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Trace formulae for Schrödinger systems on graphs

Chuan-Fu Yang, Zhen-You Huang and Xiao-Ping Yang

Abstract

For Schrödinger systems on metric graphs with δ′ -type conditions at the central vertex, firstly, we

obtain precise description for the square root of the large eigenvalue up to the o(1/n)-term. Secondly, the

regularized trace formulae for Schrödinger systems are calculated with some techniques in classical analysis.

Finally, these formulae are used to obtain a result of inverse problem in the spirit of Ambarzumyan.
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theorem

1. Introduction

In a finite-dimensional space, an operator has a finite trace. But in an infinite-dimensional space, ordinary
differential operators do not necessarily have finite trace (the sum of all eigenvalues). But Gelfand and Levitan

[15] observed that the sum
∑

n(λn − μn) often makes sense, where {λn} and {μn} are the eigenvalues of the

“perturbed problem” and “unperturbed problem”, respectively. The sum
∑

n(λn − μn) is called a regularized

trace. Gelfand and Levitan first obtained an identity of trace for the Schrödinger operator [15]. We describe
briefly here the result. Let λj , j = 0, 1, · · · , be eigenvalues of the eigenvalue problem

−y′′(x) + q(x)y(x) = λy(x), y′(0) = y′(π) = 0.

Then there is the following identity of trace:

∞∑
n=0

[λn − n2 − 1
π

∫ π

0

q(x)dx] =
1
4
[q(π) + q(0)] − 1

2π

∫ π

0

q(x)dx.

The trace identity of a differential operator deeply reveals spectral structure of the differential operator
and has important applications in the numerical calculation of eigenvalues, inverse problem, theory of solitons,
theory of integrable system [22, 41]. However, the calculation of every eigenvalue for the differential operator

is very difficult. The most important application of the trace formulae is in solving inverse problems [41], i.e.,
given some spectral-related data, how to reconstruct the unknown potential function.
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A Quantum graph is the differential (self-adjoint) operator on a metric graph, i.e., the domain of the
operator is a function space, each element in the space satisfying certain boundary conditions at the vertices.
Differential operator on a metric graph (quantum graph) is a rather new and rapidly-developing area of modern
mathematical physics. Such operators can be used to describe the motion of quantum particles confined to
certain low dimensional structures. Spectral and scattering properties of Schrödinger operator in such structures
attract a considerable attention during past years.

Recently, the spectral problems of quantum graphs have become a rapidly-developing field of mathematics
and mathematical physics, and spectral properties of quantum graphs and different inverse problems have
been studied in both forward [25, 26, 27, 32, 34, 39] and inverse [3, 7, 28, 33, 36, 37, 42, 45, 46], etc.
Some results on trace formula and the inverse scattering problems for Laplacians on metric graphs have been
studied [6, 16, 29, 40, 43], etc.

2. Main results

In this paper, we consider the following boundary value problems for Schrödinger systems on star-shaped
metric graphs consisting of d segments of equal length:

−y′′j + qj(x)yj = λyj , j = 1, 2, · · · , d; d ≥ 2, d ∈ N, (2.1)

which are subject to the boundary conditions

yj(0) = 0, j = 1, 2, · · · , d (2.2)

or

y′j(0) = 0, j = 1, 2, · · · , d, (2.3)

at the pendant vertices 0, and

y′1(λ, π) = y′2(λ, π) = · · · = y′d(λ, π), (2.4)

y1(λ, π) + y2(λ, π) + · · ·+ yd(λ, π) = 0, (2.5)

at the central vertex π . In equation (2.1), qj ∈ C[0, π], j = 1, 2, · · · , d , are real-valued functions. (2.4) and

(2.5) are called a δ′ -type conditions.

For convenience, we denote by A1, A2 the operator acting in Hilbert space L2
d[0, π] =

⊕d
i=1 L2[0, π] for

the problem (2.1), (2.2), (2.4) and (2.5) or (2.1), (2.3), (2.4) and (2.5), respectively.

It is easy to verify that operators A1 and A2 are both self-adjoint, and each operator’s spectrum,
which consists of eigenvalues with the unique accumulation point +∞ , is real and lower bounded, and can
be determined by the variational principle. Counting multiplicities of the eigenvalues, we can arrange those
eigenvalues {λn}∞n=1 in an ascending order as

λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · .
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The asymptotic expressions of eigenvalues and trace formulae for the operators A1 and A2 are established
with residue techniques and asymptotic analysis method. In particular, the formulae presented here can be
helpful in solving inverse problems. We end this paper with results in the spirit of Ambarzumyan.

In the case qj = 0, j = 1, 2, · · · , d , in (2.1), we can calculate the eigenvalues of operators A1 and A2 (for

the detail, see the proofs of Theorems 2.1 and 2.2 in section 3). Denote by μD
n,j, j = 1, 2, · · · , d, n = 1, 2, · · · ,

the spectrum of self-adjoint operator A1 , then

μD
n,d = n2 (2.6)

and

μD
n,j = (n − 1

2
)2, j = 1, 2 · · · , d− 1, n = 1, 2, · · · . (2.7)

Each of the eigenvalues n2 is simple, and (n − 1
2)2 is of multiplicity d− 1.

Denote by μN
n,j, j = 1, 2, · · · , d, n = 0, 1, 2, · · · , the spectrum of self-adjoint operator A2 , then

μN
n,d =

(
n − 1

2

)2

, n = 1, 2, · · · (2.8)

and
μN

n,j = n2, j = 1, 2 · · · , d− 1, n = 0, 1, 2, · · · . (2.9)

Each of the eigenvalues
(
n − 1

2

)2
, n = 1, 2, · · · , is simple, and each of the eigenvalues n2, n = 0, 1, 2, · · · , is of

multiplicity d − 1.

Suppose that qj(x) ∈ C1[0, π] , j = 1, 2, · · · , d , let {λD
n,j, j = 1, 2, · · · , d}∞n=1 be the sequence of the

eigenvalues of the operator A1 and {λN
n,j, j = 1, 2, · · · , d}∞n=0 be the sequence of eigenvalues of the operator

A2 , and denote

q̄j =
1
2π

∫ π

0

qj(x)dx. (2.10)

The main results of this paper is as follows.

Theorem 2.1 For sufficiently large n , the eigenvalues of the operator A1 possess the asymptotic expression

√
λD

n,d = n +
1
nd

d∑
j=1

q̄j + o

(
1
n

)
, (2.11)

and √
λD

n,j = n − 1
2

+
cj,0

n − 1
2

+ o

(
1
n

)
, j = 1, 2, · · · , d − 1, (2.12)

where cj,0, 1 ≤ j ≤ d− 1 , are the solutions of the equation for c

d∑
j=1

∏
j �=l∈{1,2,··· ,d}

(c − q̄j) = 0. (2.13)
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Theorem 2.2 For sufficiently large n , the eigenvalues of the operator A2 possess the asymptotic expression

√
λN

n,d = (n − 1
2
) +

1
(n − 1

2)d

d∑
j=1

q̄j + o

(
1
n

)
, (2.14)

and √
λN

n,j = n +
cj,0

n
+ o

(
1
n

)
, j = 1, 2, · · · , d − 1, (2.15)

where cj,0, 1 ≤ j ≤ d− 1 , are solutions of the equation (2.13).

Theorem 2.3 The trace formula for the operator A1 reads as

∑∞
n=1[

∑d
j=1(λ

D
n,j − μD

n,j) − 2
∑d

j=1 q̄j]

= 1
4

∑d
j=1[qj(π) − qj(0)] − 1

2d

∑d
j=1 qj(π) + 1

d

∑d
j=1 q̄j.

(2.16)

Theorem 2.4 The trace formula for the operator A2 reads as

∑d−1
j=1 λN

0,j +
∑∞

n=1[
∑d

j=1(λ
N
n,j − μN

n,j) − 2
∑d

j=1 q̄j ]

= 1
4

∑d
j=1[qj(π) + qj(0)] − 1

2d

∑d
j=1 qj(π) + d−1

d

∑d
j=1 q̄j.

(2.17)

Denote the set of eigenvalues of the operator Ai , i = 1, 2, by σ(Ai), respectively.

Theorem 2.5 Let the real-valued functions qj ∈ C[0, π] , j = 1 , 2 , · · · , d , and mk, k = 1, 2, · · · , be a strictly

ascending infinite sequence of positive integers.

(a) If either {(mk − 1
2
)2 : k = 1, 2, · · ·} ⊂ σ(A1) and the multiplicity of each eigenvalue (mk − 1

2
)2 is

d − 1 or {m2
k : k = 1, 2, · · ·} ⊂ σ(A1) holds, then

∑d
j=1 q̄j = 0 .

(b) If either {m2
k : k = 1, 2, · · ·} ⊂ σ(A2) and the multiplicity of each eigenvalue m2

k is d − 1 or

{(mk − 1
2 )2 : k = 1, 2, · · ·} ⊂ σ(A2) holds, then

∑d
j=1 q̄j = 0 .

(c) If either {0}⋃{m2
k : k = 1, 2, · · ·} ⊂ σ(A2) and the multiplicity of each eigenvalue m2

k is d − 1 or

{0}⋃{(mk − 1
2)2 : k = 1, 2, · · ·} ⊂ σ(A2) holds, where 0 is the first eigenvalue of A2 , then qj(x) = 0, j =

1, 2, · · · , d .

3. The eigenvalue asymptotics

In this section, with the Gelfand-Levitan equation from [11, 30], we first derive the equation for eigenvalues
of the operator A1 or A2 , respectively. Then, with the help of the Rouch é theorem we give the asymptotic
expressions of large eigenvalues of the operators A1 and A2 . The method used here is similar to the well-known
techniques in the scalar case.
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We first study the equation for eigenvalues of the operator A1 . Denote by sj(λ, x), j = 1, 2, · · · , d , the

solutions of (2.1) satisfying the initial conditions

sj(λ, 0) = 0, s′j(λ, 0) = 1, (3.1)

then the solutions of equations (2.1) satisfying the conditions (2.2) are

yj(λ, x) = cjsj(λ, x), (3.2)

where cj are arbitrary constants. Substituting (3.2) into (2.4) and (2.5), we obtain the following equation for

eigenvalues of the operator A1 :

ϕ1(λ) =
∑d

j=1 sj(λ, π)
∏

l�=j s′l(λ, π) = 0. (3.3)

Making use of the formulae in [11, 30], we have

sj(λ, x) = sin(
√

λx)√
λ

− cos(
√

λx)
λ Kj(x, x) + 1

λ

∫ x

0 K′
j,t(x, t) cos(

√
λt)dt;

s′j(λ, x) = cos(
√

λx) + Kj(x,x)√
λ

sin(
√

λx) + 1√
λ

∫ x

0
K′

j,x(x, t) sin(
√

λt)dt,

(3.4)

where both of the first partial derivatives K′
j,x(x, t) and K′

j,t(x, t) of Kj(x, t), j = 1, 2, · · · , d , exist and

K′
j,x(x, ·) ∈ L2[0, π] and K′

j,t(x, ·) ∈ L2[0, π] .

If for brevity, we put

aj =
∫ π

0

K′
j,x(π, t) sin(

√
λt)dt, bj =

∫ π

0

K′
j,t(π, t) cos(

√
λt)dt,

then by the Riemann-Lebesgue lemma,

aj → 0, bj → 0 as real λ → ∞. (3.5)

By (3.3) and (3.4), we have

ϕ1(λ) =
d∑

j=1

[
sin(

√
λπ)√
λ

+
bj − cos(

√
λπ)Kj

λ
]×

∏
j �=l∈{1,2,··· ,d}

[cos(
√

λπ) +
Kl√

λ
sin(

√
λπ) +

al√
λ

], (3.6)

where Kj = Kj(π, π) = 1
2

∫ π

0 qj(x)dx .

Now we try to get the equation for eigenvalues of the operator A2 . Denote by s̃j(λ, x), j = 1, 2, · · · , d ,

the solutions of (2.1) satisfying the initial conditions

s̃j(λ, 0) = 1, s̃′j(λ, 0) = 0. (3.7)

Then the solutions of equations (2.1) satisfying the conditions (2.3) are

yj(λ, x) = c̃j s̃j(λ, x), (3.8)
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where c̃j are arbitrary constants. Substituting (3.8) into (2.4) and (2.5), we obtain the following equation for
eigenvalues of the operator A2 :

ϕ2(λ) =
d∑

j=1

s̃j(λ, π)
∏
l�=j

s̃′l(λ, π) = 0. (3.9)

Using the formulae in [11, 30], we have

s̃j(λ, x)=cos(
√

λx)+ sin(
√

λx)√
λ

K̃j(x, x)− 1√
λ

∫ x

0 K̃′
j,t(x, t) sin(

√
λt)dt;

s̃′j(λ, x)=−
√

λ sin(
√

λx)+K̃j(x, x) cos(
√

λx)+
∫ x

0 K̃′
j,x(x, t) cos(

√
λt)dt,

(3.10)

where both of the first partial derivatives K̃′
j,x(x, t) and K̃′

j,t(x, t) of K̃j(x, t), j = 1, 2, · · · , d , exist and

K̃′
j,x(x, ·) ∈ L2[0, π] and K̃′

j,t(x, ·) ∈ L2[0, π] .

If for brevity, we put

cj = −
∫ π

0

K̃′
j,t(π, t) sin(

√
λt)dt, dj =

∫ π

0

K̃′
j,x(π, t) cos(

√
λt)dt,

then by the Riemann-Lebesgue lemma,

cj → 0, dj → 0 as real λ → ∞. (3.11)

From (3.9) and (3.10), we obtain that

ϕ2(λ) =
∑d

j=1[cos(
√

λπ) + sin(
√

λπ)√
λ

Kj + cj√
λ
]× ∏

l�=j [−
√

λ sin(
√

λπ) + Kl cos(
√

λπ) + dl], (3.12)

where Kj = 1
2

∫ π

0
qj(x)dx .

Furthermore, the kernels of the transformations Kj(x, t), K̃j(x, t), j = 1, 2, · · · , d , satisfy the following

partial differential equations [8, 11]

K′′
j,xx − qj(x)Kj =K′′

j,tt, Kj(x, x)= 1
2

∫ x

0 qj(x)dx, Kj(x, 0)=0;

K̃′′
j,xx − qj(x)K̃j =K̃′′

j,tt, K̃j(x, x)= 1
2

∫ x

0
qj(x)dx, K̃′

j,t(x, 0)=0.
(3.13)

When qj(x) ∈ C1[0, π] , (3.13) can be written as Volterra integral equations

Kj(x, t) = 1
2 [

∫ x+t
2

0
qj(x)dx −

∫ x−t
2

0
qj(x)dx] +

∫ x−t
2

0
dτ

∫ x+t
2

x−t
2

qj(σ + τ )Kj(σ + τ, σ − τ )dσ,

K̃j(x, t) = 1
2
[
∫ x+t

2
0

qj(x)dx +
∫ x−t

2
0

qj(x)dx] +
∫ x−t

2
0

dτ
∫ x+t

2
τ

qj(σ + τ )K̃j(σ + τ, σ − τ )dσ,

(3.14)

which are solvable. By (3.14) a direct calculation yields that

∂Kj(x,x)
∂t = qj(x)+qj(0)

4 − [
� x
0 qj(x)dx]2

8 ,
∂Kj(x,x)

∂x = qj(x)−qj(0)
4 + [

� x
0 qj(x)dx]2

8 ;
∂ �Kj(x,x)

∂t = qj(x)−qj(0)
4 − [

�
x
0 qj(x)dx]2

8 ,
∂ �Kj(x,x)

∂x
= qj(x)+qj(0)

4
+ [

� x
0 qj(x)dx]2

8
.

(3.15)
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When qj(x) ∈ C[0, π] , by integration by parts we get

aj = − cos(
√

λπ)K′
j,x(π,π)√

λ
+ 1√

λ

∫ π

0
K′′

j,xt(π, t) cos(
√

λt)dt,

bj =
sin(

√
λπ)K′

j,t(π,π)√
λ

− 1√
λ

∫ π

0 K′′
j,tt(π, t) sin(

√
λt)dt

(3.16)

and

cj = cos(
√

λπ) �K′
j,t(π,π)√

λ
− 1√

λ

∫ π

0
K̃′′

j,tt(π, t) cos(
√

λt)dt,

dj = sin(
√

λπ) �K′
j,x(π,π)√

λ
− 1√

λ

∫ π

0
K̃′′

j,xt(π, t) sin(
√

λt)dt.

(3.17)

Now we can prove the theorems in this paper.

Proof of Theorem 2.1
Write ϕ1(λ) as

ϕ1(λ) = ϕ
(0)
1 (λ) + E1(λ), (3.18)

where

ϕ
(0)
1 (λ) =

d sin(
√

λπ)√
λ

cosd−1(
√

λπ) (3.19)

and E1(λ) is the remainder.

It is easy to obtain zeros μD
n,j of the function ϕ

(0)
1 (λ), counting multiplicities of zero,

√
μD

n,d = n,
√

μD
n,j = n − 1

2
, j = 1, 2, · · · , d− 1; n = 1, 2, · · · , (3.20)

where {n2}∞n=1 are all simple zeros and {n − 1
2)2}∞n=1 are all zeros of order d − 1.

Since the zeros of ϕ1(λ), the eigenvalues for the self-adjoint operator A1 , are real, we may suppose

|Imλ| < κ for some fixed constant κ > 0.

Now it follows from (3.6), (3.18) and (3.19) that there exists a constant c > 0 such that

|E1(λ)| = |ϕ1(λ) − ϕ
(0)
1 (λ)| <

c

|λ|

for all |Imλ| < κ and |λ| ≥ 1. Since the function d sin(
√

λπ) cosd−1(
√

λπ) is a periodic function we can find

Λ > 0 such that |ϕ(0)
1 (λ)| > Λ

|
√

λ| for all λ ∈ C\⋃
n Cn , where Cn are circles of radii r with the centers at the

points μD
n,j, j = 1, 2, · · · , d . Thus, for all λ ∈ {λ|λ ∈ C\⋃

n Cn, |
√

λ| > max{ c
Λ , 1}} , we have

|ϕ1(λ) − ϕ
(0)
1 (λ)| <

c

|λ| <
Λ

|
√

λ|
< |ϕ(0)

1 (λ)|. (3.21)

Let λD
n,j, j = 1, 2, · · · , d, n = 1, 2, · · · , be the eigenvalues of the operator A1 , i.e., zeros of ϕ1(λ). By the Rouch é

theorem and taking sufficiently small r , we obtain the following results. For sufficiently large integer n , there
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lie exactly 1 and d − 1 zeros of ϕ1(λ) in a suitable neighborhood of μD
n,d and μD

n,j(j 	= d), respectively, and

denote √
λD

n,d = n + αn, (3.22)

√
λD

n,j = n − 1
2

+ βn,j, j = 1, 2, · · · , d− 1, (3.23)

where αn = o(1) and βn,j = o(1) as n → ∞ . It is not difficult to see that αn = O(1/n) and βn,j =

O(1/(n − 1/2)). In fact, we can calculate limn→∞ nαn and limn→∞(n − 1
2 )βn,j .

Substituting λD
n,d into ϕ1(λ) = 0, then, from (3.6), (3.16) and (3.22), we have

sin(αnπ) = O(1/n).

Using Lagrange inversion formula, then we get

αn =
c0

n
+

γn

n
, (3.24)

where c0 is a constant depending on qj(x), j = 1, 2, · · · , d , and γn → 0 as n → ∞ .

Similarly, we get

βn,i =
ci,0

n − 1
2

+
γi,n

n
, (3.25)

where ci,0, 1 ≤ i ≤ d− 1, are constants depending on qj(x), j = 1, 2, · · · , d , and γi,n → 0 as n → ∞ .

Substituting (3.22) and (3.24) into the equation ϕ1(λ) = 0, we obtain

∑d
j=1[(−1)n sin( c0

n + o(1/n))π − (−1)nKj cos(
c0
n +o(1/n))π

n + o(1/n)]

×∏
l�=j [(−1)n cos( c0

n
+ o(1/n))π + O(1/n)] = 0,

expanding the left-hand side of the resulting equation in power series, we have

d∑
j=1

[c0π − Kj + o(1)]
∏
l�=j

[1 + o(1)] = 0,

and let n → ∞ , we obtain

c0 =
1
πd

d∑
j=1

Kj =
1
d

d∑
j=1

q̄j. (3.26)

Substituting (3.23) and (3.25) into the equation ϕ1(λ) = 0, by (3.16), then it yields

0 =
∑d

j=1[cos( ci,0

n− 1
2

+ o(1/n))π + o(1/n)] × ∏
l�=j [sin( ci,0

n−1
2

+ o(1/n))π −
Kl cos(

ci,0
n− 1

2
+o(1/n))π

n− 1
2

+ o(1/n)]

=
∑d

j=1[1 + o(1/n)] × ∏
l�=j [

ci,0π

n−1
2
− Kl

n− 1
2

+ o(1/n)].
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Let n → ∞ , we have

d∑
j=1

∏
l�=j

(ci,0 − q̄l) = 0. (3.27)

From (3.22)—(3.27), the theorem follows. �

Proof of Theorem 2.2
Its proof is similar to that of Theorem 2.1.

Write ϕ2(λ) as

ϕ2(λ) = ϕ
(0)
2 (λ) + E2(λ), (3.28)

where

ϕ
(0)
2 (λ) = d cos(

√
λπ)[−

√
λ sin(

√
λπ)]d−1 (3.29)

and E2(λ) is the remainder. It is easy to obtain zeros μN
n,j of function ϕ

(0)
2 (λ):

√
μN

n,d = n − 1
2 , n = 1, 2, · · · ;√

μN
n,j = n, j = 1, 2, · · · , d − 1; n = 0, 1, 2, · · · ,

(3.30)

where {(n − 1
2)2}∞n=1 are all simple zeros and {n2}∞n=0 are all zeros of order d − 1.

By the Rouch é theorem we have √
λN

n,d = n − 1
2

+ θn, (3.31)

√
λN

n,j = n + νn,j, j = 1, 2, · · · , d− 1, (3.32)

where θn = o(1) and νn,j = o(1) as n → ∞ . It is not difficult to see that θn = O(1/(n− 1
2
)) and νn,j = O(1/n).

From (3.28) and (3.31) we get

θn =
f0

n − 1
2

+
γ̂n

n
, (3.33)

where f0 is a constant depending on qj(x), j = 1, 2, · · · , d , and γ̂n → 0 as n → ∞ .

Similarly,

νn,j =
gj,0

n
+

γ̂j,n

n
, (3.34)

where gj,0, 1 ≤ j ≤ d − 1, are constants depending on qj(x), and γ̂j,n → 0 as n → ∞ .

Moreover, substituting (3.31) and (3.33) into the equation ϕ2(λ) = 0, we have

f0 =
1
d

d∑
j=1

q̄j, (3.35)

and gj,0, 1 ≤ j ≤ d − 1, are the solutions of the equation (2.13).

By (3.31), (3.32), (3.33), (3.34) and (3.35), the theorem follows. �
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4. Trace formulae

Let ΓN0 be the counterclockwise square contours ABCD , integer N0 = 0, 1, 2, · · · → ∞ , with

A = (N0 + 1
4 )(1 − i), B = (N0 + 1

4)(1 + i),

C = (N0 + 1
4)(−1 + i), D = (N0 + 1

4 )(−1 − i).

Obviously, μD
n,j and μN

n,j defined in (3.20) and (3.30), which are the zeros of the function ϕ
(0)
k (λ), k = 1, 2,

don’t lie on the contour ΓN0 . To obtain trace formulae we need the following lemma in complex analysis.

Lemma 4.1 (refer to [1, 8]) Suppose ω(λ), ω0(λ) are two entire functions, ω0(λ) has no zeros on a closed
contour ΓN0 of λ-complex plane. If these functions satisfy the estimate

ω(λ)
ω0(λ)

= 1 +
α1(

√
λ)√

λ
+

α2(
√

λ)
λ

+ O(1/
√

λ3) on ΓN0 ,

where the functions αk(
√

λ)√
λk

, k = 1, 2 , are single valued and analytic on ΓN0 and αk(
√

λ) are uniformly bounded

on ΓN0 . Then, on ΓN0 ,

∑
ΓN0

(λn − μn) = − 1
2πi

∮
ΓN0

log ω(λ)
ω0(λ)dλ

= − 1
2πi

∮
ΓN0

[α1(
√

λ)√
λ

+ α2(
√

λ)−α2
1(
√

λ)/2
λ ]dλ + O(1/N0),

(4.1)

where λn, μn are the zeros of entire functions ω(λ), ω0(λ) inside the contour ΓN0 listed with multiplicity,
respectively.

Proof of Theorem 2.3
The computation of trace for the operator A1 is based on Lemma 4.1 and asymptotic analysis method.

Step 1, we give the estimate for ϕ1(λ)

ϕ
(0)
1 (λ)

on the contour ΓN0 .

By (3.6) and (3.16), and integration by parts, on the contour ΓN0 , we have

ϕ1(λ)

ϕ
(0)
1 (λ)

= 1
d

∑d
j=1[1−

Kj cot(
√

λπ)√
λ

+ bj√
λ sin(

√
λπ)

]

×∏
l�=j [1 + al√

λ cos(
√

λπ)
+ Kl tan(

√
λπ)√

λ
]

= 1 + 1√
λ
[ d−1

d

∑d
j=1 Kj tan(

√
λπ) −

�d
j=1 Kj cot(

√
λπ)

d
] + 1

λ
[−d−1

d

×∑d
j=1 K′

j,x(π, π) + d−2
d

∑
i1<i2∈{1,2,··· ,d} Ki1Ki2 tan2(

√
λπ)

−2
d

∑
i1<i2∈{1,2,··· ,d} Ki1Ki2 +

�d
j=1 K′

j,t(π,π)

d
] + O(1/

√
λ3).
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Next, the power series expansion tells us

log ϕ1(λ)

ϕ
(0)
1 (λ)

= 1√
λ
[ d−1

d

∑d
j=1 Kj tan(

√
λπ) −

�d
j=1 Kj cot(

√
λπ)

d
] + 1

λ
[−d−1

d
×

∑d
j=1 K′

j,x(π, π) + d−2
d

∑
i1<i2∈{1,2,··· ,d} Ki1Ki2 tan2(

√
λπ)

−2
d

∑
i1<i2∈{1,2,··· ,d} Ki1Ki2 +

�d
j=1 K′

j,t(π,π)

d − (d−1)2

2d2 (
∑d

j=1 Kj)2 tan2(
√

λπ)

− 1
2d2 (

∑d
j=1 Kj)2 cot2(

√
λπ) + d−1

d2 (
∑d

j=1 Kj)2] + O(1/
√

λ3).

(4.2)

From the above arguments it follows that the zeros λD
n,j of ϕ1(λ) are the eigenvalues of the operator

A1 , and the zeros μD
n,j of ϕ

(0)
1 (λ) are the eigenvalues of the problem (2.1), (2.2), (2.4) and (2.5) with

qj = 0, j = 1, 2, · · · , d. By Rouch é ’s theorem, the number of zeros of ϕ1(λ) and ϕ
(0)
1 (λ) inside the contour ΓN0

is just the same for sufficiently large N0 .

Finally, by (4.2) and Lemma 4.1, for sufficiently large N0 , it follows that

N0∑
n=1

[λD
n,d − n2] +

N0∑
n=1

d−1∑
j=1

[λD
n,j − (n − 1

2
)2]=− 1

2πi

∮
ΓN0

log
ϕ1(λ)

ϕ
(0)
1 (λ)

dλ. (4.3)

Using well-known formulae

cot z = 1
z + 2z

∑∞
n=1

1
z2−n2π2 , tan z =

∑∞
n=0

8z
(2n+1)2π2−4z2 ,

csc2 z =
∑∞

n=−∞
1

(z+nπ)2 , sec2 z =
∑∞

n=−∞
1

[z+{(2n+1)π/2}]2 ,
(4.4)

we get
1

2πi

∮
ΓN0

cot
√

λπ√
λ

dλ = 2N0+1
π

, 1
2πi

∮
ΓN0

tan
√

λπ√
λ

dλ = −2N0
π

,

1
2πi

∮
ΓN0

cot2
√

λπ
λ dλ = −1 + O(1/N0),

1
2πi

∮
ΓN0

tan2 √
λπ

λ
dλ = −1 + O(1/N0).

(4.5)

Substituting (4.2) into (4.3), together with (3.15) and (4.5), we have

∑N0
n=1

∑d
j=1(λ

D
n,j − μD

n,j) = 1
4

∑d
j=1[qj(π) − qj(0)]− 1

2d

∑d
j=1 qj(π)+ 2N0d+1

πd

∑d
j=1 Kj +O(1/N0),

i.e.

∑N0
n=1[

∑d
j=1(λ

D
n,j − μD

n,j) − 2
π

∑d
j=1 Kj ] = 1

4

∑d
j=1[qj(π) − qj(0)]− 1

2d

∑d
j=1 qj(π)+ 1

πd

∑d
j=1 Kj + O(1/N0).

(4.6)

Let N0 → ∞ in (4.6), we have

∑∞
n=1[

∑d
j=1(λ

D
n,j − μD

n,j) − 2
∑d

j=1 q̄j] = 1
4

∑d
j=1[qj(π) − qj(0)] − 1

2d

∑d
j=1 qj(π) + 1

d

∑d
j=1 q̄j.

The proof of theorem is completed. �
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Proof of Theorem 2.4
Its proof is similar to that of Theorem 2.3.

Step 1, we give the estimate for ϕ2(λ)

ϕ
(0)
2 (λ)

on the contour ΓN0 .

By (3.12), (3.17) and (3.29), and integration by parts, on contour ΓN0 , we obtain

ϕ2(λ)

ϕ
(0)
2 (λ)

= 1
d

∑d
j=1[1 + Kj tan(

√
λπ)√

λ
+ cj√

λ cos(
√

λπ)
]

×∏
l�=j [1− dl√

λ sin(
√

λπ)
− Kl cot(

√
λπ)√

λ
]

= 1 + 1√
λ
[− (d−1)

d

∑d
j=1 Kj cot(

√
λπ) +

�d
j=1 Kj tan(

√
λπ)

d
] + 1

λ
[−d−1

d

×∑d
j=1 K̃′

j,x(π, π) + d−2
d

∑
i1<i2∈{1,2,··· ,d} Ki1Ki2 cot2(

√
λπ)

−2
d

∑
i1<i2∈{1,2,··· ,d} Ki1Ki2 +

�d
j=1

�K′
j,t(π,π)

d
] + O(1/

√
λ3).

Next, the power series expansion tells us

log ϕ2(λ)

ϕ
(0)
2 (λ)

= 1√
λ
[−d−1

d

∑d
j=1 Kj cot(

√
λπ) +

�d
j=1 Kj tan(

√
λπ)

d
] + 1

λ
[−d−1

d
×

∑d
j=1 K̃′

j,x(π, π) + d−2
d

∑
i1<i2∈{1,2,··· ,d} Ki1Ki2 cot2(

√
λπ)

−2
d

∑
i1<i2∈{1,2,··· ,d} Ki1Ki2 +

�d
j=1

�K′
j,t(π,π)

d

− (d−1)2

2d2 (
∑d

j=1 Kj)2 cot2(
√

λπ) − 1
2d2 (

∑d
j=1 Kj)2 tan2(

√
λπ)

+d−1
d2 (

∑d
j=1 Kj)2] + O(1/

√
λ3).

(4.7)

By Lemma 4.1, we obtain

∑N0
n=1[λ

N
n,d − (n − 1

2)2] +
∑N0

n=0[
∑d−1

j=1(λN
n,j − n2)] = − 1

2πi

∮
ΓN0

log ϕ2(λ)

ϕ
(0)
2 (λ)

dλ. (4.8)

Substituting (4.7) into (4.8), together with (3.15) and (4.5), we have

∑d−1
j=1 λN

0,j +
∑N0

n=1

∑d
j=1(λ

N
n,j − μN

n,j)

= 1
4

∑d
j=1[qj(π) + qj(0)] − 1

2d

∑d
j=1 qj(π) + 2N0d+d−1

πd

∑d
j=1 Kj + O(1/N0),

i.e. ∑d−1
j=1 λN

0,j +
∑N0

n=1[
∑d

j=1(λ
N
n,j − μN

n,j) − 2
∑d

j=1 q̄j]

= 1
4

∑d
j=1[qj(π) + qj(0)] − 1

2d

∑d
j=1 qj(π) + d−1

πd

∑d
j=1 Kj + O(1/N0).

Let N0 → ∞ , we have

∑d−1
j=1 λN

0,j +
∑∞

n=1[
∑d

j=1(λ
N
n,j − μN

n,j) − 2
∑d

j=1 q̄j]

= 1
4

∑d
j=1[qj(π) + qj(0)] − 1

2d

∑d
j=1 qj(π) + d−1

d

∑d
j=1 q̄j.

The proof of theorem is finished. �
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5. The inverse problems

From a historical viewpoint, the paper [2] of Ambarzumyan may be thought to be the starting point of

the inverse spectral theory aiming to reconstruct the potential from the spectrum (or spectra), Ambarzumyan
proved the following theorem:

If q ∈ C[0, π] , and {n2 : n = 0, 1, 2, · · ·} is the spectra set of the boundary value problem

−y′′(x) + q(x)y(x) = λy(x), y′(0) = y′(π) = 0,

then q(x) ≡ 0 in [0, π] .

Proof of Theorem 2.5
(a) If {m2

k : k = 1, 2, · · ·} ⊂ σ(A1) and mk, k = 1, 2, · · · , be a strictly ascending infinite sequence of

positive integers, by the estimate (2.11) of large eigenvalue, it follows
∑d

j=1 q̄j = 0.

If {(mk − 1
2 )2 : k = 1, 2, · · ·} ⊂ σ(A1) and the multiplicity of each eigenvalue (mk − 1

2 )2 is d − 1, then,

by the estimate (2.12) of large eigenvalue, we have cj,0 = 0, j = 1, 2, · · · , d− 1. Since cj,0, 1 ≤ j ≤ d − 1, are

the solutions of the equation (2.13), it follows
∑d

j=1 q̄j = 0.

(b) Similarly, applying estimates (2.14) and (2.15) of large eigenvalue, we obtain
∑d

j=1 q̄j = 0.

(c) From (b), we first obtain
d∑

j=1

q̄j = 0. (5.1)

Next, we show that Yk,0 = (y1(x), y2(x), · · · , yd(x))T = 1√
d(d−1)π

[e1 +e2 + · · ·+ek−1− (d−1)ek +ek+1 +

· · ·+ ed] , which satisfy boundary conditions (2.3), (2.4) and (2.5), is an eigenfunction corresponding to the first

eigenvalue 0 of the operator A2 , where ek is the unit vector whose k -th component is 1 (k = 1, 2, · · · , d). By
the variational principle, we obtain

0 = inf
Y ∈D(A2),||Y ||=1

(A2Y, Y ) = inf
Y ∈D(A2),

�d
j=1 ||yj||2=1

(−
∫ π

0

d∑
j=1

y′′j yjdx +
∫ π

0

d∑
j=1

qj(x)|yj |2dx),

where Y = (y1 , y2, · · · , yd)T , ||yj||2 =
∫ π

0 |yj|2dx . Now ||Yk,0|| = 1 and Yk,0 ∈ D(A2) are obvious, and so, for

1 ≤ k ≤ d , it follows

0 ≤ (A2Yk,0, Yk,0) =
1

d(d − 1)π
[

d∑
j=1,j �=k

∫ π

0

qj(x)dx + (d − 1)2
∫ π

0

qk(x)dx] � αk. (5.2)

Together with (5.1), we get

∑d
k=1 αk = 1

d(d−1)π

∑d
k=1[

∑d
j=1,j �=k

∫ π

0 qj(x)dx + (d − 1)2
∫ π

0 qk(x)dx]

= 1
π

∑d
j=1

∫ π

0
qj(x)dx = 2

∑d
j=1 q̄j = 0.
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Thus, the right hand side of (5.2) is exactly 0, the test function Yk,0 makes the functional (A2Y, Y )/||Y ||2
achieve its minimum value and is thus the first eigenfunction. Substituting Yk,0 into the equation (2.1), we

obtain qj(x) = 0, j = 1, 2, · · · , d . The proof is finished. �
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Birkhäuser, Basel, 1986.

[32] Naimark, K. and Solomyak, M.: Eigenvalue estimates for the weighted Laplacian on metric trees, Proc. Lon-

don Math. Soc. 80, 690–724 (2000).

195



YANG, HUANG, YANG

[33] Nowaszyk, M.: Inverse spectral problems for quantum graphs with rationally dependent edges, in J. Janas, P.

Kurasov, A. Laptev, S. Naboko, G. Stolz (Eds.), Operator Theory, Analysis and Mathematical Physics, Oper.

Theory Adv. Appl. 174, 105–116 (2007).

[34] Pankrashkin, K.: Spectrum of Schrödinger operators on equilateral quantum graphs, arXiv:math-ph/0512090

(2006).

[35] Papanicolaou, V. G.: Trace formulas and the behaviour of large eigenvalues, SIAM J. Math. Anal. 26, 218–237

(1995).

[36] Pivovarchik, V. N.: Inverse problem for the Sturm-Liouville equation on a simple graph, SIAM J. Math. Anal. 32,

801–819 (2000).

[37] Pivovarchik, V. N.: Ambarzumyan’s theorem for a Sturm-Liouville boundary value problem on a star-shaped graph,

Funct. Anal. Appl. 39, 148–151 (2005).

[38] Simon, B.: A new approach to inverse spectral theory: I. Fundamental formalism, Ann. Math. 150, 1029–1057

(1999).

[39] Solomyak, M.: On the spectrum of the Laplacian on regular metric trees, Special section on quantum graphs, Waves

Random Media, 14, S155-171 (2004).

[40] Terras, A. and Wallace, D.: Selberg’s trace formula on the k-regular tree and applications, Int. J. Math. Math. Sci.

501–526 (2003).

[41] Trubowitz, E.: The inverse problem for periodic potentials, Comm. Pure Appl. Math. 30, 321–337 (1977).

[42] Wassel, D. L.: Inverse Sturm-Liouville problems on trees, another variational approach, Master’s thesis, School of

Computer Science, Cardiff University, March 2006.

[43] Winn, B.: On the trace formula for quantum star graphs, in G. Berkolaiko, R. Carlson, S. A. Fulling, and

P. Kuchment (Eds.), Quantum Graphs and Their Applications, Contemp. Math. Vol. 415, Amer. Math. Soc.,

Providence, RI, 293–307 (2006).

[44] Yang, C. F., Huang, Z. Y. and Yang, X. P.: Ambarzumyan-type theorems for the Sturm-Liouville equation on a

graph, Rocky Mountain J. Math., to appear.

[45] Yurko, V. A: Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems 2, 1075–1086

(2005).

[46] Yurko, V. A.: On recovering Sturm-Liouville operators on graphs, Mathematical Notes 79, 572–582 (2006).

Chuan-Fu YANG, Zhen-You HUANG and Xiao-Ping YANG
Department of Applied Mathematics,
Nanjing University of Science and Technology,
Nanjing 210094, Jiangsu, People’s Republic of CHINA
e-mail: chuanfuyang@yahoo.com

Received 13.11.2008

196


