

On purely real surfaces in Kaehler surfaces

Bang-Yen Chen

Abstract

An immersion $\phi: M \to \tilde{M}^2$ of a surface M into a Kaehler surface is called *purely real* if the complex structure J on \tilde{M}^2 carries the tangent bundle of M into a transversal bundle. In the first part of this article, we prove that the equation of Ricci is a consequence of the equations of Gauss and Codazzi for purely real surfaces in any Kaehler surface. In the second part, we obtain a necessary condition for a purely real surface in a complex space form to be minimal. Several applications of this condition are provided. In the last part, we establish a general optimal inequality for purely real surfaces in complex space forms. We also obtain three classification theorems for purely real surfaces in \mathbf{C}^2 which satisfy the equality case of the inequality.

Key word and phrases: Purely real surfaces; integrability condition; equation of Ricci; equation of Gauss-Codazzi; Kaehler surface; Wirtinger angle; optimal inequality.

1. Introduction

Let \tilde{M}^2 be a Kaehler surface; that means \tilde{M}^2 is endowed with a complex structure J and a Riemannian metric \tilde{g} which is J-Hermitian. Thus, we have

$$\tilde{g}(JX, JY) = \tilde{g}(X, Y), \ \forall X, Y \in T_p M^2,$$

$$(1.1)$$

$$\tilde{\nabla}J = 0 \tag{1.2}$$

for $p \in \tilde{M}^2$, where $\tilde{\nabla}$ is the Levi-Civita connection of \tilde{g} .

It is well-known that the curvature tensor \tilde{R} of a Kaehler surface \tilde{M}^2 satisfies

$$\tilde{R}(X,Y;Z,W) = -\tilde{R}(Y,X;Z,W), \qquad (1.3)$$

$$\tilde{R}(X,Y;Z,W) = \tilde{R}(Z,W;X,Y), \qquad (1.4)$$

$$\tilde{R}(X,Y;JZ,W) = -\tilde{R}(X,Y;Z,JW), \qquad (1.5)$$

2000 AMS Mathematics Subject Classification: Primary: 53C40; Secondary 53C50.

where $\tilde{R}(X, Y; Z, W) = \tilde{g}(\tilde{R}(X, Y)Z, W)$.

It is well-known that the three fundamental equations of Gauss, Codazzi and Ricci play fundamental roles in the theory of Riemannian submanifolds (see, for instance, [1, 5, 9]). Since the three equations provide conditions for local isometric embeddability, the three equations also play some important roles in physics; in particular in Kaluza-Klein's theory (see [10, 11]). For surfaces in Riemannian 4-manifolds, the three fundamental equations are independent in general.

In the first part of this article, we prove that the equation of Ricci is a consequence of the equations of Gauss and Codazzi for purely real surfaces in an arbitrary Kaehler surface. In the second part, we obtain a necessary condition in term of Wirtinger angle for a purely real surface in a complex space form to be minimal. Several immediate applications of this condition are provided. In the last part, we establish a general optimal inequality for purely real surfaces in complex space forms. We also obtain three classification theorems for purely real surfaces in \mathbf{C}^2 which satisfy the equality case of the inequality.

2. Basic formulas and fundamental equations

Let $(\tilde{M}^2, J, \tilde{g})$ be a Kaehler surface. Assume that M is a surface in \tilde{M}^2 . Let g be the induced metric on M. Denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connection on g and \tilde{g} , respectively. And denote by R and \tilde{R} the curvature tensor of M and \tilde{M}^2 , respectively. Denote by \langle , \rangle the inner product associated with \tilde{g} (or with g).

The formulas of Gauss and Weingarten are given respectively by (cf. [1, 5])

$$\nabla_X Y = \nabla_X Y + h(X, Y), \tag{2.1}$$

$$\tilde{\nabla}_X \xi = -A_\xi X + D_X \xi \tag{2.2}$$

for vector fields X, Y tangent to M and ξ normal to M, where h, A and D are the second fundamental form, the shape operator and the normal connection.

The shape operator and the second fundamental form are related by

$$\tilde{g}(h(X,Y),\xi) = g(A_{\xi}X,Y) \tag{2.3}$$

for X, Y tangent to M and ξ normal to M.

The equations of Gauss, Codazzi and Ricci are given respectively by

$$R(X,Y;Z,W) = \tilde{R}(X,Y;Z,W) + \langle h(X,W), h(Y,Z) \rangle$$

$$- \langle h(X,Z), h(Y,W) \rangle,$$
(2.4)

$$(\tilde{R}(X,Y)Z)^{\perp} = (\bar{\nabla}_X h)(Y,Z) - (\bar{\nabla}_Y h)(X,Z), \qquad (2.5)$$

$$\tilde{g}(R^D(X,Y)\xi,\eta) = \tilde{R}(X,Y;\xi,\eta) + \tilde{g}([A_\xi,A_\eta]X,Y),$$
(2.6)

where X, Y, Z, W are vectors tangent to M, and $\overline{\nabla}h$ and R^D are defined by

$$(\bar{\nabla}_X h)(Y,Z) = D_X h(Y,Z) - h(\nabla_X Y,Z) - h(Y,\nabla_X Z), \qquad (2.7)$$

$$R^{D}(X,Y) = [D_{X}, D_{Y}] - D_{[X,Y]}.$$
(2.8)

The mean curvature vector \overrightarrow{H} and the squared mean curvature H^2 of the surface are defined respectively by

$$\vec{H} = \frac{1}{2} \operatorname{trace} h, \quad H^2 = \tilde{g}(\vec{H}, \vec{H}).$$
(2.9)

Let $\tilde{M}^2(4\varepsilon)$ denote a complex space form with constant holomorphic sectional curvature 4ε . The Riemann curvature tensor of $\tilde{M}^2(4\varepsilon)$ satisfies

$$\tilde{R}(X,Y;Z,W) = \varepsilon \{ \langle X,W \rangle \langle Y,Z \rangle - \langle X,Z \rangle \langle Y,W \rangle + \langle JX,W \rangle \langle JY,Z \rangle - \langle JX,Z \rangle \langle JY,W \rangle + 2 \langle X,JY \rangle \langle JZ,W \rangle \}.$$
(2.10)

The ellipse of curvature of a surface M in \tilde{M}^2 is the subset of the normal plane defined as

$$\{h(v,v) \in T_p^{\perp}M : |v| = 1, v \in T_pM, p \in M\}.$$

To see that it is an ellipse, we consider an arbitrary orthogonal tangent frame $\{e_1, e_2\}$. Put $h_{ij} = h(e_i, e_j), i, j = 1, 2$ and look at the formula

$$h(v,v) = \vec{H} + \frac{h_{11} - h_{22}}{2}\cos 2\theta + h_{12}\sin 2\theta, \quad v = \cos \theta e_1 + \sin \theta e_2.$$
(2.11)

As v goes once around the unit tangent circle, h(v, v) goes twice around the ellipse. The ellipse of curvature could degenerate into a line segment or a point.

The center of the ellipse is \overrightarrow{H} . The ellipse of curvature is a circle if and only if the following two conditions hold:

$$|h_{11} - h_{22}|^2 = 4|h_{12}|^2, \quad \langle h_{11} - h_{22}, h_{12} \rangle = 0.$$
(2.12)

The property that the ellipse of curvature is a circle is a conformal invariant.

3. Basics on purely real surfaces

An immersion $\phi: M \to \tilde{M}^2$ of a surface M into a Kaehler surface is called *purely real* if the complex structure J on \tilde{M}^2 carries the tangent bundle of M into a transversal bundle (cf. [6], see also [12]). Obviously, every purely real surface admits no complex points.

A point p on a purely real surface M is called a *Lagrangian point* if J carries the tangent space T_pM into its normal space $T_p^{\perp}M$. A purely real surface is called *Lagrangian* if every point is a Lagrangian point.

For each tangent vector X of a purely real surface M, we put

$$JX = PX + FX, (3.1)$$

where PX and FX are the tangential and the normal components of JX.

For an oriented orthonormal frame $\{e_1, e_2\}$, it follows from (3.1) that

$$Pe_1 = (\cos \alpha)e_2, \quad Pe_2 = -(\cos \alpha)e_1 \tag{3.2}$$

for some function α . This function α is called the *Wirtinger angle*. The Wirtinger angle is independent of the choice of e_1, e_2 which preserves the orientation.

A purely real surface is called a *slant surface* if its Wirtinger angle is constant. The Wirtinger angle of a slant surface is called the slant angle (cf. [2]).

For a purely real surface M, if we put

$$e_3 = (\csc \alpha) F e_1, \quad e_4 = (\csc \alpha) F e_2, \tag{3.3}$$

then we may derive from (3.1)–(3.3) that

 $Je_1 = \cos \alpha e_2 + \sin \alpha e_3, \qquad Je_2 = -\cos \alpha e_1 + \sin \alpha e_4, \tag{3.4}$

$$Je_3 = -\sin\alpha e_1 - \cos\alpha e_4, \quad Je_4 = -\sin\alpha e_2 + \cos\alpha e_3, \tag{3.5}$$

$$\langle e_3, e_3 \rangle = \langle e_4, e_4 \rangle = 1, \ \langle e_3, e_4 \rangle = 0. \tag{3.6}$$

We call such a frame $\{e_1, e_2, e_3, e_4\}$ an *adapted orthonormal frame* for M.

For an adapted orthonormal frame $\{e_1, e_2, e_3, e_4\}$, we may put

$$\nabla_X e_1 = \omega(X)e_1, \quad \nabla_X e_2 = -\omega(X)e_2, \tag{3.7}$$

$$D_X e_3 = \Phi(X) e_4, \ D_X e_4 = -\Phi(X) e_3$$
(3.8)

for some 1-forms ω and Φ . For the second fundamental form h of M, we put

$$h(e_i, e_j) = h_{ij}^3 e_3 + h_{ij}^4 e_4. aga{3.9}$$

From (2.3) and (3.9) we have

$$A_{e_3}e_j = h_{1j}^3e_1 + h_{2j}^3e_2, \quad A_{e_4}e_j = h_{1j}^4e_1 + h_{2j}^4e_2.$$
(3.10)

We need the following lemma.

Lemma 3.1 Let M be a purely real surface in a Kaehler surface. Then, with respect to an adapted orthonormal frame $\{e_1, e_2, e_3, e_4\}$, we have

$$e_1 \alpha = h_{11}^4 - h_{12}^3, \ e_2 \alpha = h_{12}^4 - h_{22}^3, \tag{3.11}$$

$$\Phi_1 = \omega_1 - (h_{11}^3 + h_{12}^4) \cot \alpha, \quad \Phi_2 = \omega_2 - (h_{12}^3 + h_{22}^4) \cot \alpha, \tag{3.12}$$

where $\omega_j = \omega(e_j)$ and $\Phi_j = \Phi(e_j)$ for j = 1, 2.

Proof. This is done by straightforward computation using (1.2) and (3.4)–(3.10), as we did in the proof of Lemma 4.1 and Theorem 4.2 in [2, pages 29–31]. \Box

4. Dependence of Gauss-Codazzi and Ricci equations

In this section we prove the following general result for purely real surfaces.

Theorem 4.1 The equation of Ricci is a consequence of the equations of Gauss and Codazzi for any purely real surface in any Kaehler surface.

Proof. Assume that $\phi: M \to \tilde{M}^2$ is a purely real isometric immersion of a surface M into a Kaehler surface \tilde{M}^2 . We may assume that locally M is equipped with the isothermal metric

$$g = E^2(x, y)(dx^2 + dy^2)$$
(4.1)

for some positive function E. The Levi-Civita connection of g satisfies

$$\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} = \frac{E_x}{E} \frac{\partial}{\partial x} - \frac{E_y}{E} \frac{\partial}{\partial y}, \quad \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y} = \frac{E_y}{E} \frac{\partial}{\partial x} + \frac{E_x}{E} \frac{\partial}{\partial y},$$

$$\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} = -\frac{E_x}{E} \frac{\partial}{\partial x} + \frac{E_y}{E} \frac{\partial}{\partial y}.$$
(4.2)

If we put

$$e_1 = \frac{1}{E} \frac{\partial}{\partial x}, \quad e_2 = \frac{1}{E} \frac{\partial}{\partial y},$$
(4.3)

then $\{e_1, e_2\}$ is an orthonormal frame. From (4.2) and (4.3) we derive that

$$\nabla_{e_1}e_1 = -\frac{E_y}{E^2}e_2, \ \nabla_{e_2}e_1 = \frac{E_x}{E^2}e_2, \ \nabla_{e_1}e_2 = \frac{E_y}{E^2}e_1, \ \nabla_{e_2}e_2 = -\frac{E_x}{E^2}e_1.$$
(4.4)

It follows from (3.7) and (4.4) that

$$\omega(e_1) = -\frac{E_y}{E^2}, \quad \omega(e_2) = \frac{E_x}{E^2}.$$
(4.5)

For simplicity, let us put

$$h(e_1, e_1) = \beta e_3 + \gamma e_4, \quad h(e_1, e_2) = \delta e_3 + \varphi e_4, \quad h(e_2, e_2) = \lambda e_3 + \mu e_4. \tag{4.6}$$

In view of (3.6), and (4.6), equation (2.4) of Gauss can be expressed as

$$K = \tilde{K} + \beta \lambda + \gamma \mu - \delta^2 - \varphi^2, \qquad (4.7)$$

where $\tilde{K}(p)$ is the sectional curvature of the ambient space \tilde{M}^2 with respect to the tangent plane of $T_p M$ of M at $p \in M$. By applying Lemma 3.1 and (4.6), we have

$$e_1 \alpha = \gamma - \delta, \ e_2 \alpha = \varphi - \lambda,$$
 (4.8)

$$\Phi_1 = -\frac{E_y}{E^2} - (\beta + \varphi) \cot \alpha, \quad \Phi_2 = \frac{E_x}{E^2} - (\delta + \mu) \cot \alpha. \tag{4.9}$$

By using (3.8) and (4.9) we find

$$D_{e_1}e_3 = -\left(\frac{E_y}{E^2} + (\beta + \varphi)\cot\alpha\right)e_4, \quad D_{e_2}e_3 = \left(\frac{E_x}{E^2} - (\delta + \mu)\cot\alpha\right)e_4,$$

$$D_{e_1}e_4 = \left(\frac{E_y}{E^2} + (\beta + \varphi)\cot\alpha\right)e_3, \quad D_{e_2}e_4 = \left(-\frac{E_x}{E^2} + (\delta + \mu)\cot\alpha\right)e_3.$$
(4.10)

So, it follows from (4.4), (4.6) and (4.10) that

$$(\bar{\nabla}_{e_1}h)(e_1, e_2) = \left(\frac{\delta_x}{E} + \frac{(\lambda + \varphi - \beta)E_y}{E^2} + \varphi(\beta + \varphi)\cot\alpha\right)e_3 + \left(\frac{\varphi_x}{E} + \frac{(\mu - \gamma - \delta)E_y}{E^2} - \delta(\beta + \varphi)\cot\alpha\right)e_4, (\bar{\nabla}_{e_2}h)(e_1, e_1) = \left(\frac{\beta_y}{E} - \frac{(\gamma + 2\delta)E_x}{E^2} + \gamma(\delta + \mu)\cot\alpha\right)e_3 + \left(\frac{\gamma_y}{E} + \frac{(\beta - 2\varphi)E_x}{E^2} - \beta(\delta + \mu)\cot\alpha\right)e_4, (\bar{\nabla}_{e_1}h)(e_2, e_2) = \left(\frac{\lambda_x}{E} + \frac{(\mu - 2\delta)E_y}{E^2} + \mu(\beta + \varphi)\cot\alpha\right)e_3 + \left(\frac{\mu_x}{E} - \frac{(\lambda + 2\varphi)E_y}{E^2} - \lambda(\beta + \varphi)\cot\alpha\right)e_4, (\bar{\nabla}_{e_2}h)(e_1, e_2) = \left(\frac{\delta_y}{E} + \frac{(\beta - \lambda - \varphi)E_x}{E^2} + \varphi(\delta + \mu)\cot\alpha\right)e_3 + \left(\frac{\varphi_y}{E} + \frac{(\gamma + \delta - \mu)E_x}{E^2} - \delta(\delta + \mu)\cot\alpha\right)e_4.$$
(4.11)

On the other hand, from (3.4) we also find

$$(\tilde{R}(e_2, e_1)e_1)^{\perp} = \{(\csc \alpha)\tilde{R}(e_2, e_1; e_1, Je_1) - (\cot \alpha)\tilde{K})\}e_3 + (\csc \alpha)\tilde{R}(e_2, e_1; e_1, Je_2)e_4, (\tilde{R}(e_1, e_2)e_2)^{\perp} = (\csc \alpha)\tilde{R}(e_1, e_2; e_2, Je_1)e_3 + \{(\cot \alpha)\tilde{K} + (\csc \alpha)\tilde{R}(e_1, e_2; e_2, Je_2)\}e_4.$$
(4.12)

By using (3.6), (4.3), (4.11) and (4.12), we find from the equation of Codazzi that

$$\beta_{y} - \delta_{x} = E(\csc \alpha)\tilde{R}(e_{2}, e_{1}; e_{1}, Je_{1}) + \{\varphi(\beta + \varphi) - \gamma(\delta + \mu)\}E\cot \alpha$$

$$+ \frac{1}{E}\{(\gamma + 2\delta)E_{x} + (\lambda + \varphi - \beta)E_{y}\} - E(\cot \alpha)\tilde{K},$$

$$\gamma_{y} - \varphi_{x} = E(\csc \alpha)\tilde{R}(e_{2}, e_{1}; e_{1}, Je_{2}) + (\beta\mu - \delta\varphi)E\cot \alpha$$

$$+ \frac{1}{E}\{(2\varphi - \beta)E_{x} + (\mu - \gamma - \delta)E_{y}\},$$
(4.13)

$$\begin{split} \lambda_x - \delta_y &= E(\csc \alpha) \tilde{R}(e_1, e_2; e_2, Je_1) + (\delta \varphi - \beta \mu) E \cot \alpha \\ &\quad + \frac{1}{E} \{ (\beta - \varphi - \lambda) E_x + (2\delta - \mu) E_y \}, \\ \mu_x - \varphi_y &= E(\csc \alpha) \tilde{R}(e_1, e_2; e_2, Je_2) + \{ \lambda (\beta + \varphi) - \delta (\delta + \mu) \} E \cot \alpha \\ &\quad + \frac{1}{E} \{ (\gamma + \delta - \mu) E_x + (2\varphi + \lambda) E_y \} + E(\cot \alpha) \tilde{K}. \end{split}$$

Also, from (3.10), (4.3), (4.6) and (4.8) we have

$$A_{e_3} = \begin{pmatrix} \beta & \delta \\ \delta & \lambda \end{pmatrix}, \ A_{e_4} = \begin{pmatrix} \gamma & \varphi \\ \varphi & \mu \end{pmatrix},$$
(4.14)

$$\alpha_x = (\gamma - \delta)E, \ \ \alpha_y = (\varphi - \lambda)E.$$
(4.15)

By applying (1.3)-(1.5), (3.4), (4.9), and (4.14) we derive that

$$\tilde{R}(e_1, e_2; e_3, e_4) = \cot\alpha \csc\alpha (\tilde{R}(e_1, e_2; Je_1, e_1) + \tilde{R}(e_1, e_2; Je_2, e_2))$$
(4.16)

$$-(1+2\cot^2lpha) ilde{K},$$

$$\langle [A_{e_3}, A_{e_4}]e_1, e_2 \rangle = \varphi(\lambda - \beta) + \delta(\gamma - \mu).$$
(4.17)

From (2.8), (4.4) and (4.10) we find

$$\tilde{g}(R^{D}(e_{1},e_{2})e_{3},e_{4}) = \frac{(\delta+\mu)\alpha_{x} - (\beta+\varphi)\alpha_{y}}{E\sin^{2}\alpha} - K$$

$$+ \{(\beta+\varphi)E_{y} - (\delta+\mu)E_{x} + E(\beta_{y}+\varphi_{y}-\delta_{x}-\mu_{x})\}\frac{\cot\alpha}{E^{2}}.$$
(4.18)

By substituting (4.13) and (4.15) into (4.18) we obtain

$$\tilde{g}(R^{D}(e_{1}, e_{2})e_{3}, e_{4}) = (\delta + \mu)(\gamma - \delta) + (\beta + \varphi)(\lambda - \varphi) - K$$

+ \constant \constant \alpha(\text{\$\tilde{R}\$}(e_{1}, e_{2}; Je_{1}, e_{1}) + \tilde{R}(e_{1}, e_{2}; Je_{2}, e_{2})) - 2(\cot^{2} \alpha) \tilde{K}.
(4.19)

Thus, it follows from (2.6), (4.16), (4.17) and (4.19) that the equation of Ricci is

$$K = \tilde{K} + \beta \lambda + \gamma \mu - \delta^2 - \varphi^2, \qquad (4.20)$$

which is exactly the equation (4.7) of Gauss. Therefore, the equation of Ricci is a consequence of Gauss and Codazzi. $\hfill \Box$

Remark 4.1 If the purely real surface is slant, Theorem 4.1 is due to [8].

5. Wirtinger angle of purely real surfaces

The following result provides a necessary condition for purely real surfaces in complex space forms to be minimal.

Theorem 5.1 Let M be a purely real surface in a complex space form $\tilde{M}^2(4\varepsilon)$ of constant holomorphic sectional curvature 4ε . If M is minimal, then the Wirtinger angle α of M satisfies

$$\Delta \alpha = \left\{ ||\nabla \alpha||^2 + 6\varepsilon \sin^2 \alpha \right\} \cot \alpha, \tag{5.1}$$

where Δ is the Laplace operator of M and $\nabla \alpha$ is the gradient of α .

Proof. Let M be a purely real surface in $\tilde{M}^2(4\varepsilon)$. We follow the notations and definitions given in sections 3 and 4. If M is minimal, we get

$$\lambda = -\beta, \quad \gamma = -\mu. \tag{5.2}$$

So, it follows from (4.15) and (5.2) that

$$\delta = -\frac{\alpha_x}{E} - \mu, \quad \varphi = \frac{\alpha_y}{E} - \beta.$$
(5.3)

Moreover, it follows from (2.10) that

$$\tilde{R}(e_2, e_1; e_1, Je_1) = -\tilde{R}(e_1, e_2; e_2, Je_2) = 4\varepsilon \cos \alpha,$$
(5.4)

$$\tilde{K} = \varepsilon (1 + 3\cos^2 \alpha). \tag{5.5}$$

Substituting (5.2)–(5.5) into the first equation in (4.13) gives

$$E^{2}(\mu_{x}+\beta_{y}) = \alpha_{y}E_{y} - \alpha_{x}E_{x} - \alpha_{xx}E - 3E(\mu E_{x}+\beta E_{y})$$
(5.6)

$$+ \alpha_y^2 E \cot \alpha - (\alpha_x \mu + \alpha_y \beta) E^2 \cot \alpha + 3\varepsilon E^3 \sin \alpha \cos \alpha.$$

Similarly, by substituting (5.2)–(5.5) into the last equation in (4.13) we find

$$E^{2}(\mu_{x} + \beta_{y}) = \alpha_{y}E_{y} - \alpha_{x}E_{x} + \alpha_{yy}E - 3E(\mu E_{x} + \beta E_{y}) - \alpha_{x}^{2}E\cot\alpha - (\alpha_{x}\mu + \alpha_{y}\beta)E^{2}\cot\alpha - 3\varepsilon E^{3}\sin\alpha\cos\alpha.$$
(5.7)

Subtracting (5.6) from (5.7) yields

$$\alpha_{xx} + \alpha_{yy} = \left\{ \alpha_x^2 + \alpha_y^2 + 6\varepsilon E^2 \sin^2 \alpha \right\} \cot \alpha.$$
(5.8)

Since the Laplace operator Δ of M with respect to the metric (4.1) is given by

$$\Delta = \frac{1}{E^2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right),$$

equation (5.8) can be simply expressed as (5.1).

Some easy consequences of Theorem 5.1 are the following.

282

Corollary 5.1 [7] Every slant surface in a complex space form $\tilde{M}^2(4\varepsilon)$ with $\varepsilon \neq 0$ is non-minimal unless it is either Lagrangian or complex.

Proof. Follows immediately from Theorem 5.1.

Corollary 5.2 Every compact oriented minimal purely real surface in the complex projective plane $CP^{2}(4)$ contains some Lagrangian points.

Proof. Let M be a compact oriented minimal purely real surface in $CP^2(4)$. Then we may choose e_1, e_2 to be an orthonormal frame which gives the orientation on M. So, the α is a global well-defined function on M. Thus, it follows from Theorem 5.1 and Hopf's lemma that $\int_M \cot \alpha dA = 0$, which implies that $\cot \alpha = 0$ holds at some points. Hence, M must admits some Lagrangian points.

The next two corollaries follows easily from (5.1).

Corollary 5.3 Let M be a purely real minimal surface in \mathbb{C}^2 . If the Wirtinger angle α is a harmonic function, then M is slant.

Corollary 5.4 Let M be a purely real minimal surface in $CP^2(4)$. If the Wirtinger angle α is a harmonic function, then M is Lagrangian.

A function f on (M,g) is called *subharmonic* if $\Delta f \geq 0$ holds everywhere on M. The surface M is called *parabolic* if there exists non non-constant negative subharmonic function.

Corollary 5.5 Let M be an oriented minimal purely real surface in $CP^2(4)$. If M is parabolic, then M contains some Lagrangian points.

Proof. Let M be an oriented minimal purely real surface in the complex projective plane $CP^{2}(4)$. Then we have

$$\Delta \alpha = \left\{ ||\nabla \alpha||^2 + 6\sin^2 \alpha \right\} \cot \alpha.$$
(5.9)

If M is parabolic and it admits no Lagrangian points, then $\cot \alpha$ is either a positive function or a negative function on M.

When $\cot \alpha$ is a positive function, α is subharmonic by (5.9). Hence, α must be constant, which is impossible according to Corollary 5.1.

Similarly, when $\cot \alpha$ is a negative function, $-\alpha$ is subharmonic. This is also impossible by the same argument.

6. A general optimal inequality for purely neal surfaces

We prove the following general optimal inequality for purely real surfaces.

Theorem 6.1 Let M be a purely real surface in a complex space form $\tilde{M}^2(4\varepsilon)$. Then we have

$$H^2 \ge 2\{K - ||\nabla\alpha||^2 - (1 + 3\cos^2\alpha)\varepsilon\} + 4\langle\nabla\alpha, Jh(e_1, e_2)\rangle\csc\alpha$$
(6.1)

with respect to an orthonormal frame $\{e_1, e_2\}$ satisfying $\langle \nabla \alpha, e_2 \rangle = 0$, where H^2 and K are the squared mean curvature and the Gauss curvature of M, respectively.

The equality case of (6.1) holds at p if and only if, with respect a suitable adapted orthonormal frame $\{e_1, e_2, e_3, e_4\}$, the shape operator at p take the forms

$$A_{e_3} = \begin{pmatrix} 3\varphi & \delta \\ \delta & \varphi \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} \delta + e_1\alpha & \varphi \\ \varphi & 3\delta + 3e_1\alpha \end{pmatrix}.$$
(6.2)

Proof. Assume that M is a purely real surface in \tilde{M}^2 . Without loss of generality, we may choose an adapted orthonormal frame $\{e_1, e_2, e_3, e_4\}$ such that the gradient of α is parallel to e_1 at p. So, we have $\nabla \alpha = (e_1 \alpha)e_1$. As before, let us put

$$h(e_1, e_1) = \beta e_3 + \gamma e_4, \ h(e_1, e_2) = \delta e_3 + \varphi e_4, \ h(e_2, e_2) = \lambda e_3 + \mu e_4.$$
(6.3)

Then, in view of Lemma 3.1 we have

$$A_{e_3} = \begin{pmatrix} \beta & \delta \\ \delta & \varphi \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} \delta + e_1 \alpha & \varphi \\ \varphi & \mu \end{pmatrix}.$$
 (6.4)

Thus, the squared mean curvature H^2 and the Gauss curvature K of M satisfy

$$4H^2 = (\beta + \varphi)^2 + (\delta + \mu + e_1 \alpha)^2, \tag{6.5}$$

$$K = \beta \varphi + \delta \mu + \mu e_1 \alpha - \delta^2 - \varphi^2 + (1 + 3\cos^2 \alpha)\varepsilon.$$
(6.6)

Hence, we obtain

$$H^{2} - 2K + 2||\nabla\alpha||^{2} = \frac{1}{4} \{(\beta - 3\varphi)^{2} + (\mu - 3(\delta + e_{1}\alpha))^{2}\} - 4\delta e_{1}\alpha - 2(1 + 3\cos^{2}\alpha)\varepsilon$$

$$\geq -4\delta e_{1}\alpha - 2(1 + 3\cos^{2}\alpha)\varepsilon.$$
(6.7)

On the other hand, from $\nabla \alpha = (e_1 \alpha) e_1$ and (3.3) we have $F(\nabla \alpha) = (e_1 \alpha) \sin \alpha e_3$. Hence, we obtain from (6.3) that

$$\delta e_1 \alpha = \langle J(\nabla \alpha), h(e_1, e_2) \rangle \csc \alpha.$$
(6.8)

Combining this with (6.7) gives inequality (6.1).

If the equality case of (6.1) holds at a point p, then it follows from (6.7) that $\beta = 3\varphi$ and $\mu = 3\delta + 3e_1\alpha$ hold at p. Hence, we obtain (6.2) from (6.4).

Conversely, if (6.2) holds at a point $p \in M$, then it follows from (6.2) and Lemma 3.1 that we have $e_2\alpha = 0$ at p. Thus, we get $\langle \nabla \alpha, Jh(e_1, e_2) \rangle = -\delta e_1 \alpha \sin \alpha$ at p. Now, it is straightforward to show that (6.2)

holds at p implies that the equality case of (6.1) occurs at p.

The following two corollaries follows immediately from Theorem 6.1.

Corollary 6.1 [4] If M is a slant surface in a complex space form $\tilde{M}^2(4\varepsilon)$ with slant angle θ , then we have

$$H^{2} \ge 2\{K - (1 + 3\cos^{2}\theta)\varepsilon\}.$$
(6.9)

Corollary 6.2 Let M be a purely real surface in \mathbb{C}^2 . Then we have

$$H^{2} \ge 2\{K - ||\nabla \alpha||^{2} + 2\langle \nabla \alpha, Jh(e_{1}, e_{2})\rangle \csc \alpha\}$$

$$(6.10)$$

with respect to an orthonormal frame $\{e_1, e_2\}$ satisfying $\langle \nabla \alpha, e_2 \rangle = 0$.

The equality case of (6.10) holds if and only if, with respect a suitable adapted orthonormal frame $\{e_1, e_2, e_3, e_4\}$, the shape operators of M take the forms

$$A_{e_3} = \begin{pmatrix} 3\varphi & \delta \\ \delta & \varphi \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} \delta + e_1\alpha & \varphi \\ \varphi & 3\delta + 3e_1\alpha \end{pmatrix}.$$
 (6.11)

7. Minimal surfaces satisfying the equality

Example 7.1 Let $\alpha(x)$ be a real-valued function with $\alpha' > 0$ and $0 < \alpha < \pi$ and let b be a nonzero real number. Consider the map:

$$L(x,y) = \left(be^{-ib^{-1}y} \cot \alpha(x), y\right).$$

Then the induced metric is given by

$$g = b^2 \alpha'^2 \csc^4 \alpha dx \otimes dx + \csc^2 \alpha dy \otimes dy.$$

This map L defines a purely real minimal surface with Wirtinger angle α which satisfies the equality case of (6.10). This surface is a helicoid lying in the following real hyperplane of \mathbf{C}^2 : $\mathcal{H} = \{(z_1, z_2) \in \mathbf{C}^2 : \text{Im } z_2 = 0\}$.

Theorem 7.1 If M is a purely real minimal surface in \mathbb{C}^2 satisfying the equality case of (6.10), then either M is an open part of a totally geodesic slant plane or it is congruent to an open part of a helicoid lying in a real hyperplane of \mathbb{C}^2 defined by

$$L(x,y) = \left(be^{-ib^{-1}y}\cot\alpha(x),y\right) \tag{7.1}$$

with non-constant Wirtinger angle α , where b is a nonzero real number.

Proof. Let M be a purely real minimal surface in \mathbb{C}^2 satisfying the equality case of (6.10). If M is slant, then $\nabla \alpha = 0$ holds. So, Theorem 3 of [4] implies that M is either an open portion of a totally geodesic slant plane or a non-totally geodesic Lagrangian surface. In the later case, M is congruent to an open portion of the Whitney sphere which is non-minimal (cf. [3]).

Next, assume that M is non-slant. Then $U = \{p \in M : \nabla \alpha(p) \neq 0\}$ is a dense open subset of M, since M contains only isolated totally geodesic points. On U we may choose an adapted orthonormal frame $\{e_1, e_2, e_3, e_4\}$ satisfying $\nabla \alpha = (e_1 \alpha) e_1$. Then, by Corollary 6.2, the shape operator takes the form (6.11). Hence, we have

$$h(e_1, e_1) = 3\varphi e_3 + (\delta + e_1\alpha)e_4,$$

$$h(e_1, e_2) = \delta e_3 + \varphi e_4, \quad h(e_2, e_2) = \varphi e_3 + 3(\delta + e_1\alpha)e_4$$
(7.2)

for some functions φ and δ .

On the other hand, it follows from the minimality and (7.2) that $\delta = -e_1 \alpha$ and $\varphi = 0$. Thus, (7.2) reduces to

$$h(e_1, e_1) = h(e_2, e_2) = 0, \quad h(e_1, e_2) = -e_1 \alpha e_3.$$
 (7.3)

Since Span $\{e_1\}$ and Span $\{e_2\}$ are one-dimensional distributions, there exists a local coordinate system $\{x, y\}$ on U such that $\partial/\partial x$ and $\partial/\partial y$ are parallel to e_1, e_2 , respectively. Thus, the metric tensor g on U takes the following form:

$$g = E^2 dx^2 + G^2 dy^2, (7.4)$$

where E and G are positive functions. The Levi-Civita connection of (7.4) satisfies

$$\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} = \frac{E_x}{E} \frac{\partial}{\partial x} - \frac{EE_y}{G^2} \frac{\partial}{\partial y},$$

$$\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y} = \frac{E_y}{E} \frac{\partial}{\partial x} + \frac{G_x}{G} \frac{\partial}{\partial y},$$

$$\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} = -\frac{GG_x}{E^2} \frac{\partial}{\partial x} + \frac{G_y}{G} \frac{\partial}{\partial y}.$$
(7.5)

We may put

$$e_1 = \frac{1}{E} \frac{\partial}{\partial x}, \quad e_2 = \frac{1}{G} \frac{\partial}{\partial y}.$$
 (7.6)

From $e_2\alpha = 0$, we have $\alpha = \alpha(x)$. Now, it follows from (3.4), (7.3), (7.5), (7.6) and formula (2.1) of Gauss that the immersion satisfies

$$L_{xx} = \frac{E_x}{E} L_x - \frac{EE_y}{G^2} L_y, \quad L_{yy} = -\frac{GG_x}{E^2} L_x + \frac{G_y}{G} L_y,$$

$$L_{xy} = \left(\frac{E_y}{E} - \frac{i\alpha'(x)G}{E\sin\alpha}\right) L_x + \left(\alpha'(x)\cot\alpha + \frac{G_x}{G}\right) L_y.$$
(7.7)

The compatibility conditions of system (7.7) are given by

$$E_y = 0, \ G_x = -\alpha' G \cot \alpha, \tag{7.8}$$

$$\alpha'' = \alpha' \left(\frac{E_x}{E} - 2\frac{G_x}{G}\right),\tag{7.9}$$

$$G_{xx} = G\alpha'^2 + \frac{E_x}{E}G_x.$$
(7.10)

From (7.8) we get E = E(x) and $G = f'(y) \csc \alpha$ for some nonzero real-valued function f(y). Substituting this into (7.9) gives

$$\alpha'' E = 2E\alpha'^2 \cot \alpha + \alpha' E_x. \tag{7.11}$$

After solving this equation for E(x) we obtain $E = b\alpha' \csc^2 \alpha$ for some nonzero real number b. Therefore, the metric tensor of the surface is

$$g = b^2 \alpha'^2 \csc^4 \alpha \, dx^2 + f'^2(y) \csc^2 \alpha \, dy^2.$$
(7.12)

From (7.7) and (7.12), we obtain

$$L_{xx} = \left(\frac{\alpha''}{\alpha'} - 2\alpha' \cot \alpha\right) L_x, \quad L_{xy} = -\frac{\mathrm{i}f'(y)}{b} L_x,$$

$$L_{yy} = \frac{f'^2(y) \sin 2\alpha}{2b\alpha'} L_x + \frac{f''(y)}{f'(y)} L_y.$$
(7.13)

Solving the first equation in (7.13) gives

$$L(x,y) = w(y) + z(y) \cot \alpha(x)$$
(7.14)

for some vector functions z(y), w(y). Substituting this into the second equation in (7.13) gives bz'(y) = -if(y)z(y), which implies $z = c_1e^{ib^{-1}f'(y)}$ for some vector c_1 . Combining this with (7.14) yields

$$L(x,y) = w(y) + c_1 e^{ib^{-1}f(y)} \cot \alpha.$$
(7.15)

By substituting (7.15) into the last equation in (7.13) we obtain f'w'' = f''w'. Hence, the immersion is congruent to

$$L(x,y) = c_1 e^{ib^{-1}f(y)} \cot \alpha + c_2 f(y)$$
(7.16)

for some vector $c_2 \in \mathbb{C}^2$. Consequently, after choosing suitable initial conditions and reparametrization of y, we obtain (7.1).

8. Surfaces with circular ellipse of curvature

Example 8.1 Let $w: S^2 \to \mathbf{C}^2$ be the map defined by

$$w(y_0, y_1, y_2) = \frac{1 + iy_0}{1 + y_0^2} (ry_1, ry_2), \quad y_0^2 + y_1^2 + y_2^2 = 1,$$

with r > 0. Then w is a Lagrangian immersion of the 2-sphere S^2 into \mathbf{C}^2 which is called the Whitney sphere.

Theorem 8.1 Let M be a purely real surface in \mathbb{C}^2 satisfying the equality case of (6.10). If M has circular ellipse of curvature, then M is either an open portion of a totally geodesic slant plane or an open portion of the Whitney sphere.

Proof. Let M be a purely real surface in \mathbb{C}^2 with circular ellipse of curvature satisfying the equality case of (6.10). If M is slant, then it follows from Theorem 3 of [4] that M is either an open part of a totally geodesic slant plane or a non-totally geodesic Lagrangian surface. In the later case, M is congruent to an open part of the Whitney sphere (cf. [3]). It is known that there exists an adapted orthonormal from $\{e_1, e_2, e_3, e_4\}$ on the Whitney sphere with $e_3 = Je_1, e_4 = Je_2$ such that

$$h(e_1, e_1) = 3\lambda e_3, \ h(e_1, e_2) = \lambda e_4, \ h(e_2, e_2) = \lambda e_3$$
(8.1)

for some function λ . It follows from (2.11) and (8.1) that the Whitney sphere has circular ellipse of curvature.

Next, assume that M is non-slant. Then there exists a non-empty open subset U such that $\nabla \alpha \neq 0$ everywhere on U. Let us work on U to derive a contradiction.

On U we may choose an adapted orthonormal frame $\{e_1, e_2, e_3, e_4\}$ satisfying $\nabla \alpha = (e_1 \alpha) e_1$. Then, according to Corollary 6.2, the shape operators of M take the forms (6.11). Hence, the second fundamental form h satisfies

$$h(e_1, e_1) = 3\varphi e_3 + (\delta + e_1\alpha)e_4, \quad h(e_1, e_2) = \delta e_3 + \varphi e_4,$$

$$h(e_2, e_2) = \varphi e_3 + 3(\delta + e_1\alpha)e_4$$
(8.2)

for some functions φ and δ . Since M is assumed to have circular ellipse of curvature, it follows from (2.12) and (8.2) that $\varphi = 0$ and $\delta = -\frac{1}{2}e_1\alpha$. Hence, (8.2) reduces to

$$h(e_1, e_1) = \frac{e_1 \alpha}{2} e_4, \quad h(e_1, e_2) = -\frac{e_1 \alpha}{2} e_3, \quad h(e_2, e_2) = \frac{3e_1 \alpha}{2} e_4. \tag{8.3}$$

As in section 7, there exists a local coordinate system $\{x, y\}$ on U such that $\partial/\partial x$ and $\partial/\partial y$ are parallel to e_1, e_2 , respectively. Thus, the metric tensor g on U takes the form of (7.4). We may assume that $e_1 = E^{-1}\partial/\partial x, e_2 = G^{-1}\partial/\partial y$. Then we also have $\alpha = \alpha(x)$ as in section 7.

It follows from (2.1), (3.4), (7.5) and (8.3) that the immersion L satisfies

$$L_{xx} = \left(\frac{\alpha'(x)}{2}\cot\alpha + \frac{E_x}{E}\right)L_x + \left(\frac{iE}{2G}\alpha'(x)\csc\alpha - \frac{EE_y}{G^2}\right)L_y,$$
$$L_{xy} = \left(\frac{E_y}{E} - \frac{iG\alpha'(x)}{2E}\csc\alpha\right)L_x + \left(\frac{\alpha'(x)}{2}\cot\alpha + \frac{G_x}{G}\right)L_y,$$
$$L_{yy} = \left(\frac{3G^2}{2E^2}\alpha'(x)\cot\alpha - \frac{GG_x}{E^2}\right)L_x + \left(\frac{3iG}{2E}\alpha'(x)\csc\alpha + \frac{G_y}{G}\right)L_y$$

The compatibility condition of this system are given by

$$E_y = G_y = 0, (8.4)$$

$$\alpha''(x) = \alpha' \left(\frac{E_x}{E} - \frac{G_x}{G} - \alpha' \cot \alpha\right),\tag{8.5}$$

$$G_{xx} - \frac{E_x}{E}G_x = \frac{G}{2}\alpha'^2(x), \qquad (8.6)$$

$$\csc^2 \alpha = \frac{8G_x(G_x - G\alpha' \cot \alpha)}{G^2 \alpha'^2 (1 + 3\cos 2\alpha)}.$$
(8.7)

From (8.4) we get E = E(x) and G = G(x). So, after solving (8.5) we have $G = c\sqrt{\csc \alpha(x)}$ for some nonzero real number c. Substituting this into (8.6) gives

$$\frac{E_x}{E} = \frac{\alpha''(x)}{\alpha'(x)} - \frac{3}{2}\alpha'(x)\cot\alpha,$$

which implies $E = b\alpha' \csc^{3/2} \alpha$ for some real number $b \neq 0$. Now, by substituting the expression of E and G into (8.7) we obtain $\alpha'(x) = 0$, which is a contradiction.

9. Surfaces with degenerate second fundamental form

A surface M in \mathbb{C}^2 is said to have *full second fundamental form* if its first normal space, $\operatorname{Im} h$, satisfies $\dim(\operatorname{Im} h) = 2$ at each point in M. It is said to have *degenerate second fundamental form* if $\dim(\operatorname{Im} h) < 2$ holds at each point in M.

Example 9.1 Let $\alpha(x)$ be a positive real-valued function with $\alpha' > 0$ defined on open intervals I and b is a nonzero real number. Consider $M = I \times \mathbf{R}$ with metric:

$$g = b^2 \alpha'^2(x) \sin^4 \alpha(x) dx \otimes dx + \sin^6 \alpha(x) dy \otimes dy.$$

The map $\phi: M \to \mathbf{C}^2$ of M into \mathbf{C}^2 ,

$$\phi(x,y) = \frac{b}{12} \left(4e^{3ib^{-1}y} \sin^3 \alpha(x), \cos(3\alpha(x)) - 9\cos\alpha(x) \right),$$

defines a purely real isometric immersion of M into \mathbb{C}^2 with Wirtinger angle α . It is direct to show that the squared mean curvature H^2 , Gauss curvature K, the gradient of α , and the second fundamental form h of ϕ satisfy

$$H^2 = \frac{4}{b^2 \sin^4 \alpha}, \quad K = \frac{3}{b^2 \sin^4 \alpha}, \quad ||\nabla \alpha||^2 = \frac{1}{b^2 \sin^4 \alpha}, \quad h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) = 0.$$

Hence, this purely real surface satisfies the equality case of (6.10) and it has degenerate second fundamental form. This is a surface of revolution lying in the same real hyperplane \mathcal{H} of \mathbf{C}^2 as in Example 7.1.

Theorem 9.1 Let M be a purely real surface in \mathbb{C}^2 satisfying the equality case of (6.10). If M has degenerate second fundamental form, then M is congruent to an open portion of one of the following three types of surfaces :

- (1) A totally geodesic slant plane.
- (2) A positively curved surface with Wirtinger angle α defined by

$$L(x,y) = \frac{b}{12} \left(4e^{3ib^{-1}y} \sin^3 \alpha(x), \cos(3\alpha(x)) - 9\cos\alpha(x) \right),$$

where $\alpha(x)$ is a non-constant real-valued function and b is a nonzero real number.

(3) A helicoid lying in a real hyperplane of \mathbf{C}^2 with non-constant Wirtinger angle α defined by $L(x, y) = (be^{-ib^{-1}y} \cot \alpha(x), y)$ with b > 0.

Proof. Let M be a purely real surface in \mathbb{C}^2 satisfying the equality case of (6.10). Assume that M has degenerate second fundamental form.

If M is slant, then M is either an open portion of a totally geodesic slant plane or a non-totally geodesic Lagrangian surface. In the first case, we obtain case (1) of the theorem. In the second case, M is congruent to an open portion of the Whitney sphere which has full second fundamental form.

Now, assume that M is non-slant. We may choose an adapted orthonormal frame $\{e_1, e_2, e_3, e_4\}$ satisfying $\nabla \alpha = (e_1 \alpha) e_1$. As in section 7, there exists a local coordinate system $\{x, y\}$ on M such that

$$g = E^2 dx^2 + G^2 dy^2. (9.1)$$

$$e_1 = \frac{1}{E} \frac{\partial}{\partial x}, \quad e_2 = \frac{1}{G} \frac{\partial}{\partial t}, \quad \alpha = \alpha(x).$$
 (9.2)

Moreover, since M satisfies the equality case of (6.10), the shape operator takes the form (cf. Corollary 6.2):

$$A_{e_3} = \begin{pmatrix} 3\varphi & \delta \\ \delta & \varphi \end{pmatrix}, \quad A_{e_4} = \begin{pmatrix} \delta + e_1\alpha & \varphi \\ \varphi & 3\delta + 3e_1\alpha \end{pmatrix}.$$
(9.3)

Because *M* has degenerate second fundamental form, it follows from (9.3) that we have either (a) $\delta = \varphi = 0$ or (b) $\delta = -e_1 \alpha$ and $\varphi = 0$.

Case (a): $\delta = \varphi = 0$. In this case, the second fundamental form satisfies

$$h(e_1, e_1) = (e_1\alpha)e_4, \ h(e_1, e_2) = 0, \ h(e_2, e_2) = 3(e_1\alpha)e_4.$$
 (9.4)

It follows from (3.4), (9.1), (9.2) and (9.4) that

$$L_{xx} = \left(\alpha'(x)\cot\alpha + \frac{E_x}{E}\right)L_x + \left(i\alpha'(x)(\csc\alpha)\frac{E}{G} - \frac{EE_y}{G^2}\right)L_y,$$

$$L_{xy} = \frac{E_y}{E}L_x + \frac{G_x}{G}L_y,$$

$$L_{yy} = \left(3\alpha'(x)(\cot\alpha)\frac{G^2}{E^2} - \frac{GG_x}{E^2}\right)L_x + \left(3i\alpha'(x)(\csc\alpha)\frac{G}{E} + \frac{G_y}{G}\right)L_y,$$
(9.5)

The compatibility from (9.5) are given by

$$E_y = 0, \quad \alpha'(x) = \frac{G_x}{3G} \tan \alpha, \tag{9.6}$$

$$\tan^2 \alpha = \frac{3G(E_x G_x - EG_{xx})}{EG_x^2}.$$
(9.7)

Since $\alpha'(x) \neq 0$, (9.6) implies that $E = E(x), G_x \neq 0$ and $G = f'(y) \sin^3 \alpha(x)$ for some function f(y). By substituting these into (9.7) we get

$$\alpha''(x)E = E_x \alpha'(x) - 2\alpha'^2(x)E\cot\alpha, \qquad (9.8)$$

which implies that $E(x) = b\alpha'(x) \sin^2 \alpha$ for some nonzero real number b. Hence, the metric tensor is given by

$$g = b^2 \alpha'^2(x) \sin^4 \alpha(x) dx^2 + f'^2(y) \sin^6 \alpha(x) dy^2.$$
 (9.9)

It follows from (9.5) and (9.9) that

$$L_{xx} = \left(3\alpha' \cot \alpha + \frac{\alpha''(x)}{\alpha'(x)}\right) L_x + \frac{\mathrm{i}b\alpha'^2 \csc^2 \alpha}{f'(y)} L_y,$$

$$L_{xy} = 3\alpha' \cot \alpha L_y, \quad L_{yy} = \left(\frac{f''(y)}{f'(y)} + \frac{3\mathrm{i}f'(y)}{b}\right) L_y.$$
(9.10)

Solving the second equation in (9.10) gives

$$L(x, y) = w(x) + z(y) \sin^3 \alpha(x)$$
 (9.11)

for some w(x), z(y). Substituting (9.11) into the last equation in (9.10) yields

$$z''(y) = \left(\frac{f''(y)}{f'(y)} + \frac{3\mathrm{i}f'(y)}{b}\right)z'(y).$$
(9.12)

Solving this equation gives $z(y) = c_0 + c_1 e^{3ib^{-1}f(y)}$ for some vectors $c_0, c_1 \in \mathbb{C}^2$. Hence, the immersion is congruent to

$$L(x,y) = w(x) + c_1 e^{3ib^{-1}f(y)} \sin^3 \alpha(x).$$
(9.13)

After substituting this into the first equation in (9.10) we obtain

$$w''(x) = \left(3\alpha'(x)\cot\alpha + \frac{\alpha''(x)}{\alpha'(x)}\right)w'(x).$$
(9.14)

Now, by solving this equation we get

$$w(x) = c_3 + c_2(\cos 3\alpha - 9\cos \alpha), \ c_2, c_3 \in \mathbf{C}^2.$$
(9.15)

Combining this with (9.13) shows that the immersion is congruent to

$$L(x,y) = c_1 e^{3ib^{-1}f(y)} + c_2(\cos 3\alpha - 9\cos \alpha).$$
(9.16)

So, after choosing initial conditions and reparametrization of y, we obtain case (2).

Case (b): $\delta = -e_1 \alpha$ and $\varphi = 0$. In this case, we have

$$h(e_1, e_1) = h(e_2, e_2) = 0, \ h(e_1, e_2) = -e_1 \alpha e_3, \ e_1 \alpha \neq 0.$$
 (9.17)

Thus, the surface is minimal. Consequently, it follows from Theorem 7.1 that the surface is congruent to the one given in case (3) of the theorem. \Box

References

- [1] Chen, B.Y.: Geometry of Submanifolds, M. Dekker, New York, 1973.
- [2] Chen, B.Y.: Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Belgium, 1990.
- [3] Chen, B.Y.: Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997), 277–297.
- [4] Chen, B.Y.: Special slant surfaces and a basic inequality, Results Math. 33, 65–78 (1998).
- [5] Chen, B.Y.: Riemannian submanifolds, Handbook of differential geometry, Vol. I, 187–418, North-Holland, Amsterdam, 2000.
- [6] Chen, B.Y.: Differential geometry of real submanifolds in a Kähler manifold, Monatsh. Math. 91, 257–274 (1981).
- [7] Chen, B.Y. and Tazawa, Y.: Slant submanifolds of complex projective and complex hyperbolic spaces, Glasgow Math. J. 42, 439–454 (2000).
- [8] Chen, B.Y. and Vrancken, L.: Existence and uniqueness theorem for slant immersions and its applications, Results Math. 31, 28–39 (1997).
- [9] Dillen, F. and Verstraelen, L. (Eds.): Handbook of Differential geometry, Vol. I, North Holland, Amsterdam, 2000.
- [10] Haesen, S. and Verstraelen, L.: Ideally embedded space-times, J. Math. Phys. 45, 1497–1510 (2004).
- [11] Maia, M.D.: The physics of the Gauss-Codazzi-Ricci equations, Mat. Apl. Comput., 5, 283–292 (1986).
- [12] Opozda, B.: Generic submanifolds in almost Hermitian manifolds, Ann. Polon. Math. 49, 115–128 (1988).

Received 24.09.2008

Bang-Yen CHEN Department of Mathematics, Michigan State University, East Lansing, MI 48824–1027, USA e-mail: bychen@math.msu.edu