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Finite subquandles of sphere

Nülifer Özdemir and Hüseyin Azcan

Abstract

In this work finite subquandles of sphere are classified by using classification of subgroups of orthogonal

group O(3) . For any subquandle Q of sphere there is a subgroup GQ of O(3) associated with Q . It is

shown that if Q is a finite (infinite) subquandle, then GQ is a finite (infinite) subgroup. Finite subquandles

of sphere are obtained from actions of finite subgroups of SO(3) on sphere. It is proved that the finite

subquandles Q1 and Q2 of sphere whose all elements are not on the same great circle are isomorphic if

and only if the subgroups GQ1 and GQ2 of O(3) are isomorphic by which finite subquandles of sphere are

classified.
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1. Introduction

In this section some basic definitions about quandles are given. More details may be found in [1],[2],[3].
A quandle is a set with a binary operation which can be defined formally as follows.

Definition 1 A quandle is a non-empty set X with a binary operation satisfying the following three axioms:

• a ∗ a = a, for all a ∈ X .

• There is a unique a ∈ X such that a ∗ b = c for b, c ∈ X .

• The formula (a ∗ b) ∗ c = (a ∗ c) ∗ (b ∗ c) holds for a, b, c ∈ X .

As an example, considers the Coxeter quandle defined as follows. Let 〈, 〉 be a symmetric bilinear form
on R

n and S = {v ∈ R
n| 〈v, v〉 �= 0} , then S has a quandle structure by the binary operation

u ∗ v :=
2 〈u, v〉
〈v, v〉 v − u,

where u, v ∈ S . Note that, u ∗ v is the image of u under the reflection in v .

As in all algebraic structures one can define the concept of subquandle and subquandle generated by a
subset:
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Definition 2 A nonempty subset H of a quandle Q is said to be a subquandle of Q if, under the binary
operation on Q, H itself forms a quandle.

Definition 3 Let Q be a quandle and W be a subset of Q . The intersection of all the subquandles of Q which
contain W is called the subquandle of Q generated by W .

In this work we consider Sn−1 =
{
x = (x1, x2, . . . , xn) |x2

1 + x2
2 + . . . + x2

n = 1
}

as a quandle with respect
to the binary operation

x ∗ y = 2 〈x, y〉 y − x,

where 〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn , x = (x1, x2, . . . , xn) , y = (y1, y2, . . . , yn) ∈ Sn−1 .

The main theorem of this paper is as follows.

Theorem 4 Let Q be a finite subquandle of sphere. Then Q is isomorphic to one of the following:

• Dihedral quandle: A finite subquandle whose all elements lie on the same great circle.

• Biprism quandle: A subquandle of S2 which has 2n + 2 points and is genereted by vertices of a spherical
triangle whose side lengths are π

2
, π

2
, π

n
.

• Tetrahedral quandle: A subquandle of S2 which has 12 points and is generated by vertices of a spherical
triangle whose side lengths are π

2 , π
3 , π

3 .

• Octahedral quandle:A subquandle of S2 which has 18 points and is genereted by vertices of a spherical
triangle whose side lengths are π

2 , π
3 , π

4 .

• Icosahedral quandle: A subquandle of S2 which has 30 points and is generated by vertices of a spherical
triangle whose side lengths are π

2 , π
3 , π

5 .

2. Subgroups of O(n) associated with subquandles of Sn−1

Let Q be a subquandle of Sn−1 . Then we have a map

Q
Ψ−→ O(n)

y �−→ Ψ(y) = σy : R
n −→ R

n

x �−→ σy (x) ,

where σy (x) = x− 2 〈x, y〉 y . Note that σy (y) = −y and σ−y (x) = x− 2 〈x,−y〉 (−y) = σy (x) for all x ∈ R
n

and y ∈ Q .

We associate GQ := 〈σy : y ∈ Q〉 ≤ O (n) to Q . If the subquandle Q contains only one element, then
GQ = {σy, I} , and the group GQ is isomorphic to the group Z2 . If the subquandle Q consists of two elements
y1 and y2, then these points must be antipodal. Hence σy1 = σy2 and we get again GQ

∼= Z2.
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If the equality σy1 (x) = σy2 (x) holds for all x ∈ R
n , then y1 = ± y2. We put y1, y2 instead of x in

the equation σy1 (x) = σy2 (x) , we get following equations

y1 = 〈y1, y2〉 y2 and y2 = 〈y1, y2〉 y1.

From these equations we obtain y1 = 〈y1, y2〉2 y1. Since y1, y2 ∈ Q ⊂ Sn−1, y1 = ± y2 is obtained. If y1 and

y2 are different and not antipodal points of any subquandle of Sn−1 , then σy1 �= σy2 . Hence we can say that

if any subquandle of Sn−1 is infinite, so is GQ. For the finite situation we give the following proposition.

Proposition 5 If Q is a finite subquandle of Sn−1 , then GQ is a finite subgroup of O(n) .

Proof. Let Q = {y1, y2, . . . , ym} be a finite subquandle of Sn−1 where m > 2. Define the map σ′
yi

by

σ′
yi

: R
n −→ R

n

x �−→ σ′
yi

(x) = −σyi (x)

for each yi ∈ Q and consider the group G′
Q =

〈
σ′

yi
: yi ∈ Q

〉
. Since the quandle binary operation on Sn−1 is

defined by
x ∗ y = 2 〈x, y〉 y − x

for all x, y ∈ Sn−1 , we can write σ′
yi

(x) = x ∗ yi . From the definition of quandle there exist a unique element

x in Q such that x ∗ yi = x′ for all x′ ∈ Q, hence the restriction of σ′
yi

to Q is one-to-one and onto. So we

think of σ′
yi
|Q to be an element of symmetric group Sm . Hence we can take the group G generated by the

restriction of σ′
yi

to Q as a subgroup of symmetric group Sm . Since Sm is a finite group, the subgroup G is

finite.

Now we define following map:

Ψ : G′
Q −→ G

σ′
yi

�−→ σ′
yi
|Q.

This map is a group isomorphism. From this isomorphism the subgroup G′
Q is finite.

We may clarify the relation between GQ and G′
Q as follows. Let us define the map ϕ : GQ −→ G′

Q ,

ϕ (σyi) = det(σyi)σyi on the generators and extend it on GQ such that ϕ is a group homomorphism. The map

ϕ is onto and the kernel of ϕ is {g ∈ G′
Q : detg.g = I} . Note that det(detg.g) = (detg)n+1 = 1. If n is even

then detg = 1. Hence the kernel of ϕ is trivial and GQ
∼= G′

Q . If n is odd then detg = ±1. If GQ contains the

element −I kernel of ϕ is {I,−I} . Hence the map ϕ is two-to-one and GQ
∼= G′

Q ×Z2 . If the group GQ does

not contain the element −I kernel of ϕ is trivial and GQ
∼= G′

Q . Therefore the group GQ is finite subgroup of

the orthogonal group O(n). �

Another example of a quandle is the conjugation quandle: Let G be a group, then the conjugation
operation in G , i.e. g ∗ h = h−1gh , turns G into a quandle and denote by cong(G). Hence the quandle group

GQ = 〈σy : y ∈ Q〉 where Q is a subquandle of Sn−1 is a quandle with respect to the binary operation

σy1 ∗ σy2 = σy2σy1σy2 (since σy2 = σ−1
y2

).
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Then we obtain following proposition.

Proposition 6 If a and b are points of Sn−1 , then σa∗b = σbσaσb , where a ∗ b = 2 〈a, b〉 b − a .

Proof. For each x in R
n ,

σa∗b (x) = x − 2 〈a ∗ b, x〉a ∗ b

= x − 2 〈2 〈a, b〉 b − a, x〉 (2 〈a, b〉 b − a)
= x − 8 〈a, b〉2 〈x, b〉 b + 4 〈a, b〉 〈x, b〉a + 4 〈a, b〉 〈a, x〉 b − 2 〈a, x〉a

and

σbσaσb (x) = σb (σa (σb (x)))
= σb (σa (x − 2 〈b, x〉 b))
= σb (x − 2 〈b, x〉 b − 2 〈x − 2 〈b, x〉 b, a〉 a)
= x − 8 〈a, b〉2 〈x, b〉 b + 4 〈a, b〉 〈x, b〉a + 4 〈a, b〉 〈a, x〉 b − 2 〈a, x〉a

where a, b ∈ Sn−1 . Thus, σa∗b = σbσaσb . �

The map Ψ : Q −→ cong (GQ), Ψ (x) = σx is a quandle homomorphism since

Ψ(x1 ∗ x2) = σx1∗x2 = σx2σx1σx2 = σx1 ∗ σx2 = Ψ(x1) ∗ Ψ(x2).

Let GQ1 and GQ2 be finite quandle groups. If the map ϕ : GQ1 → GQ2 is a group homomorphism, then
ϕ induces a quandle homomorphism between conjugation quandles by the following equation:

ϕ(σx1 ∗ σx2) = ϕ(σx2σx1σx2) = ϕ(σx1)ϕ(σx1)ϕ(σx2) = ϕ(σx1) ∗ ϕ(σx2).

Conversely, if ϕ is a quandle homomorphism, then the map ϕ may not be a group homomorphism.

Proposition 7 If Q1 and Q2 are isomorphic finite (infinite) subquandles of sphere, then the quandle groups
GQ1 and GQ2 are also isomorphic.

Proof. Let Q1 = {x1, x2, ..., xn, ...} , Q2 = {y1, y2, ..., yn, ...} and f : Q1 → Q2 , f(xi) = yi be a quandle
isomorphism. Then

GQ1 = 〈σx1 , σx2, ..., σxn|σxjσxiσxj = σxk for suitable xi, xj, xk〉

and
GQ2 = 〈σy1 , σy2, ..., σyn|σylσymσyl = σyn for suitable yl, ym, yn〉.

We can define the map Ψ(σxi) = σf(xi) on generators and extend it on GQ1 such that ϕ is a group

homomorphism, where σxi ∈ GQ1 . Note that this map is preserves the relations on GQ1 :

Ψ(σxk) = Ψ(σxjσxiσxj) = Ψ(σxi∗xj)

= σf(xi∗xj)

= σf(xi)∗f(xj)

= σf(xj)σf(xi)σf(xj) = Ψ(σxj )Ψ(σxi)Ψ(σxj ).
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ÖZDEMİR, AZCAN

Hence the map Ψ is a group isomorphism. �

Remark Converse of this proposition is not true. For example, the subquandle of circle which has three
elements, and the subquandle of circle which has six elements, have the same quandle group namely D6 . But
converse of this proposition is also true for the subquandles of sphere whose all elements are not on the same
great circle as we will see in the course of the paper.

If the quandle groups which are obtained from finite subquandles, these lying on same great circles and
not containing antipodal points, are isomorphic then we can easily check that these quandles are also isomorphic:
Let Q1 and Q2 be finite subquandles of sphere which are not contain antipodal points and ϕ : GQ1 −→ GQ2

be a group isomorphism. Then the maps

Q1 −→ Q2

↓ΨQ1
↓ΨQ2

GQ1

ϕ−→ GQ2

ΨQ1 : Q1 −→ GQ1 , ΨQ1 (x) = σx and ΨQ2 : Q2 −→ GQ2 , ΨQ2 (y) = σy are one-to-one. We define the map
f

f : Q1 −→ Q2

x �−→ f (x) =
(
Ψ−1

Q2
ϕΨQ1

)
(x) .

Since

f (x ∗ y) =
(
Ψ−1

Q2
ϕΨQ1

)
(x ∗ y) = Ψ−1

Q2
(ϕ (σx∗y))

= Ψ−1
Q2

(ϕ (σyσxσy)) = Ψ−1
Q2

(ϕ (σy)ϕ (σx)ϕ (σy))
= Ψ−1

Q2
(ϕ (σx) ∗ ϕ (σy)) = Ψ−1

Q2
(ϕ (σx)) ∗ Ψ−1

Q2
(ϕ (σy))

where x, y ∈ Q1 , the map f is a quandle homomorphism. If f (x) = f (y) , then Ψ−1
Q2

(ϕ (σx)) = Ψ−1
Q2

(ϕ (σy)).

Since ΨQ2 and ϕ are one-to-one functions we obtain that σx = σy . Since subquandle Q1 does not contain
antipodal points, we get x = y . Therefore the map f is a quandle isomorphism.

3. Finite Subquandles of Sphere

We already know that the set of vertices of a regular n-gon forms a quandle which we call as the
dihedral quandle. Now we show that any finite subquandle of S1 is isomorphic with a dihedral quandle. Let
Q = {x1, x2, · · · , xn} be a subquandle of S1 and θ = min{d (xi, xj) |xi, xj ∈ Q} where d (xi, xj) denotes the
spherical distance between xi and xj . Assume that θ = d (xk, xl) then xk and xl obviously generate Q . If
Dn = {y1, y2, · · · , yn} where yj = cos jθ + i sin jθ denotes the dihedral quandle then define ϕ : Q → Dn , by
ϕ (xk) = y1 , ϕ (xl) = y2 and extend ϕ such that it is a homomorphism. Clearly such ϕ is an isomorphism

as well therefore any finite subquandle of S1 is a dihedral quandle. As it can be noticed when n is an odd
number, if xi ∈ Q then −xi /∈ Q and when n an even number, if xi ∈ Q then −xi ∈ Q as well. Hence if a
subquandle of S1 includes one antipodal pair then it includes all antipodal pairs. We also note that quandle
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groups obtained from finite subquandles of S1 are dihedral groups. If Q ⊂ S1 has n elements then we have
GQ

∼= Dn when n is odd and GQ
∼= Dn/2 when n is an even integer.

It is well known that any finite subgroup of orthogonal group O(3) which does not lie completely in
SO(3) is isomorphic with one of the following groups:

Z2, Z2 × Z2, Dn, S4, Dn × Z2, A4 × Z2, S4 × Z2, A5 × Z2.

Since the quandle group GQ is generated by reflections and finite subgoup of orthogonal group O(3),
GQ can be isomorphic to one of the above groups. But a subgroup of O(3) which is isomorphic to A4 ×Z2 can

not be obtained as a quandle group: The group A4 has only three elements a, b, c such that a2 = b2 = c2 = 1,
ab = c and the subgroup 〈a, b, c〉 is isomorphic to the Klein-four group V4 . The subgroup of O(3) which is
isomorphic to A4 ×Z2 has six element of degree 2. Then the subgroup which is generated by these six element
of degree 2 is isomorphic to the group V4 × Z2 . Hence a quandle group can not be isomorphic to the group
A4 × Z2 .

We present with following proposition a property about the finite subquandle of the quandle
(
Sn−1, ∗

)
.

Proposition 8 Let Q be a finite subquandle of Sn−1 . If −a is in Q for some a ∈ Q , then Q contains all
antipodal points.

Proof. Let b be an element of Q . Consider the great circle passing trough the points a,−a and b . Let θ be
the distance between a and b . Since the quandle Q is finite, θ is a rational factor of 2π . Let θ = 2π p

q where

p ≤ q and (p, q) = 1. From this situation the distance between b and −a is π − 2π p
q
. The elements which are

generated by a,−a and b are in Q . Since 2π p
q , the distance between −a and −b , is 2p factor of π

q , the point

−b is in Q . �

From following Proposition one can easily check that a finite subquandle of sphere all elements of whose
are not on the same great circle contains all antipodal points because of the structure of groups S4, D2n × Z2,

S4 × Z2, A5 × Z2 .

Proposition 9 Let Q1 and Q2 be two finite subquandles of sphere whose points do not lie on the same great
circles. And GQ1 and GQ2 be two quandle groups which are obtained from this two quandles. If the group GQ1

is isomorphic to the group GQ2 , then the quandle Q1 is isomorphic to the quandle Q2 .

Proof. Since the quandles Q1 and Q2 are subquandles of sphere such that there isn’t any great circle of S2

containing all points of subquandles Q1 and Q2 , the quandle groups GQ1 and GQ2 are isomorphic to one of
the groups S4, D2n × Z2, S4 × Z2, A5 × Z2 .

Any subgroup of O(3) which is isomorphic to one of the groups A5 × Z2 , S4, S4 × Z2, D2n × Z2 is
generetad by three suitably chosen reflections.

If GQ1
∼= GQ2

∼= S4 : Let

GQ1 =
〈
σx1, σx2 , σx3 : (σx1σx2)

2 = I, (σx1σx3)
3 = I, (σx2σx3)

3 = I
〉

,
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where σx1 , σx2 and σx3 are suitable reflections. The subquandle Q1 is generated by the points x1, x2 and x3

such that there isn’t any great circle which contains these points. If these three points are on the same great
circle, then all points of quandle lie on this great circle. But in this situation quandle group obtained from this
quandle is isomorphic to dihedral group. This is a contradiction since GQ1

∼= S4 .

Since (σx1σx2)
2 = I , the map σx1σx2 is a rotation by π radians. Then the distance between x1 and x2

is π
2 . From the equations x1 ∗ x2 = −x1 and x2 ∗ x1 = −x2 , the points −x1 and −x2 are elements of the

quandle Q1 . Since (σx1σx3)
3 = I, the map σx1σx3 is a rotation by 2π

3 or 4π
3 radians.

• If σx1σx3 is a rotation by 2π
3 radians, then distance between x1 and x3 is π

3 . Since (σx2σx3)
3 = I, the

map σx2σx3 is a rotation by 2π
3

or 4π
3

radians.

x2 x3

x1

π
3

π
3

π
2

Figure 1

– If the map σx2σx3 is a rotation by 2π
3 radians, then distance between x2 and x3 is π

3 . These three

points determine a triangle whose side lengths are π
2 , π

3 , π
3 (see Figure 1). The subquandle which is

generated by the vertices of the this triangle have 12 elements.

– If the map σx2σx3 is a rotation by 4π
3 radians, then distance between x2 and x3 is 2π

3 . Since antipo-

dal point −x2 is in subquandle Q1 and we consider the great circle of S2 containing −x2, x2, x3 ,
the point x′

2 which is shown Figure 2 is an element of Q1 . From the equation x2 ∗ x′
2 = x3 we get

σx2∗x′
2

= σx3 . Since distance between x2 and x′
2 is π

3
, we get

S4
∼= GQ1 = 〈σx1 , σx2, σx′

2
: (σx1σx2)

2 = I,(
σx1σx′

2

)3 = I,
(
σx2σx′

2

)3 = I〉

x2

x3

x1

x2

π
2

π
3

π
3

π
3

π
3

Figure 2
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Again we obtain a new spherical triangle whose side lengths are π
2 , π

3 , π
3 .

• If the map σx1σx3 is a rotation by 4π
3 radians, then distance between x1 and x3 is 2π

3 . Since (σx2σx3)
3 =

I, the map σx2σx3 is a rotation by 2π
3

or 4π
3

.

x2

x3

x1
x1

π
2

π
3

π
3

π
3

π
3

Figure 3

– If the map σx2σx3 is a rotation by 2π
3 , distance between x2 and x3 is π

3 . Since −x1 ∈ Q1 and we

consider the great circle of S2 containing −x1, x1, x3 , the point x′
1 which is shown Figure 3 is in

Q1 . Also distance between x2 and x′
1 is π

3
. Since x1 ∗ x′

1 = x3 , we obtain

S4
∼= GQ1 = 〈σx1 , σx′

1
, σx2 ; (σx1σx2)

2 = I,(
σx′

1
σx2

)3 = I,
(
σx1σx′

1

)3 = I〉.

– If the map σx2σx3 is a rotation by 4π
3 , then distance between x2 and x3 is 2π

3 . Since −x2 ∈ Q1 ,

the point x′
2 , which is shown in Figure 4, is in Q1 . And distance between x2 and x′

2 is π
3 . Hence

S4
∼= GQ1 = 〈σx1 , σx2, σx′

2
(σx1σx2)

2 = I,(
σx1σx′

2

)3 = I,
(
σx2σx′

2

)3 = I〉.

x2

x3

x1

x2

π
2 3

33

3

π

ππ

π

Figure 4

Let y1 , y2 and y3 be vertices of the spherical triangle whose side lengths are π
2 , π

3 , π
3 (Figure 5) and

S4
∼= GQ2 = 〈σy1 , σy2, σy3| (σy1σy2)

2 = I, (σy1σy3)
3 = I, (σy2σy3)

3 = I〉.

300
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y2 y3

y1

π
3

π
3

π
2

Figure 5

We obtain a subquandle of S2 which has 12 elements and generated by the vertices y1 , y2 and y3 . Then
there exists a map f ∈ O(3) such that f (x1) = y1, f (x2) = y2, and f (x3) = y3 . Since f can be written as
a composition of at most 4 reflections, f can be equal σa, σaσb, σaσbσc or σaσbσcσd (See [5] page 23). If
σa (xi) = yi and σa (xj) = yj , xi, xj ∈ Q1, yi, yj ∈ Q2 , then

σa (xi ∗ xj) = − ((xi ∗ xj) ∗ a) = (−xi ∗ a) ∗ (−xi ∗ a) = σa (xi) ∗ σa (xj) = yi ∗ yj .

Hence σa is a quandle homomorphism. In a similar way we can show that the maps σaσb, σaσbσc and σaσbσcσd

are also quandle homomorphisms. The quandles Q1 and Q2 are finite, as a result f is a quandle isomorphism.
Therefore we have shown that if S4

∼= GQ1
∼= GQ2 , then Q1

∼= Q2 .

The following cases can be proved similarly:

GQ1
∼= GQ2

∼= S4 × Z2

GQ1
∼= GQ2

∼= A5 × Z2

GQ1
∼= GQ2

∼= D2n × Z2

�

3.1. The List of the Finite Subquandle of Sphere

Let G be a subgroup of SO(3).

If G is isomorphic to the group Zn , all elements of G leave same two points fixed. Elements of orbit are
only antipodal two points. These antipodal points are a subquandle of sphere.

If G is isomorphic to dihedral group D2n , there are 3 orbits. One of these orbits contains only antipodal
2 points. Another orbits consist of m points. These m points are on the same circle. Total number of the
elements of 3 orbits is 2n + 2. These 2n + 2 points form a subquandle of sphere. These subquandle is also
generated three points which are vertices of a spherical triangle whose sides lengths are π

2
, π

2
, π

n
.

If G is isomorphic to the alternating group A4 , there are 3 orbits. The points of two orbits are the
vertices of a regular tetrahedron. The points of the other orbit are the vertices of a regular octahedron. While
the set of the vertices of a regular tetrahedron is not a subquandle, the set of the vertices of a regular octahedron
is a subquandle of sphere. These subquandle is also generated by three points which are vertices of a spherical
triangle whose lengths of the sides π

2
, π

2
, π

2
.
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If G is isomorphic to the alternating group S4 , there are 3 orbits. The points of first orbit are the
vertices of a regular octahedron. The elements of second orbit are the vertices of a cube. The number of the
elements of the last orbit is 12 and the set of these 12 points are a subquandle of sphere. Observe that these
subquandle is also generated by three points which are vertices of a spherical triangle with side lengths π

2
, π

3
, π

3
.

But the set of the vertices of a cube and 12 elements of the last orbit is type of a subquandle of sphere. These
subqunadle which has 18 points is generated by three points which are vertices of a spherical triangle whose
lengths of the sides π

2 , π
3 , π

4 .

If G is isomorphic to the alternating group A5 , again there are 3 orbits. The 12 points of first orbit are
the vertices of a regular icosahedron. The 20 elements of second orbit are the vertices of a regular dodecahedron.
The vertices of a regular icosahedron and the vertices of a regular dodecahedron are not type of a quandle.
The number of the elements of the last orbit is 30 and the set of these 30 points are a subquandle of sphere.
Observe that these subquandle is also generated by three points which are vertices of a spherical triangle whose
lengths of sides are π

2 , π
3 , π

5 .

Remark We have classified the finite subquandles of S2 . We can generalize this classification to higher
dimensions as follows. This generalization will be done for the quandles whose points do not lie on the same
great circle. Let Q1 and Q2 be finite subquandles of Sn which are generated by the point sets {x1, x2, · · ·xn}
and {y1, y2, · · ·yn} of Sn respectively. And let

GQ1 = 〈σx1 , σx2 , · · · , σxn〉 and GQ1 = 〈σy1 , σy2 , · · · , σyn〉

be two quandle groups which are obtained from this quandles. Suppose that the group GQ1 is isomorphic to
the group GQ2 . Now we will construct a quandle isomorphism Φ from Q1 to Q2 . For an element xi ∈ Q1 ,
fix Φ(xi) = yi , where yi is any element of Q2 . Take any element xj ∈ Q1 different from xi . Let the distance
between xi and xj be θij , where θij is a rational factor of 2π . If θij were an irrational factor of 2π , Q1 would

be an infinite subquandle. Just like the S2 case, there exists a point y′j ∈ Q2 such that d(yi, yj) = θij . Hence

we can define Φ(xj) = y′j . Now take xk ∈ Q1 different from both xi and xj . As explicitly shown in S2 case,

if d(xi, xk) = θik and d(xj, xk) = θjk , there exists a point y′k ∈ Q2 such that d(yi, y
′
k) = θik , d(y′j , yk) = θjk .

Thus we define Φ(xk) = y′k . Let xl ∈ Q1 be a point different from xi, xj, xk and d(xi, xl) = θil , d(xj, xl) = θjl ,
d(xk, xl) = θkl . If the point xl ∈ Q1 is on the same great circle with any two of xi, xj, xk , then these four

points are on the same S2 . Thus, as explicitly shown in S2 , there exists a point y′l ∈ Q2 such that y′l
is on the same sphere with yi, y

′
j, y

′
k and we define Φ(xl) = y′l . If the point xl ∈ Q1 is not on the same

great circle with any two of xi, xj, xk , then Φ(xl) is obtained as follows: Now we must find a point y′l ∈ Q2

such that d(yi, y
′
l) = θil , d(y′j, y

′
l) = θjl , d(y′k, y′l) = θkl . As in the S2 , we can find a point y′l ∈ Q2 such

that d(yi, y
′
l) = θil , d(y′k, y′l) = θkl . But we must show that the point y′l ∈ Q2 can be chosen to satisfied

d(y′j , y
′
l) = θjl . Now we consider two spheres having centers yi and y′k , and radii θil and θkl respectively.

Intersection of these two spheres is a great circle denoted by C . Hence the distance between the points of C

and yi is θil and the distance between the points of C and the point y′k is θkl . And there exists a point y′l
on C such that the distance between y′l and y′j is θjl : Again as in S2 , there exists a point y′ ∈ Q2 such that

d(yi, y
′) = θil and d(y′j , y

′) = θjl . Also the point y′ ∈ Q2 is on the C . If we take the sphere having centre y′j

and radius θjl , then this sphere intersects with C . It can be shown that y′ and y′l can be taken as the same
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intersection point. This is the point y′l we are looking for. As a result Φ(xl) = is defined as y′l . Continuing
like this we get the isomorphism Φ. Hence Q1

∼= 〈y′1, y′2, · · · , yi, · · · , y′n〉 ∼= Q2 is obtained. Note that the group
〈σy1 , σy2, · · · , σyn〉 ∼= 〈σy′

1
, σy′

2
, · · · , σyi · · · , σy′

n
〉 .

For n ≥ 3, finite subgroups of O(n) that is generated by reflections is given in [6]. Giving explicit finite
subquandles of Sn by using the finite reflction subgroups of O(n + 1) may be the subject of another work.
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