On purely real surfaces in Kaehler surfaces

Bang-Yen Chen

Abstract

An immersion $\phi: M \rightarrow \tilde{M}^{2}$ of a surface M into a Kaehler surface is called purely real if the complex structure J on \tilde{M}^{2} carries the tangent bundle of M into a transversal bundle. In the first part of this article, we prove that the equation of Ricci is a consequence of the equations of Gauss and Codazzi for purely real surfaces in any Kaehler surface. In the second part, we obtain a necessary condition for a purely real surface in a complex space form to be minimal. Several applications of this condition are provided. In the last part, we establish a general optimal inequality for purely real surfaces in complex space forms. We also obtain three classification theorems for purely real surfaces in \mathbf{C}^{2} which satisfy the equality case of the inequality.

Key word and phrases: Purely real surfaces; integrability condition; equation of Ricci; equation of Gauss-Codazzi; Kaehler surface; Wirtinger angle; optimal inequality.

1. Introduction

Let \tilde{M}^{2} be a Kaehler surface; that means \tilde{M}^{2} is endowed with a complex structure J and a Riemannian metric \tilde{g} which is J-Hermitian. Thus, we have

$$
\begin{align*}
& \tilde{g}(J X, J Y)=\tilde{g}(X, Y), \quad \forall X, Y \in T_{p} M^{2}, \tag{1.1}\\
& \tilde{\nabla} J=0 \tag{1.2}
\end{align*}
$$

for $p \in \tilde{M}^{2}$, where $\tilde{\nabla}$ is the Levi-Civita connection of \tilde{g}.
It is well-known that the curvature tensor \tilde{R} of a Kaehler surface \tilde{M}^{2} satisfies

$$
\begin{align*}
& \tilde{R}(X, Y ; Z, W)=-\tilde{R}(Y, X ; Z, W) \tag{1.3}\\
& \tilde{R}(X, Y ; Z, W)=\tilde{R}(Z, W ; X, Y) \tag{1.4}\\
& \tilde{R}(X, Y ; J Z, W)=-\tilde{R}(X, Y ; Z, J W), \tag{1.5}
\end{align*}
$$

[^0]where $\tilde{R}(X, Y ; Z, W)=\tilde{g}(\tilde{R}(X, Y) Z, W)$.
It is well-known that the three fundamental equations of Gauss, Codazzi and Ricci play fundamental roles in the theory of Riemannian submanifolds (see, for instance, $[1,5,9]$). Since the three equations provide conditions for local isometric embeddability, the three equations also play some important roles in physics; in particular in Kaluza-Klein's theory (see [10, 11]). For surfaces in Riemannian 4-manifolds, the three fundamental equations are independent in general.

In the first part of this article, we prove that the equation of Ricci is a consequence of the equations of Gauss and Codazzi for purely real surfaces in an arbitrary Kaehler surface. In the second part, we obtain a necessary condition in term of Wirtinger angle for a purely real surface in a complex space form to be minimal. Several immediate applications of this condition are provided. In the last part, we establish a general optimal inequality for purely real surfaces in complex space forms. We also obtain three classification theorems for purely real surfaces in \mathbf{C}^{2} which satisfy the equality case of the inequality.

2. Basic formulas and fundamental equations

Let $\left(\tilde{M}^{2}, J, \tilde{g}\right)$ be a Kaehler surface. Assume that M is a surface in \tilde{M}^{2}. Let g be the induced metric on M. Denote by ∇ and $\tilde{\nabla}$ the Levi-Civita connection on g and \tilde{g}, respectively. And denote by R and \tilde{R} the curvature tensor of M and \tilde{M}^{2}, respectively. Denote by \langle,$\rangle the inner product associated with \tilde{g}$ (or with g).

The formulas of Gauss and Weingarten are given respectively by (cf. [1, 5])

$$
\begin{align*}
& \tilde{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \tag{2.1}\\
& \tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi \tag{2.2}
\end{align*}
$$

for vector fields X, Y tangent to M and ξ normal to M, where h, A and D are the second fundamental form, the shape operator and the normal connection.

The shape operator and the second fundamental form are related by

$$
\begin{equation*}
\tilde{g}(h(X, Y), \xi)=g\left(A_{\xi} X, Y\right) \tag{2.3}
\end{equation*}
$$

for X, Y tangent to M and ξ normal to M.
The equations of Gauss, Codazzi and Ricci are given respectively by

$$
\begin{align*}
R(X, Y ; Z, W)= & \tilde{R}(X, Y ; Z, W)+\langle h(X, W), h(Y, Z)\rangle \tag{2.4}\\
& \quad-\langle h(X, Z), h(Y, W)\rangle \\
(\tilde{R}(X, Y) Z)^{\perp}= & \left(\bar{\nabla}_{X} h\right)(Y, Z)-\left(\bar{\nabla}_{Y} h\right)(X, Z), \tag{2.5}\\
\tilde{g}\left(R^{D}(X, Y) \xi, \eta\right)= & \tilde{R}(X, Y ; \xi, \eta)+\tilde{g}\left(\left[A_{\xi}, A_{\eta}\right] X, Y\right), \tag{2.6}
\end{align*}
$$

where X, Y, Z, W are vectors tangent to M, and $\bar{\nabla} h$ and R^{D} are defined by

$$
\begin{align*}
& \left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right), \tag{2.7}\\
& R^{D}(X, Y)=\left[D_{X}, D_{Y}\right]-D_{[X, Y]} . \tag{2.8}
\end{align*}
$$

CHEN

The mean curvature vector \vec{H} and the squared mean curvature H^{2} of the surface are defined respectively by

$$
\begin{equation*}
\vec{H}=\frac{1}{2} \operatorname{trace} h, \quad H^{2}=\tilde{g}(\vec{H}, \vec{H}) \tag{2.9}
\end{equation*}
$$

Let $\tilde{M}^{2}(4 \varepsilon)$ denote a complex space form with constant holomorphic sectional curvature 4ε. The Riemann curvature tensor of $\tilde{M}^{2}(4 \varepsilon)$ satisfies

$$
\begin{align*}
\tilde{R}(X, Y ; Z, W)= & \varepsilon\{\langle X, W\rangle\langle Y, Z\rangle-\langle X, Z\rangle\langle Y, W\rangle+\langle J X, W\rangle\langle J Y, Z\rangle \\
& -\langle J X, Z\rangle\langle J Y, W\rangle+2\langle X, J Y\rangle\langle J Z, W\rangle\} . \tag{2.10}
\end{align*}
$$

The ellipse of curvature of a surface M in \tilde{M}^{2} is the subset of the normal plane defined as

$$
\left\{h(v, v) \in T_{p}^{\perp} M:|v|=1, v \in T_{p} M, p \in M\right\}
$$

To see that it is an ellipse, we consider an arbitrary orthogonal tangent frame $\left\{e_{1}, e_{2}\right\}$. Put $h_{i j}=h\left(e_{i}, e_{j}\right), i, j=$ 1,2 and look at the formula

$$
\begin{equation*}
h(v, v)=\vec{H}+\frac{h_{11}-h_{22}}{2} \cos 2 \theta+h_{12} \sin 2 \theta, \quad v=\cos \theta e_{1}+\sin \theta e_{2} \tag{2.11}
\end{equation*}
$$

As v goes once around the unit tangent circle, $h(v, v)$ goes twice around the ellipse. The ellipse of curvature could degenerate into a line segment or a point.

The center of the ellipse is \vec{H}. The ellipse of curvature is a circle if and only if the following two conditions hold:

$$
\begin{equation*}
\left|h_{11}-h_{22}\right|^{2}=4\left|h_{12}\right|^{2}, \quad\left\langle h_{11}-h_{22}, h_{12}\right\rangle=0 \tag{2.12}
\end{equation*}
$$

The property that the ellipse of curvature is a circle is a conformal invariant.

3. Basics on purely real surfaces

An immersion $\phi: M \rightarrow \tilde{M}^{2}$ of a surface M into a Kaehler surface is called purely real if the complex structure J on \tilde{M}^{2} carries the tangent bundle of M into a transversal bundle (cf. [6], see also [12]). Obviously, every purely real surface admits no complex points.

A point p on a purely real surface M is called a Lagrangian point if J carries the tangent space $T_{p} M$ into its normal space $T_{p}^{\perp} M$. A purely real surface is called Lagrangian if every point is a Lagrangian point.

For each tangent vector X of a purely real surface M, we put

$$
\begin{equation*}
J X=P X+F X \tag{3.1}
\end{equation*}
$$

where $P X$ and $F X$ are the tangential and the normal components of $J X$.

CHEN

For an oriented orthonormal frame $\left\{e_{1}, e_{2}\right\}$, it follows from (3.1) that

$$
\begin{equation*}
P e_{1}=(\cos \alpha) e_{2}, \quad P e_{2}=-(\cos \alpha) e_{1} \tag{3.2}
\end{equation*}
$$

for some function α. This function α is called the Wirtinger angle. The Wirtinger angle is independent of the choice of e_{1}, e_{2} which preserves the orientation.

A purely real surface is called a slant surface if its Wirtinger angle is constant. The Wirtinger angle of a slant surface is called the slant angle (cf. [2]).

For a purely real surface M, if we put

$$
\begin{equation*}
e_{3}=(\csc \alpha) F e_{1}, \quad e_{4}=(\csc \alpha) F e_{2} \tag{3.3}
\end{equation*}
$$

then we may derive from (3.1)-(3.3) that

$$
\begin{align*}
& J e_{1}=\cos \alpha e_{2}+\sin \alpha e_{3}, \quad J e_{2}=-\cos \alpha e_{1}+\sin \alpha e_{4} \tag{3.4}\\
& J e_{3}=-\sin \alpha e_{1}-\cos \alpha e_{4}, \quad J e_{4}=-\sin \alpha e_{2}+\cos \alpha e_{3} \tag{3.5}\\
& \left\langle e_{3}, e_{3}\right\rangle=\left\langle e_{4}, e_{4}\right\rangle=1, \quad\left\langle e_{3}, e_{4}\right\rangle=0 \tag{3.6}
\end{align*}
$$

We call such a frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ an adapted orthonormal frame for M.
For an adapted orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, we may put

$$
\begin{array}{ll}
\nabla_{X} e_{1}=\omega(X) e_{1}, & \nabla_{X} e_{2}=-\omega(X) e_{2} \\
D_{X} e_{3}=\Phi(X) e_{4}, & D_{X} e_{4}=-\Phi(X) e_{3} \tag{3.8}
\end{array}
$$

for some 1-forms ω and Φ. For the second fundamental form h of M, we put

$$
\begin{equation*}
h\left(e_{i}, e_{j}\right)=h_{i j}^{3} e_{3}+h_{i j}^{4} e_{4} \tag{3.9}
\end{equation*}
$$

From (2.3) and (3.9) we have

$$
\begin{equation*}
A_{e_{3}} e_{j}=h_{1 j}^{3} e_{1}+h_{2 j}^{3} e_{2}, \quad A_{e_{4}} e_{j}=h_{1 j}^{4} e_{1}+h_{2 j}^{4} e_{2} . \tag{3.10}
\end{equation*}
$$

We need the following lemma.
Lemma 3.1 Let M be a purely real surface in a Kaehler surface. Then, with respect to an adapted orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, we have

$$
\begin{align*}
& e_{1} \alpha=h_{11}^{4}-h_{12}^{3}, \quad e_{2} \alpha=h_{12}^{4}-h_{22}^{3} \tag{3.11}\\
& \Phi_{1}=\omega_{1}-\left(h_{11}^{3}+h_{12}^{4}\right) \cot \alpha, \quad \Phi_{2}=\omega_{2}-\left(h_{12}^{3}+h_{22}^{4}\right) \cot \alpha \tag{3.12}
\end{align*}
$$

where $\omega_{j}=\omega\left(e_{j}\right)$ and $\Phi_{j}=\Phi\left(e_{j}\right)$ for $j=1,2$.
Proof. This is done by straightforward computation using (1.2) and (3.4)-(3.10), as we did in the proof of Lemma 4.1 and Theorem 4.2 in [2, pages 29-31].

CHEN

4. Dependence of Gauss-Codazzi and Ricci equations

In this section we prove the following general result for purely real surfaces.

Theorem 4.1 The equation of Ricci is a consequence of the equations of Gauss and Codazzi for any purely real surface in any Kaehler surface.

Proof. Assume that $\phi: M \rightarrow \tilde{M}^{2}$ is a purely real isometric immersion of a surface M into a Kaehler surface \tilde{M}^{2}. We may assume that locally M is equipped with the isothermal metric

$$
\begin{equation*}
g=E^{2}(x, y)\left(d x^{2}+d y^{2}\right) \tag{4.1}
\end{equation*}
$$

for some positive function E. The Levi-Civita connection of g satisfies

$$
\begin{align*}
\nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x} & =\frac{E_{x}}{E} \frac{\partial}{\partial x}-\frac{E_{y}}{E} \frac{\partial}{\partial y}, \quad \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}=\frac{E_{y}}{E} \frac{\partial}{\partial x}+\frac{E_{x}}{E} \frac{\partial}{\partial y}, \\
\nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y} & =-\frac{E_{x}}{E} \frac{\partial}{\partial x}+\frac{E_{y}}{E} \frac{\partial}{\partial y} . \tag{4.2}
\end{align*}
$$

If we put

$$
\begin{equation*}
e_{1}=\frac{1}{E} \frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{E} \frac{\partial}{\partial y} \tag{4.3}
\end{equation*}
$$

then $\left\{e_{1}, e_{2}\right\}$ is an orthonormal frame. From (4.2) and (4.3) we derive that

$$
\begin{equation*}
\nabla_{e_{1}} e_{1}=-\frac{E_{y}}{E^{2}} e_{2}, \nabla_{e_{2}} e_{1}=\frac{E_{x}}{E^{2}} e_{2}, \nabla_{e_{1}} e_{2}=\frac{E_{y}}{E^{2}} e_{1}, \nabla_{e_{2}} e_{2}=-\frac{E_{x}}{E^{2}} e_{1} \tag{4.4}
\end{equation*}
$$

It follows from (3.7) and (4.4) that

$$
\begin{equation*}
\omega\left(e_{1}\right)=-\frac{E_{y}}{E^{2}}, \quad \omega\left(e_{2}\right)=\frac{E_{x}}{E^{2}} \tag{4.5}
\end{equation*}
$$

For simplicity, let us put

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\beta e_{3}+\gamma e_{4}, \quad h\left(e_{1}, e_{2}\right)=\delta e_{3}+\varphi e_{4}, \quad h\left(e_{2}, e_{2}\right)=\lambda e_{3}+\mu e_{4} \tag{4.6}
\end{equation*}
$$

In view of (3.6), and (4.6), equation (2.4) of Gauss can be expressed as

$$
\begin{equation*}
K=\tilde{K}+\beta \lambda+\gamma \mu-\delta^{2}-\varphi^{2}, \tag{4.7}
\end{equation*}
$$

where $\tilde{K}(p)$ is the sectional curvature of the ambient space \tilde{M}^{2} with respect to the tangent plane of $T_{p} M$ of M at $p \in M$. By applying Lemma 3.1 and (4.6), we have

$$
\begin{align*}
& e_{1} \alpha=\gamma-\delta, \quad e_{2} \alpha=\varphi-\lambda, \tag{4.8}\\
& \Phi_{1}=-\frac{E_{y}}{E^{2}}-(\beta+\varphi) \cot \alpha, \quad \Phi_{2}=\frac{E_{x}}{E^{2}}-(\delta+\mu) \cot \alpha . \tag{4.9}
\end{align*}
$$

CHEN

By using (3.8) and (4.9) we find

$$
\begin{align*}
& D_{e_{1}} e_{3}=-\left(\frac{E_{y}}{E^{2}}+(\beta+\varphi) \cot \alpha\right) e_{4}, \quad D_{e_{2}} e_{3}=\left(\frac{E_{x}}{E^{2}}-(\delta+\mu) \cot \alpha\right) e_{4} \tag{4.10}\\
& D_{e_{1}} e_{4}=\left(\frac{E_{y}}{E^{2}}+(\beta+\varphi) \cot \alpha\right) e_{3}, \quad D_{e_{2}} e_{4}=\left(-\frac{E_{x}}{E^{2}}+(\delta+\mu) \cot \alpha\right) e_{3}
\end{align*}
$$

So, it follows from (4.4), (4.6) and (4.10) that

$$
\begin{align*}
\left(\bar{\nabla}_{e_{1}} h\right)\left(e_{1}, e_{2}\right) & =\left(\frac{\delta_{x}}{E}+\frac{(\lambda+\varphi-\beta) E_{y}}{E^{2}}+\varphi(\beta+\varphi) \cot \alpha\right) e_{3} \\
& +\left(\frac{\varphi_{x}}{E}+\frac{(\mu-\gamma-\delta) E_{y}}{E^{2}}-\delta(\beta+\varphi) \cot \alpha\right) e_{4} \\
\left(\bar{\nabla}_{e_{2}} h\right)\left(e_{1}, e_{1}\right) & =\left(\frac{\beta_{y}}{E}-\frac{(\gamma+2 \delta) E_{x}}{E^{2}}+\gamma(\delta+\mu) \cot \alpha\right) e_{3} \\
& +\left(\frac{\gamma_{y}}{E}+\frac{(\beta-2 \varphi) E_{x}}{E^{2}}-\beta(\delta+\mu) \cot \alpha\right) e_{4} \tag{4.11}\\
\left(\bar{\nabla}_{e_{1}} h\right)\left(e_{2}, e_{2}\right) & =\left(\frac{\lambda_{x}}{E}+\frac{(\mu-2 \delta) E_{y}}{E^{2}}+\mu(\beta+\varphi) \cot \alpha\right) e_{3} \\
& +\left(\frac{\mu_{x}}{E}-\frac{(\lambda+2 \varphi) E_{y}}{E^{2}}-\lambda(\beta+\varphi) \cot \alpha\right) e_{4} \\
\left(\bar{\nabla}_{e_{2}} h\right)\left(e_{1}, e_{2}\right) & =\left(\frac{\delta_{y}}{E}+\frac{(\beta-\lambda-\varphi) E_{x}}{E^{2}}+\varphi(\delta+\mu) \cot \alpha\right) e_{3} \\
& +\left(\frac{\varphi_{y}}{E}+\frac{(\gamma+\delta-\mu) E_{x}}{E^{2}}-\delta(\delta+\mu) \cot \alpha\right) e_{4}
\end{align*}
$$

On the other hand, from (3.4) we also find

$$
\begin{align*}
& \left.\left(\tilde{R}\left(e_{2}, e_{1}\right) e_{1}\right)^{\perp}=\left\{(\csc \alpha) \tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{1}\right)-(\cot \alpha) \tilde{K}\right)\right\} e_{3} \\
& \quad+(\csc \alpha) \tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{2}\right) e_{4} \\
& \left(\tilde{R}\left(e_{1}, e_{2}\right) e_{2}\right)^{\perp}=(\csc \alpha) \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{1}\right) e_{3} \tag{4.12}\\
& \quad+\left\{(\cot \alpha) \tilde{K}+(\csc \alpha) \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{2}\right)\right\} e_{4} .
\end{align*}
$$

By using (3.6), (4.3), (4.11) and (4.12), we find from the equation of Codazzi that

$$
\begin{align*}
\beta_{y}-\delta_{x}= & E(\csc \alpha) \tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{1}\right)+\{\varphi(\beta+\varphi)-\gamma(\delta+\mu)\} E \cot \alpha \\
& +\frac{1}{E}\left\{(\gamma+2 \delta) E_{x}+(\lambda+\varphi-\beta) E_{y}\right\}-E(\cot \alpha) \tilde{K}, \tag{4.13}\\
\gamma_{y}-\varphi_{x}= & E(\csc \alpha) \tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{2}\right)+(\beta \mu-\delta \varphi) E \cot \alpha \\
& +\frac{1}{E}\left\{(2 \varphi-\beta) E_{x}+(\mu-\gamma-\delta) E_{y}\right\},
\end{align*}
$$

CHEN

$$
\begin{aligned}
\lambda_{x}-\delta_{y}= & E(\csc \alpha) \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{1}\right)+(\delta \varphi-\beta \mu) E \cot \alpha \\
& +\frac{1}{E}\left\{(\beta-\varphi-\lambda) E_{x}+(2 \delta-\mu) E_{y}\right\} \\
\mu_{x}-\varphi_{y}= & E(\csc \alpha) \tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{2}\right)+\{\lambda(\beta+\varphi)-\delta(\delta+\mu)\} E \cot \alpha \\
& +\frac{1}{E}\left\{(\gamma+\delta-\mu) E_{x}+(2 \varphi+\lambda) E_{y}\right\}+E(\cot \alpha) \tilde{K} .
\end{aligned}
$$

Also, from (3.10), (4.3), (4.6) and (4.8) we have

$$
\begin{align*}
& A_{e_{3}}=\left(\begin{array}{cc}
\beta & \delta \\
\delta & \lambda
\end{array}\right), A_{e_{4}}=\left(\begin{array}{cc}
\gamma & \varphi \\
\varphi & \mu
\end{array}\right), \tag{4.14}\\
& \alpha_{x}=(\gamma-\delta) E, \quad \alpha_{y}=(\varphi-\lambda) E . \tag{4.15}
\end{align*}
$$

By applying (1.3)-(1.5), (3.4), (4.9), and (4.14) we derive that

$$
\begin{align*}
\tilde{R}\left(e_{1}, e_{2} ; e_{3}, e_{4}\right)= & \cot \alpha \csc \alpha\left(\tilde{R}\left(e_{1}, e_{2} ; J e_{1}, e_{1}\right)+\tilde{R}\left(e_{1}, e_{2} ; J e_{2}, e_{2}\right)\right) \tag{4.16}\\
& -\left(1+2 \cot ^{2} \alpha\right) \tilde{K} \\
\left\langle\left[A_{e_{3}}, A_{e_{4}}\right] e_{1}, e_{2}\right\rangle & =\varphi(\lambda-\beta)+\delta(\gamma-\mu) \tag{4.17}
\end{align*}
$$

From (2.8), (4.4) and (4.10) we find

$$
\begin{align*}
& \tilde{g}\left(R^{D}\left(e_{1}, e_{2}\right) e_{3}, e_{4}\right)=\frac{(\delta+\mu) \alpha_{x}-(\beta+\varphi) \alpha_{y}}{E \sin ^{2} \alpha}-K \tag{4.18}\\
& \quad+\left\{(\beta+\varphi) E_{y}-(\delta+\mu) E_{x}+E\left(\beta_{y}+\varphi_{y}-\delta_{x}-\mu_{x}\right)\right\} \frac{\cot \alpha}{E^{2}} .
\end{align*}
$$

By substituting (4.13) and (4.15) into (4.18) we obtain

$$
\begin{align*}
& \tilde{g}\left(R^{D}\left(e_{1}, e_{2}\right) e_{3}, e_{4}\right)=(\delta+\mu)(\gamma-\delta)+(\beta+\varphi)(\lambda-\varphi)-K \tag{4.19}\\
& \quad+\csc \alpha \cot \alpha\left(\tilde{R}\left(e_{1}, e_{2} ; J e_{1}, e_{1}\right)+\tilde{R}\left(e_{1}, e_{2} ; J e_{2}, e_{2}\right)\right)-2\left(\cot ^{2} \alpha\right) \tilde{K}
\end{align*}
$$

Thus, it follows from (2.6), (4.16), (4.17) and (4.19) that the equation of Ricci is

$$
\begin{equation*}
K=\tilde{K}+\beta \lambda+\gamma \mu-\delta^{2}-\varphi^{2}, \tag{4.20}
\end{equation*}
$$

which is exactly the equation (4.7) of Gauss. Therefore, the equation of Ricci is a consequence of Gauss and Codazzi.

Remark 4.1 If the purely real surface is slant, Theorem 4.1 is due to [8].

CHEN

5. Wirtinger angle of purely real surfaces

The following result provides a necessary condition for purely real surfaces in complex space forms to be minimal.

Theorem 5.1 Let M be a purely real surface in a complex space form $\tilde{M}^{2}(4 \varepsilon)$ of constant holomorphic sectional curvature 4ε. If M is minimal, then the Wirtinger angle α of M satisfies

$$
\begin{equation*}
\Delta \alpha=\left\{\|\nabla \alpha\|^{2}+6 \varepsilon \sin ^{2} \alpha\right\} \cot \alpha \tag{5.1}
\end{equation*}
$$

where Δ is the Laplace operator of M and $\nabla \alpha$ is the gradient of α.
Proof. Let M be a purely real surface in $\tilde{M}^{2}(4 \varepsilon)$. We follow the notations and definitions given in sections 3 and 4. If M is minimal, we get

$$
\begin{equation*}
\lambda=-\beta, \quad \gamma=-\mu \tag{5.2}
\end{equation*}
$$

So, it follows from (4.15) and (5.2) that

$$
\begin{equation*}
\delta=-\frac{\alpha_{x}}{E}-\mu, \quad \varphi=\frac{\alpha_{y}}{E}-\beta \tag{5.3}
\end{equation*}
$$

Moreover, it follows from (2.10) that

$$
\begin{align*}
& \tilde{R}\left(e_{2}, e_{1} ; e_{1}, J e_{1}\right)=-\tilde{R}\left(e_{1}, e_{2} ; e_{2}, J e_{2}\right)=4 \varepsilon \cos \alpha \tag{5.4}\\
& \tilde{K}=\varepsilon\left(1+3 \cos ^{2} \alpha\right) \tag{5.5}
\end{align*}
$$

Substituting (5.2)-(5.5) into the first equation in (4.13) gives

$$
\begin{align*}
& E^{2}\left(\mu_{x}+\beta_{y}\right)=\alpha_{y} E_{y}-\alpha_{x} E_{x}-\alpha_{x x} E-3 E\left(\mu E_{x}+\beta E_{y}\right) \\
& \quad+\alpha_{y}^{2} E \cot \alpha-\left(\alpha_{x} \mu+\alpha_{y} \beta\right) E^{2} \cot \alpha+3 \varepsilon E^{3} \sin \alpha \cos \alpha \tag{5.6}
\end{align*}
$$

Similarly, by substituting (5.2)-(5.5) into the last equation in (4.13) we find

$$
\begin{align*}
& E^{2}\left(\mu_{x}+\beta_{y}\right)=\alpha_{y} E_{y}-\alpha_{x} E_{x}+\alpha_{y y} E-3 E\left(\mu E_{x}+\beta E_{y}\right) \\
& \quad-\alpha_{x}^{2} E \cot \alpha-\left(\alpha_{x} \mu+\alpha_{y} \beta\right) E^{2} \cot \alpha-3 \varepsilon E^{3} \sin \alpha \cos \alpha . \tag{5.7}
\end{align*}
$$

Subtracting (5.6) from (5.7) yields

$$
\begin{equation*}
\alpha_{x x}+\alpha_{y y}=\left\{\alpha_{x}^{2}+\alpha_{y}^{2}+6 \varepsilon E^{2} \sin ^{2} \alpha\right\} \cot \alpha \tag{5.8}
\end{equation*}
$$

Since the Laplace operator Δ of M with respect to the metric (4.1) is given by

$$
\Delta=\frac{1}{E^{2}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)
$$

equation (5.8) can be simply expressed as (5.1).

Some easy consequences of Theorem 5.1 are the following.

CHEN

Corollary 5.1 [7] Every slant surface in a complex space form $\tilde{M}^{2}(4 \varepsilon)$ with $\varepsilon \neq 0$ is non-minimal unless it is either Lagrangian or complex.
Proof. Follows immediately from Theorem 5.1.

Corollary 5.2 Every compact oriented minimal purely real surface in the complex projective plane CP ${ }^{2}(4)$ contains some Lagrangian points.

Proof. Let M be a compact oriented minimal purely real surface in $C P^{2}(4)$. Then we may choose e_{1}, e_{2} to be an orthonormal frame which gives the orientation on M. So, the α is a global well-defined function on M. Thus, it follows from Theorem 5.1 and Hopf's lemma that $\int_{M} \cot \alpha d A=0$, which implies that $\cot \alpha=0$ holds at some points. Hence, M must admits some Lagrangian points.

The next two corollaries follows easily from (5.1).

Corollary 5.3 Let M be a purely real minimal surface in \mathbf{C}^{2}. If the Wirtinger angle α is a harmonic function, then M is slant.

Corollary 5.4 Let M be a purely real minimal surface in $C P^{2}(4)$. If the Wirtinger angle α is a harmonic function, then M is Lagrangian.

A function f on (M, g) is called subharmonic if $\Delta f \geq 0$ holds everywhere on M. The surface M is called parabolic if there exists non non-constant negative subharmonic function.

Corollary 5.5 Let M be an oriented minimal purely real surface in $C P^{2}(4)$. If M is parabolic, then M contains some Lagrangian points.

Proof. Let M be an oriented minimal purely real surface in the complex projective plane $C P^{2}(4)$. Then we have

$$
\begin{equation*}
\Delta \alpha=\left\{\|\nabla \alpha\|^{2}+6 \sin ^{2} \alpha\right\} \cot \alpha . \tag{5.9}
\end{equation*}
$$

If M is parabolic and it admits no Lagrangian points, then $\cot \alpha$ is either a positive function or a negative function on M.

When $\cot \alpha$ is a positive function, α is subharmonic by (5.9). Hence, α must be constant, which is impossible according to Corollary 5.1.

Similarly, when $\cot \alpha$ is a negative function, $-\alpha$ is subharmonic. This is also impossible by the same argument.

6. A general optimal inequality for purely neal surfaces

We prove the following general optimal inequality for purely real surfaces.

CHEN

Theorem 6.1 Let M be a purely real surface in a complex space form $\tilde{M}^{2}(4 \varepsilon)$. Then we have

$$
\begin{equation*}
H^{2} \geq 2\left\{K-\|\nabla \alpha\|^{2}-\left(1+3 \cos ^{2} \alpha\right) \varepsilon\right\}+4\left\langle\nabla \alpha, J h\left(e_{1}, e_{2}\right)\right\rangle \csc \alpha \tag{6.1}
\end{equation*}
$$

with respect to an orthonormal frame $\left\{e_{1}, e_{2}\right\}$ satisfying $\left\langle\nabla \alpha, e_{2}\right\rangle=0$, where H^{2} and K are the squared mean curvature and the Gauss curvature of M, respectively.

The equality case of (6.1) holds at p if and only if, with respect a suitable adapted orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, the shape operator at p take the forms

$$
A_{e_{3}}=\left(\begin{array}{cc}
3 \varphi & \delta \tag{6.2}\\
\delta & \varphi
\end{array}\right), \quad A_{e_{4}}=\left(\begin{array}{cc}
\delta+e_{1} \alpha & \varphi \\
\varphi & 3 \delta+3 e_{1} \alpha
\end{array}\right)
$$

Proof. Assume that M is a purely real surface in \tilde{M}^{2}. Without loss of generality, we may choose an adapted orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ such that the gradient of α is parallel to e_{1} at p. So, we have $\nabla \alpha=\left(e_{1} \alpha\right) e_{1}$. As before, let us put

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\beta e_{3}+\gamma e_{4}, h\left(e_{1}, e_{2}\right)=\delta e_{3}+\varphi e_{4}, \quad h\left(e_{2}, e_{2}\right)=\lambda e_{3}+\mu e_{4} \tag{6.3}
\end{equation*}
$$

Then, in view of Lemma 3.1 we have

$$
A_{e_{3}}=\left(\begin{array}{ll}
\beta & \delta \tag{6.4}\\
\delta & \varphi
\end{array}\right), \quad A_{e_{4}}=\left(\begin{array}{cc}
\delta+e_{1} \alpha & \varphi \\
\varphi & \mu
\end{array}\right)
$$

Thus, the squared mean curvature H^{2} and the Gauss curvature K of M satisfy

$$
\begin{align*}
& 4 H^{2}=(\beta+\varphi)^{2}+\left(\delta+\mu+e_{1} \alpha\right)^{2} \tag{6.5}\\
& K=\beta \varphi+\delta \mu+\mu e_{1} \alpha-\delta^{2}-\varphi^{2}+\left(1+3 \cos ^{2} \alpha\right) \varepsilon \tag{6.6}
\end{align*}
$$

Hence, we obtain

$$
\begin{align*}
H^{2}-2 K+2\|\nabla \alpha\|^{2} & =\frac{1}{4}\left\{(\beta-3 \varphi)^{2}+\left(\mu-3\left(\delta+e_{1} \alpha\right)\right)^{2}\right\}-4 \delta e_{1} \alpha-2\left(1+3 \cos ^{2} \alpha\right) \varepsilon \tag{6.7}\\
& \geq-4 \delta e_{1} \alpha-2\left(1+3 \cos ^{2} \alpha\right) \varepsilon
\end{align*}
$$

On the other hand, from $\nabla \alpha=\left(e_{1} \alpha\right) e_{1}$ and (3.3) we have $F(\nabla \alpha)=\left(e_{1} \alpha\right) \sin \alpha e_{3}$. Hence, we obtain from (6.3) that

$$
\begin{equation*}
\delta e_{1} \alpha=\left\langle J(\nabla \alpha), h\left(e_{1}, e_{2}\right)\right\rangle \csc \alpha \tag{6.8}
\end{equation*}
$$

Combining this with (6.7) gives inequality (6.1).
If the equality case of (6.1) holds at a point p, then it follows from (6.7) that $\beta=3 \varphi$ and $\mu=3 \delta+3 e_{1} \alpha$ hold at p. Hence, we obtain (6.2) from (6.4).

Conversely, if (6.2) holds at a point $p \in M$, then it follows from (6.2) and Lemma 3.1 that we have $e_{2} \alpha=0$ at p. Thus, we get $\left\langle\nabla \alpha, J h\left(e_{1}, e_{2}\right)\right\rangle=-\delta e_{1} \alpha \sin \alpha$ at p. Now, it is straight-forward to show that (6.2)

CHEN

holds at p implies that the equality case of (6.1) occurs at p.

The following two corollaries follows immediately from Theorem 6.1.

Corollary 6.1 [4] If M is a slant surface in a complex space form $\tilde{M}^{2}(4 \varepsilon)$ with slant angle θ, then we have

$$
\begin{equation*}
H^{2} \geq 2\left\{K-\left(1+3 \cos ^{2} \theta\right) \varepsilon\right\} \tag{6.9}
\end{equation*}
$$

Corollary 6.2 Let M be a purely real surface in \mathbf{C}^{2}. Then we have

$$
\begin{equation*}
H^{2} \geq 2\left\{K-\|\nabla \alpha\|^{2}+2\left\langle\nabla \alpha, \operatorname{Jh}\left(e_{1}, e_{2}\right)\right\rangle \csc \alpha\right\} \tag{6.10}
\end{equation*}
$$

with respect to an orthonormal frame $\left\{e_{1}, e_{2}\right\}$ satisfying $\left\langle\nabla \alpha, e_{2}\right\rangle=0$.
The equality case of (6.10) holds if and only if, with respect a suitable adapted orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, the shape operators of M take the forms

$$
A_{e_{3}}=\left(\begin{array}{cc}
3 \varphi & \delta \tag{6.11}\\
\delta & \varphi
\end{array}\right), \quad A_{e_{4}}=\left(\begin{array}{cc}
\delta+e_{1} \alpha & \varphi \\
\varphi & 3 \delta+3 e_{1} \alpha
\end{array}\right)
$$

7. Minimal surfaces satisfying the equality

Example 7.1 Let $\alpha(x)$ be a real-valued function with $\alpha^{\prime}>0$ and $0<\alpha<\pi$ and let be a nonzero real number. Consider the map:

$$
L(x, y)=\left(b e^{-\mathrm{i} b^{-1} y} \cot \alpha(x), y\right)
$$

Then the induced metric is given by

$$
g=b^{2} \alpha^{\prime 2} \csc ^{4} \alpha d x \otimes d x+\csc ^{2} \alpha d y \otimes d y
$$

This map L defines a purely real minimal surface with Wirtinger angle α which satisfies the equality case of (6.10). This surface is a helicoid lying in the following real hyperplane of $\mathbf{C}^{2}: \mathcal{H}=\left\{\left(z_{1}, z_{2}\right) \in \mathbf{C}^{2}: \operatorname{Im} z_{2}=0\right\}$.

Theorem 7.1 If M is a purely real minimal surface in \mathbf{C}^{2} satisfying the equality case of (6.10), then either M is an open part of a totally geodesic slant plane or it is congruent to an open part of a helicoid lying in a real hyperplane of \mathbf{C}^{2} defined by

$$
\begin{equation*}
L(x, y)=\left(b e^{-i b^{-1} y} \cot \alpha(x), y\right) \tag{7.1}
\end{equation*}
$$

with non-constant Wirtinger angle α, where b is a nonzero real number.
Proof. Let M be a purely real minimal surface in \mathbf{C}^{2} satisfiying the equality case of (6.10). If M is slant, then $\nabla \alpha=0$ holds. So, Theorem 3 of [4] implies that M is either an open portion of a totally geodesic slant plane or a non-totally geodesic Lagrangian surface. In the later case, M is congruent to an open portion of the Whitney sphere which is non-minimal (cf. [3]).

CHEN

Next, assume that M is non-slant. Then $U=\{p \in M: \nabla \alpha(p) \neq 0\}$ is a dense open subset of M, since M contains only isolated totally geodesic points. On U we may choose an adapted orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ satisfying $\nabla \alpha=\left(e_{1} \alpha\right) e_{1}$. Then, by Corollary 6.2 , the shape operator takes the form (6.11). Hence, we have

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=3 \varphi e_{3}+\left(\delta+e_{1} \alpha\right) e_{4}, \\
& h\left(e_{1}, e_{2}\right)=\delta e_{3}+\varphi e_{4}, \quad h\left(e_{2}, e_{2}\right)=\varphi e_{3}+3\left(\delta+e_{1} \alpha\right) e_{4} \tag{7.2}
\end{align*}
$$

for some functions φ and δ.
On the other hand, it follows from the minimality and (7.2) that $\delta=-e_{1} \alpha$ and $\varphi=0$. Thus, (7.2) reduces to

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=h\left(e_{2}, e_{2}\right)=0, \quad h\left(e_{1}, e_{2}\right)=-e_{1} \alpha e_{3} . \tag{7.3}
\end{equation*}
$$

Since Span $\left\{e_{1}\right\}$ and $\operatorname{Span}\left\{e_{2}\right\}$ are one-dimensional distributions, there exists a local coordinate system $\{x, y\}$ on U such that $\partial / \partial x$ and $\partial / \partial y$ are parallel to e_{1}, e_{2}, respectively. Thus, the metric tensor g on U takes the following form:

$$
\begin{equation*}
g=E^{2} d x^{2}+G^{2} d y^{2} \tag{7.4}
\end{equation*}
$$

where E and G are positive functions. The Levi-Civita connection of (7.4) satisfies

$$
\begin{align*}
& \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial x}=\frac{E_{x}}{E} \frac{\partial}{\partial x}-\frac{E E_{y}}{G^{2}} \frac{\partial}{\partial y} \\
& \nabla_{\frac{\partial}{\partial x}} \frac{\partial}{\partial y}=\frac{E_{y}}{E} \frac{\partial}{\partial x}+\frac{G_{x}}{G} \frac{\partial}{\partial y} \tag{7.5}\\
& \nabla_{\frac{\partial}{\partial y}} \frac{\partial}{\partial y}=-\frac{G G_{x}}{E^{2}} \frac{\partial}{\partial x}+\frac{G_{y}}{G} \frac{\partial}{\partial y}
\end{align*}
$$

We may put

$$
\begin{equation*}
e_{1}=\frac{1}{E} \frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{G} \frac{\partial}{\partial y} \tag{7.6}
\end{equation*}
$$

From $e_{2} \alpha=0$, we have $\alpha=\alpha(x)$. Now, it follows from (3.4), (7.3), (7.5), (7.6) and formula (2.1) of Gauss that the immersion satisfies

$$
\begin{align*}
& L_{x x}=\frac{E_{x}}{E} L_{x}-\frac{E E_{y}}{G^{2}} L_{y}, \quad L_{y y}=-\frac{G G_{x}}{E^{2}} L_{x}+\frac{G_{y}}{G} L_{y} \\
& L_{x y}=\left(\frac{E_{y}}{E}-\frac{\mathrm{i} \alpha^{\prime}(x) G}{E \sin \alpha}\right) L_{x}+\left(\alpha^{\prime}(x) \cot \alpha+\frac{G_{x}}{G}\right) L_{y} \tag{7.7}
\end{align*}
$$

The compatibility conditions of system (7.7) are given by

$$
\begin{align*}
& E_{y}=0, \quad G_{x}=-\alpha^{\prime} G \cot \alpha \tag{7.8}\\
& \alpha^{\prime \prime}=\alpha^{\prime}\left(\frac{E_{x}}{E}-2 \frac{G_{x}}{G}\right) \tag{7.9}\\
& G_{x x}=G \alpha^{\prime 2}+\frac{E_{x}}{E} G_{x} \tag{7.10}
\end{align*}
$$

CHEN

From (7.8) we get $E=E(x)$ and $G=f^{\prime}(y) \csc \alpha$ for some nonzero real-valued function $f(y)$. Substituting this into (7.9) gives

$$
\begin{equation*}
\alpha^{\prime \prime} E=2 E \alpha^{\prime 2} \cot \alpha+\alpha^{\prime} E_{x} \tag{7.11}
\end{equation*}
$$

After solving this equation for $E(x)$ we obtain $E=b \alpha^{\prime} \csc ^{2} \alpha$ for some nonzero real number b. Therefore, the metric tensor of the surface is

$$
\begin{equation*}
g=b^{2} \alpha^{\prime 2} \csc ^{4} \alpha d x^{2}+f^{\prime 2}(y) \csc ^{2} \alpha d y^{2} \tag{7.12}
\end{equation*}
$$

From (7.7) and (7.12), we obtain

$$
\begin{align*}
L_{x x} & =\left(\frac{\alpha^{\prime \prime}}{\alpha^{\prime}}-2 \alpha^{\prime} \cot \alpha\right) L_{x}, \quad L_{x y}=-\frac{\mathrm{i} f^{\prime}(y)}{b} L_{x} \tag{7.13}\\
L_{y y} & =\frac{f^{\prime 2}(y) \sin 2 \alpha}{2 b \alpha^{\prime}} L_{x}+\frac{f^{\prime \prime}(y)}{f^{\prime}(y)} L_{y}
\end{align*}
$$

Solving the first equation in (7.13) gives

$$
\begin{equation*}
L(x, y)=w(y)+z(y) \cot \alpha(x) \tag{7.14}
\end{equation*}
$$

for some vector functions $z(y), w(y)$. Substituting this into the second equation in (7.13) gives $b z^{\prime}(y)=$ $-\mathrm{i} f(y) z(y)$, which implies $z=c_{1} e^{\mathrm{i} b^{-1} f^{\prime}(y)}$ for some vector c_{1}. Combining this with (7.14) yields

$$
\begin{equation*}
L(x, y)=w(y)+c_{1} e^{\mathrm{i} b^{-1} f(y)} \cot \alpha \tag{7.15}
\end{equation*}
$$

By substituting (7.15) into the last equation in (7.13) we obtain $f^{\prime} w^{\prime \prime}=f^{\prime \prime} w^{\prime}$. Hence, the immersion is congruent to

$$
\begin{equation*}
L(x, y)=c_{1} e^{\mathrm{i} b^{-1} f(y)} \cot \alpha+c_{2} f(y) \tag{7.16}
\end{equation*}
$$

for some vector $c_{2} \in \mathbf{C}^{2}$. Consequently, after choosing suitable initial conditions and reparametrization of y, we obtain (7.1).

8. Surfaces with circular ellipse of curvature

Example 8.1 Let $w: S^{2} \rightarrow \mathbf{C}^{2}$ be the map defined by

$$
w\left(y_{0}, y_{1}, y_{2}\right)=\frac{1+i y_{0}}{1+y_{0}^{2}}\left(r y_{1}, r y_{2}\right), \quad y_{0}^{2}+y_{1}^{2}+y_{2}^{2}=1
$$

with $r>0$. Then w is a Lagrangian immersion of the 2 -sphere S^{2} into \mathbf{C}^{2} which is called the Whitney sphere.

CHEN

Theorem 8.1 Let M be a purely real surface in \mathbf{C}^{2} satisfying the equality case of (6.10). If M has circular ellipse of curvature, then M is either an open portion of a totally geodesic slant plane or an open portion of the Whitney sphere.

Proof. Let M be a purely real surface in \mathbf{C}^{2} with circular ellipse of curvature satisfying the equality case of (6.10). If M is slant, then it follows from Theorem 3 of [4] that M is either an open part of a totally geodesic slant plane or a non-totally geodesic Lagrangian surface. In the later case, M is congruent to an open part of the Whitney sphere (cf. [3]). It is known that there exists an adapted orthonormal from $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ on the Whitney sphere with $e_{3}=J e_{1}, e_{4}=J e_{2}$ such that

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=3 \lambda e_{3}, \quad h\left(e_{1}, e_{2}\right)=\lambda e_{4}, \quad h\left(e_{2}, e_{2}\right)=\lambda e_{3} \tag{8.1}
\end{equation*}
$$

for some function λ. It follows from (2.11) and (8.1) that the Whitney sphere has circular ellipse of curvature.
Next, assume that M is non-slant. Then there exists a non-empty open subset U such that $\nabla \alpha \neq 0$ everywhere on U. Let us work on U to derive a contradiction.

On U we may choose an adapted orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ satisfying $\nabla \alpha=\left(e_{1} \alpha\right) e_{1}$. Then, according to Corollary 6.2, the shape operators of M take the forms (6.11). Hence, the second fundamental form h satisfies

$$
\begin{align*}
& h\left(e_{1}, e_{1}\right)=3 \varphi e_{3}+\left(\delta+e_{1} \alpha\right) e_{4}, \quad h\left(e_{1}, e_{2}\right)=\delta e_{3}+\varphi e_{4}, \\
& h\left(e_{2}, e_{2}\right)=\varphi e_{3}+3\left(\delta+e_{1} \alpha\right) e_{4} \tag{8.2}
\end{align*}
$$

for some functions φ and δ. Since M is assumed to have circular ellipse of curvature, it follows from (2.12) and (8.2) that $\varphi=0$ and $\delta=-\frac{1}{2} e_{1} \alpha$. Hence, (8.2) reduces to

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\frac{e_{1} \alpha}{2} e_{4}, \quad h\left(e_{1}, e_{2}\right)=-\frac{e_{1} \alpha}{2} e_{3}, \quad h\left(e_{2}, e_{2}\right)=\frac{3 e_{1} \alpha}{2} e_{4} . \tag{8.3}
\end{equation*}
$$

As in section 7, there exists a local coordinate system $\{x, y\}$ on U such that $\partial / \partial x$ and $\partial / \partial y$ are parallel to e_{1}, e_{2}, respectively. Thus, the metric tensor g on U takes the form of (7.4). We may assume that $e_{1}=E^{-1} \partial / \partial x, e_{2}=G^{-1} \partial / \partial y$. Then we also have $\alpha=\alpha(x)$ as in section 7 .

It follows from $(2.1),(3.4),(7.5)$ and (8.3) that the immersion L satisfies

$$
\begin{aligned}
& L_{x x}=\left(\frac{\alpha^{\prime}(x)}{2} \cot \alpha+\frac{E_{x}}{E}\right) L_{x}+\left(\frac{\mathrm{i} E}{2 G} \alpha^{\prime}(x) \csc \alpha-\frac{E E_{y}}{G^{2}}\right) L_{y} \\
& L_{x y}=\left(\frac{E_{y}}{E}-\frac{\mathrm{i} G \alpha^{\prime}(x)}{2 E} \csc \alpha\right) L_{x}+\left(\frac{\alpha^{\prime}(x)}{2} \cot \alpha+\frac{G_{x}}{G}\right) L_{y} \\
& L_{y y}=\left(\frac{3 G^{2}}{2 E^{2}} \alpha^{\prime}(x) \cot \alpha-\frac{G G_{x}}{E^{2}}\right) L_{x}+\left(\frac{3 \mathrm{i} G}{2 E} \alpha^{\prime}(x) \csc \alpha+\frac{G_{y}}{G}\right) L_{y}
\end{aligned}
$$

CHEN

The compatibility condition of this system are given by

$$
\begin{align*}
& E_{y}=G_{y}=0 \tag{8.4}\\
& \alpha^{\prime \prime}(x)=\alpha^{\prime}\left(\frac{E_{x}}{E}-\frac{G_{x}}{G}-\alpha^{\prime} \cot \alpha\right) \tag{8.5}\\
& G_{x x}-\frac{E_{x}}{E} G_{x}=\frac{G}{2} \alpha^{\prime 2}(x) \tag{8.6}\\
& \csc ^{2} \alpha=\frac{8 G_{x}\left(G_{x}-G \alpha^{\prime} \cot \alpha\right)}{G^{2} \alpha^{\prime 2}(1+3 \cos 2 \alpha)} \tag{8.7}
\end{align*}
$$

From (8.4) we get $E=E(x)$ and $G=G(x)$. So, after solving (8.5) we have $G=c \sqrt{\csc \alpha(x)}$ for some nonzero real number c. Substituting this into (8.6) gives

$$
\frac{E_{x}}{E}=\frac{\alpha^{\prime \prime}(x)}{\alpha^{\prime}(x)}-\frac{3}{2} \alpha^{\prime}(x) \cot \alpha
$$

which implies $E=b \alpha^{\prime} \csc ^{3 / 2} \alpha$ for some real number $b \neq 0$. Now, by substituting the expression of E and G into (8.7) we obtain $\alpha^{\prime}(x)=0$, which is a contradiction.

9. Surfaces with degenerate second fundamental form

A surface M in \mathbf{C}^{2} is said to have full second fundamental form if its first normal space, $\operatorname{Im} h$, satisfies $\operatorname{dim}(\operatorname{Im} h)=2$ at each point in M. It is said to have degenerate second fundamental form if $\operatorname{dim}(\operatorname{Im} h)<2$ holds at each point in M.

Example 9.1 Let $\alpha(x)$ be a positive real-valued function with $\alpha^{\prime}>0$ defined on open intervals I and b is a nonzero real number. Consider $M=I \times \mathbf{R}$ with metric:

$$
g=b^{2} \alpha^{\prime 2}(x) \sin ^{4} \alpha(x) d x \otimes d x+\sin ^{6} \alpha(x) d y \otimes d y
$$

The map $\phi: M \rightarrow \mathbf{C}^{2}$ of M into \mathbf{C}^{2},

$$
\phi(x, y)=\frac{b}{12}\left(4 e^{3 \mathrm{i} b^{-1} y} \sin ^{3} \alpha(x), \cos (3 \alpha(x))-9 \cos \alpha(x)\right),
$$

defines a purely real isometric immersion of M into \mathbf{C}^{2} with Wirtinger angle α. It is direct to show that the squared mean curvature H^{2}, Gauss curvature K, the gradient of α, and the second fundamental form h of ϕ satisfy

$$
H^{2}=\frac{4}{b^{2} \sin ^{4} \alpha}, \quad K=\frac{3}{b^{2} \sin ^{4} \alpha}, \quad\|\nabla \alpha\|^{2}=\frac{1}{b^{2} \sin ^{4} \alpha}, \quad h\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)=0
$$

Hence, this purely real surface satisfies the equality case of (6.10) and it has degenerate second fundamental form. This is a surface of revolution lying in the same real hyperplane \mathcal{H} of \mathbf{C}^{2} as in Example 7.1.

CHEN

Theorem 9.1 Let M be a purely real surface in \mathbf{C}^{2} satisfying the equality case of (6.10). If M has degenerate second fundamental form, then M is congruent to an open portion of one of the following three types of surfaces:
(1) A totally geodesic slant plane.
(2) A positively curved surface with Wirtinger angle α defined by

$$
L(x, y)=\frac{b}{12}\left(4 e^{3 \mathrm{i} b^{-1} y} \sin ^{3} \alpha(x), \cos (3 \alpha(x))-9 \cos \alpha(x)\right)
$$

where $\alpha(x)$ is a non-constant real-valued function and b is a nonzero real number.
(3) A helicoid lying in a real hyperplane of \mathbf{C}^{2} with non-constant Wirtinger angle α defined by $L(x, y)=$ $\left(b e^{-i b^{-1} y} \cot \alpha(x), y\right)$ with $b>0$.
Proof. Let M be a purely real surface in \mathbf{C}^{2} satisfying the equality case of (6.10). Assume that M has degenerate second fundamental form.

If M is slant, then M is either an open portion of a totally geodesic slant plane or a non-totally geodesic Lagrangian surface. In the first case, we obtain case (1) of the theorem. In the second case, M is congruent to an open portion of the Whitney sphere which has full second fundamental form.

Now, assume that M is non-slant. We may choose an adapted orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ satisfying $\nabla \alpha=\left(e_{1} \alpha\right) e_{1}$. As in section 7 , there exists a local coordinate system $\{x, y\}$ on M such that

$$
\begin{align*}
& g=E^{2} d x^{2}+G^{2} d y^{2} \tag{9.1}\\
& e_{1}=\frac{1}{E} \frac{\partial}{\partial x}, \quad e_{2}=\frac{1}{G} \frac{\partial}{\partial t}, \quad \alpha=\alpha(x) \tag{9.2}
\end{align*}
$$

Moreover, since M satisfies the equality case of (6.10), the shape operator takes the form (cf. Corollary 6.2):

$$
A_{e_{3}}=\left(\begin{array}{cc}
3 \varphi & \delta \tag{9.3}\\
\delta & \varphi
\end{array}\right), \quad A_{e_{4}}=\left(\begin{array}{cc}
\delta+e_{1} \alpha & \varphi \\
\varphi & 3 \delta+3 e_{1} \alpha
\end{array}\right)
$$

Because M has degenerate second fundamental form, it follows from (9.3) that we have either (a) $\delta=\varphi=0$ or (b) $\delta=-e_{1} \alpha$ and $\varphi=0$.

Case (a): $\delta=\varphi=0$. In this case, the second fundamental form satisfies

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=\left(e_{1} \alpha\right) e_{4}, \quad h\left(e_{1}, e_{2}\right)=0, \quad h\left(e_{2}, e_{2}\right)=3\left(e_{1} \alpha\right) e_{4} \tag{9.4}
\end{equation*}
$$

It follows from (3.4), (9.1), (9.2) and (9.4) that

$$
\begin{align*}
& L_{x x}=\left(\alpha^{\prime}(x) \cot \alpha+\frac{E_{x}}{E}\right) L_{x}+\left(\mathrm{i} \alpha^{\prime}(x)(\csc \alpha) \frac{E}{G}-\frac{E E_{y}}{G^{2}}\right) L_{y} \\
& L_{x y}=\frac{E_{y}}{E} L_{x}+\frac{G_{x}}{G} L_{y} \tag{9.5}\\
& L_{y y}=\left(3 \alpha^{\prime}(x)(\cot \alpha) \frac{G^{2}}{E^{2}}-\frac{G G_{x}}{E^{2}}\right) L_{x}+\left(3 \mathrm{i} \alpha^{\prime}(x)(\csc \alpha) \frac{G}{E}+\frac{G_{y}}{G}\right) L_{y},
\end{align*}
$$

CHEN

The compatibility from (9.5) are given by

$$
\begin{align*}
& E_{y}=0, \alpha^{\prime}(x)=\frac{G_{x}}{3 G} \tan \alpha, \tag{9.6}\\
& \tan ^{2} \alpha=\frac{3 G\left(E_{x} G_{x}-E G_{x x}\right)}{E G_{x}^{2}} . \tag{9.7}
\end{align*}
$$

Since $\alpha^{\prime}(x) \neq 0$, (9.6) implies that $E=E(x), G_{x} \neq 0$ and $G=f^{\prime}(y) \sin ^{3} \alpha(x)$ for some function $f(y)$. By substituting these into (9.7) we get

$$
\begin{equation*}
\alpha^{\prime \prime}(x) E=E_{x} \alpha^{\prime}(x)-2 \alpha^{\prime 2}(x) E \cot \alpha \tag{9.8}
\end{equation*}
$$

which implies that $E(x)=b \alpha^{\prime}(x) \sin ^{2} \alpha$ for some nonzero real number b. Hence, the metric tensor is given by

$$
\begin{equation*}
g=b^{2} \alpha^{\prime 2}(x) \sin ^{4} \alpha(x) d x^{2}+f^{\prime 2}(y) \sin ^{6} \alpha(x) d y^{2} \tag{9.9}
\end{equation*}
$$

It follows from (9.5) and (9.9) that

$$
\begin{align*}
& L_{x x}=\left(3 \alpha^{\prime} \cot \alpha+\frac{\alpha^{\prime \prime}(x)}{\alpha^{\prime}(x)}\right) L_{x}+\frac{\mathrm{i} b \alpha^{\prime 2} \csc ^{2} \alpha}{f^{\prime}(y)} L_{y} \\
& L_{x y}=3 \alpha^{\prime} \cot \alpha L_{y}, \quad L_{y y}=\left(\frac{f^{\prime \prime}(y)}{f^{\prime}(y)}+\frac{3 \mathrm{i} f^{\prime}(y)}{b}\right) L_{y} \tag{9.10}
\end{align*}
$$

Solving the second equation in (9.10) gives

$$
\begin{equation*}
L(x, y)=w(x)+z(y) \sin ^{3} \alpha(x) \tag{9.11}
\end{equation*}
$$

for some $w(x), z(y)$. Substituting (9.11) into the last equation in (9.10) yields

$$
\begin{equation*}
z^{\prime \prime}(y)=\left(\frac{f^{\prime \prime}(y)}{f^{\prime}(y)}+\frac{3 \mathrm{i} f^{\prime}(y)}{b}\right) z^{\prime}(y) \tag{9.12}
\end{equation*}
$$

Solving this equation gives $z(y)=c_{0}+c_{1} e^{3 i b^{-1} f(y)}$ for some vectors $c_{0}, c_{1} \in \mathbf{C}^{2}$. Hence, the immersion is congruent to

$$
\begin{equation*}
L(x, y)=w(x)+c_{1} e^{3 i b^{-1} f(y)} \sin ^{3} \alpha(x) \tag{9.13}
\end{equation*}
$$

After substituting this into the first equation in (9.10) we obtain

$$
\begin{equation*}
w^{\prime \prime}(x)=\left(3 \alpha^{\prime}(x) \cot \alpha+\frac{\alpha^{\prime \prime}(x)}{\alpha^{\prime}(x)}\right) w^{\prime}(x) \tag{9.14}
\end{equation*}
$$

Now, by solving this equation we get

$$
\begin{equation*}
w(x)=c_{3}+c_{2}(\cos 3 \alpha-9 \cos \alpha), \quad c_{2}, c_{3} \in \mathbf{C}^{2} \tag{9.15}
\end{equation*}
$$

Combining this with (9.13) shows that the immersion is congruent to

$$
\begin{equation*}
L(x, y)=c_{1} e^{3 \mathrm{i} b^{-1} f(y)}+c_{2}(\cos 3 \alpha-9 \cos \alpha) \tag{9.16}
\end{equation*}
$$

CHEN

So, after choosing initial conditions and reparametrization of y, we obtain case (2).
Case (b): $\delta=-e_{1} \alpha$ and $\varphi=0$. In this case, we have

$$
\begin{equation*}
h\left(e_{1}, e_{1}\right)=h\left(e_{2}, e_{2}\right)=0, \quad h\left(e_{1}, e_{2}\right)=-e_{1} \alpha e_{3}, \quad e_{1} \alpha \neq 0 \tag{9.17}
\end{equation*}
$$

Thus, the surface is minimal. Consequently, it follows from Theorem 7.1 that the surface is congruent to the one given in case (3) of the theorem.

References

[1] Chen, B.Y.: Geometry of Submanifolds, M. Dekker, New York, 1973.
[2] Chen, B.Y.: Geometry of Slant Submanifolds, Katholieke Universiteit Leuven, Belgium, 1990.
[3] Chen, B.Y.: Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tohoku Math. J. 49 (1997), 277-297.
[4] Chen, B.Y.: Special slant surfaces and a basic inequality, Results Math. 33, 65-78 (1998).
[5] Chen, B.Y.: Riemannian submanifolds, Handbook of differential geometry, Vol. I, 187-418, North-Holland, Amsterdam, 2000.
[6] Chen, B.Y.: Differential geometry of real submanifolds in a Kähler manifold, Monatsh. Math. 91, 257-274 (1981).
[7] Chen, B.Y. and Tazawa, Y.: Slant submanifolds of complex projective and complex hyperbolic spaces, Glasgow Math. J. 42, 439-454 (2000).
[8] Chen, B.Y. and Vrancken, L.: Existence and uniqueness theorem for slant immersions and its applications, Results Math. 31, 28-39 (1997).
[9] Dillen, F. and Verstraelen, L. (Eds.): Handbook of Differential geometry, Vol. I, North Holland, Amsterdam, 2000.
[10] Haesen, S. and Verstraelen, L.: Ideally embedded space-times, J. Math. Phys. 45, 1497-1510 (2004).
[11] Maia, M.D.: The physics of the Gauss-Codazzi-Ricci equations, Mat. Apl. Comput., 5, 283-292 (1986).
[12] Opozda, B.: Generic submanifolds in almost Hermitian manifolds, Ann. Polon. Math. 49, 115-128 (1988).

Bang-Yen CHEN

Received 24.09.2008
Department of Mathematics,
Michigan State University,
East Lansing, MI 48824-1027, USA
e-mail: bychen@math.msu.edu

[^0]: 2000 AMS Mathematics Subject Classification: Primary: 53C40; Secondary 53C50.

