains only isolated totally geodesic points. On U we may choose an adapted orthonormal frame
{e1, e2, e3, e4} satisfying ∇α = (e1α)e1 . Then, by Corollary 6.2, the shape operator takes the form (6.11).
Hence, we have

h(e1, e1) = 3ϕe3 + (δ + e1α)e4,

h(e1, e2) = δe3 + ϕe4, h(e2, e2) = ϕe3 + 3(δ + e1α)e4

(7.2)

for some functions ϕ and δ .

On the other hand, it follows from the minimality and (7.2) that δ = −e1α and ϕ = 0. Thus, (7.2)
reduces to

h(e1, e1) = h(e2, e2) = 0, h(e1, e2) = −e1αe3. (7.3)

Since Span {e1} and Span {e2} are one-dimensional distributions, there exists a local coordinate system
{x, y} on U such that ∂/∂x and ∂/∂y are parallel to e1, e2 , respectively. Thus, the metric tensor g on U

takes the following form:

g = E2dx2 + G2dy2, (7.4)

where E and G are positive functions. The Levi-Civita connection of (7.4) satisfies

∇ ∂
∂x

∂

∂x
=

Ex

E

∂

∂x
− EEy

G2

∂

∂y
,

∇ ∂
∂x

∂

∂y
=

Ey

E

∂

∂x
+

Gx

G

∂

∂y
,

∇ ∂
∂y

∂

∂y
= −GGx

E2

∂

∂x
+

Gy

G

∂

∂y
.

(7.5)

We may put

e1 =
1
E

∂

∂x
, e2 =

1
G

∂

∂y
. (7.6)

From e2α = 0, we have α = α(x). Now, it follows from (3.4), (7.3), (7.5), (7.6) and formula (2.1) of Gauss
that the immersion satisfies

Lxx =
Ex

E
Lx − EEy

G2
Ly, Lyy = −GGx

E2
Lx +

Gy

G
Ly,

Lxy =
(

Ey

E
− iα′(x)G

E sin α

)
Lx +

(
α′(x) cotα +

Gx

G

)
Ly .

(7.7)

The compatibility conditions of system (7.7) are given by

Ey = 0, Gx = −α′G cotα, (7.8)

α′′ = α′
(

Ex

E
− 2

Gx

G

)
, (7.9)

Gxx = Gα′2 +
Ex

E
Gx. (7.10)
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From (7.8) we get E = E(x) and G = f ′(y) csc α for some nonzero real-valued function f(y). Substi-
tuting this into (7.9) gives

α′′E = 2Eα′2 cot α + α′Ex. (7.11)

After solving this equation for E(x) we obtain E = bα′ csc2 α for some nonzero real number b . Therefore, the
metric tensor of the surface is

g = b2α′2 csc4 αdx2 + f ′2(y) csc2 αdy2 . (7.12)

From (7.7) and (7.12), we obtain

Lxx =
(

α′′

α′ − 2α′ cotα

)
Lx, Lxy = − if ′(y)

b
Lx,

Lyy =
f ′2(y) sin 2α

2bα′ Lx +
f ′′(y)
f ′(y)

Ly .

(7.13)

Solving the first equation in (7.13) gives

L(x, y) = w(y) + z(y) cot α(x) (7.14)

for some vector functions z(y), w(y). Substituting this into the second equation in (7.13) gives bz′(y) =

−if(y)z(y), which implies z = c1e
ib−1f ′(y) for some vector c1 . Combining this with (7.14) yields

L(x, y) = w(y) + c1e
ib−1f(y) cot α. (7.15)

By substituting (7.15) into the last equation in (7.13) we obtain f ′w′′ = f ′′w′ . Hence, the immersion is
congruent to

L(x, y) = c1e
ib−1f(y) cotα + c2f(y) (7.16)

for some vector c2 ∈ C2 . Consequently, after choosing suitable initial conditions and reparametrization of y ,
we obtain (7.1). �

8. Surfaces with circular ellipse of curvature

Example 8.1 Let w : S2 → C2 be the map defined by

w(y0, y1, y2) =
1 + iy0

1 + y2
0

(ry1, ry2), y2
0 + y2

1 + y2
2 = 1,

with r > 0. Then w is a Lagrangian immersion of the 2-sphere S2 into C2 which is called the Whitney sphere.
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Theorem 8.1 Let M be a purely real surface in C2 satisfying the equality case of (6.10). If M has circular
ellipse of curvature, then M is either an open portion of a totally geodesic slant plane or an open portion of
the Whitney sphere.

Proof. Let M be a purely real surface in C2 with circular ellipse of curvature satisfying the equality case of
(6.10). If M is slant, then it follows from Theorem 3 of [4] that M is either an open part of a totally geodesic
slant plane or a non-totally geodesic Lagrangian surface. In the later case, M is congruent to an open part of
the Whitney sphere (cf. [3]). It is known that there exists an adapted orthonormal from {e1, e2, e3, e4} on the
Whitney sphere with e3 = Je1, e4 = Je2 such that

h(e1, e1) = 3λe3, h(e1, e2) = λe4, h(e2, e2) = λe3 (8.1)

for some function λ . It follows from (2.11) and (8.1) that the Whitney sphere has circular ellipse of curvature.

Next, assume that M is non-slant. Then there exists a non-empty open subset U such that ∇α �= 0
everywhere on U . Let us work on U to derive a contradiction.

On U we may choose an adapted orthonormal frame {e1, e2, e3, e4} satisfying ∇α = (e1α)e1 . Then,
according to Corollary 6.2, the shape operators of M take the forms (6.11). Hence, the second fundamental
form h satisfies

h(e1, e1) = 3ϕe3 + (δ + e1α)e4, h(e1, e2) = δe3 + ϕe4,

h(e2, e2) = ϕe3 + 3(δ + e1α)e4

(8.2)

for some functions ϕ and δ . Since M is assumed to have circular ellipse of curvature, it follows from (2.12)

and (8.2) that ϕ = 0 and δ = −1
2e1α. Hence, (8.2) reduces to

h(e1, e1) =
e1α

2
e4, h(e1, e2) = −e1α

2
e3, h(e2, e2) =

3e1α

2
e4. (8.3)

As in section 7, there exists a local coordinate system {x, y} on U such that ∂/∂x and ∂/∂y are
parallel to e1, e2 , respectively. Thus, the metric tensor g on U takes the form of (7.4). We may assume that

e1 = E−1∂/∂x, e2 = G−1∂/∂y. Then we also have α = α(x) as in section 7.

It follows from (2.1), (3.4), (7.5) and (8.3) that the immersion L satisfies

Lxx =
(

α′(x)
2

cotα +
Ex

E

)
Lx +

(
iE
2G

α′(x) csc α − EEy

G2

)
Ly,

Lxy =
(

Ey

E
− iGα′(x)

2E
csc α

)
Lx +

(
α′(x)

2
cotα +

Gx

G

)
Ly ,

Lyy =
(

3G2

2E2
α′(x) cotα − GGx

E2

)
Lx +

(
3 iG
2E

α′(x) csc α +
Gy

G

)
Ly,
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The compatibility condition of this system are given by

Ey = Gy = 0, (8.4)

α′′(x) = α′
(

Ex

E
− Gx

G
− α′ cotα

)
, (8.5)

Gxx − Ex

E
Gx =

G

2
α′2(x), (8.6)

csc2 α =
8Gx(Gx − Gα′ cot α)
G2α′2(1 + 3 cos 2α)

. (8.7)

From (8.4) we get E = E(x) and G = G(x). So, after solving (8.5) we have G = c
√

csc α(x) for some

nonzero real number c . Substituting this into (8.6) gives

Ex

E
=

α′′(x)
α′(x)

− 3
2
α′(x) cot α,

which implies E = bα′ csc3/2 α for some real number b �= 0. Now, by substituting the expression of E and G

into (8.7) we obtain α′(x) = 0, which is a contradiction. �

9. Surfaces with degenerate second fundamental form

A surface M in C2 is said to have full second fundamental form if its first normal space, Imh , satisfies
dim (Im h) = 2 at each point in M . It is said to have degenerate second fundamental form if dim (Im h) < 2
holds at each point in M .

Example 9.1 Let α(x) be a positive real-valued function with α′ > 0 defined on open intervals I and b is a
nonzero real number. Consider M = I × R with metric:

g = b2α′2(x) sin4 α(x)dx⊗ dx + sin6 α(x)dy ⊗ dy.

The map φ : M → C2 of M into C2 ,

φ(x, y) =
b

12

(
4e3ib−1y sin3 α(x), cos(3α(x)) − 9 cosα(x)

)
,

defines a purely real isometric immersion of M into C2 with Wirtinger angle α . It is direct to show that the
squared mean curvature H2 , Gauss curvature K , the gradient of α , and the second fundamental form h of φ

satisfy

H2 =
4

b2 sin4 α
, K =

3
b2 sin4 α

, ||∇α||2 =
1

b2 sin4 α
, h

(
∂

∂x
,

∂

∂y

)
= 0.

Hence, this purely real surface satisfies the equality case of (6.10) and it has degenerate second fundamental

form. This is a surface of revolution lying in the same real hyperplane H of C2 as in Example 7.1.
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Theorem 9.1 Let M be a purely real surface in C2 satisfying the equality case of (6.10). If M has degenerate
second fundamental form, then M is congruent to an open portion of one of the following three types of surfaces :

(1) A totally geodesic slant plane.

(2) A positively curved surface with Wirtinger angle α defined by

L(x, y) =
b

12

(
4e3ib−1y sin3 α(x), cos(3α(x)) − 9 cosα(x)

)
,

where α(x) is a non-constant real-valued function and b is a nonzero real number.

(3) A helicoid lying in a real hyperplane of C2 with non-constant Wirtinger angle α defined by L(x, y) =(
be−ib−1y cotα(x), y

)
with b > 0 .

Proof. Let M be a purely real surface in C2 satisfying the equality case of (6.10). Assume that M has
degenerate second fundamental form.

If M is slant, then M is either an open portion of a totally geodesic slant plane or a non-totally geodesic
Lagrangian surface. In the first case, we obtain case (1) of the theorem. In the second case, M is congruent to
an open portion of the Whitney sphere which has full second fundamental form.

Now, assume that M is non-slant. We may choose an adapted orthonormal frame {e1, e2, e3, e4}
satisfying ∇α = (e1α)e1 . As in section 7, there exists a local coordinate system {x, y} on M such that

g = E2dx2 + G2dy2. (9.1)

e1 =
1
E

∂

∂x
, e2 =

1
G

∂

∂t
, α = α(x). (9.2)

Moreover, since M satisfies the equality case of (6.10), the shape operator takes the form (cf. Corollary 6.2):

Ae3 =

(
3ϕ δ

δ ϕ

)
, Ae4 =

(
δ + e1α ϕ

ϕ 3δ + 3e1α

)
. (9.3)

Because M has degenerate second fundamental form, it follows from (9.3) that we have either (a)
δ = ϕ = 0 or (b) δ = −e1α and ϕ = 0.

Case (a): δ = ϕ = 0. In this case, the second fundamental form satisfies

h(e1, e1) = (e1α)e4, h(e1, e2) = 0, h(e2, e2) = 3(e1α)e4. (9.4)

It follows from (3.4), (9.1), (9.2) and (9.4) that

Lxx =
(

α′(x) cotα +
Ex

E

)
Lx +

(
iα′(x)(csc α)

E

G
− EEy

G2

)
Ly,

Lxy =
Ey

E
Lx +

Gx

G
Ly,

Lyy =
(

3α′(x)(cot α)
G2

E2
− GGx

E2

)
Lx +

(
3 iα′(x)(csc α)

G

E
+

Gy

G

)
Ly,

(9.5)
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The compatibility from (9.5) are given by

Ey = 0, α′(x) =
Gx

3G
tan α, (9.6)

tan2 α =
3G(ExGx − EGxx)

EG2
x

. (9.7)

Since α′(x) �= 0, (9.6) implies that E = E(x), Gx �= 0 and G = f ′(y) sin3 α(x) for some function f(y). By
substituting these into (9.7) we get

α′′(x)E = Exα′(x) − 2α′2(x)E cotα, (9.8)

which implies that E(x) = bα′(x) sin2 α for some nonzero real number b . Hence, the metric tensor is given by

g = b2α′2(x) sin4 α(x)dx2 + f ′2(y) sin6 α(x)dy2. (9.9)

It follows from (9.5) and (9.9) that

Lxx =
(

3α′ cotα +
α′′(x)
α′(x)

)
Lx +

ibα′2 csc2 α

f ′(y)
Ly,

Lxy = 3α′ cot αLy, Lyy =
(

f ′′(y)
f ′(y)

+
3if ′(y)

b

)
Ly.

(9.10)

Solving the second equation in (9.10) gives

L(x, y) = w(x) + z(y) sin3 α(x) (9.11)

for some w(x), z(y). Substituting (9.11) into the last equation in (9.10) yields

z′′(y) =
(

f ′′(y)
f ′(y)

+
3if ′(y)

b

)
z′(y). (9.12)

Solving this equation gives z(y) = c0 + c1e
3ib−1f(y) for some vectors c0, c1 ∈ C2 . Hence, the immersion is

congruent to

L(x, y) = w(x) + c1e
3ib−1f(y) sin3 α(x). (9.13)

After substituting this into the first equation in (9.10) we obtain

w′′(x) =
(

3α′(x) cot α +
α′′(x)
α′(x)

)
w′(x). (9.14)

Now, by solving this equation we get

w(x) = c3 + c2(cos 3α − 9 cosα), c2, c3 ∈ C2. (9.15)

Combining this with (9.13) shows that the immersion is congruent to

L(x, y) = c1e
3ib−1f(y) + c2(cos 3α − 9 cos α). (9.16)
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So, after choosing initial conditions and reparametrization of y , we obtain case (2).

Case (b): δ = −e1α and ϕ = 0. In this case, we have

h(e1, e1) = h(e2, e2) = 0, h(e1, e2) = −e1αe3, e1α �= 0. (9.17)

Thus, the surface is minimal. Consequently, it follows from Theorem 7.1 that the surface is congruent to the
one given in case (3) of the theorem. �
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