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Trace formulae for Schrodinger systems on graphs

Chuan-Fu Yang, Zhen-You Huang and Xiao-Ping Yang

Abstract

For Schrodinger systems on metric graphs with §’-type conditions at the central vertex, firstly, we
obtain precise description for the square root of the large eigenvalue up to the o(1/n)-term. Secondly, the
regularized trace formulae for Schrodinger systems are calculated with some techniques in classical analysis.

Finally, these formulae are used to obtain a result of inverse problem in the spirit of Ambarzumyan.
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1. Introduction

In a finite-dimensional space, an operator has a finite trace. But in an infinite-dimensional space, ordinary
differential operators do not necessarily have finite trace (the sum of all eigenvalues). But Gelfand and Levitan
[15] observed that the sum ), (A, — pn) often makes sense, where {\,} and {u,} are the eigenvalues of the
“perturbed problem” and “unperturbed problem”, respectively. The sum )" (A, — u,) is called a regularized
trace. Gelfand and Levitan first obtained an identity of trace for the Schrédinger operator [15]. We describe

briefly here the result. Let X\;,j =0,1,---, be eigenvalues of the eigenvalue problem

—y"(x) + q(z)y(z) = My(z), ¥/ (0) =y (7) = 0.

Then there is the following identity of trace:

S - = 2 [ gte)in) = Jlatm + 40 - - [ gty

n=0

The trace identity of a differential operator deeply reveals spectral structure of the differential operator
and has important applications in the numerical calculation of eigenvalues, inverse problem, theory of solitons,
theory of integrable system [22, 41]. However, the calculation of every eigenvalue for the differential operator
is very difficult. The most important application of the trace formulae is in solving inverse problems [41], i.e.,

given some spectral-related data, how to reconstruct the unknown potential function.
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A Quantum graph is the differential (self-adjoint) operator on a metric graph, i.e., the domain of the
operator is a function space, each element in the space satisfying certain boundary conditions at the vertices.
Differential operator on a metric graph (quantum graph) is a rather new and rapidly-developing area of modern
mathematical physics. Such operators can be used to describe the motion of quantum particles confined to
certain low dimensional structures. Spectral and scattering properties of Schréodinger operator in such structures
attract a considerable attention during past years.

Recently, the spectral problems of quantum graphs have become a rapidly-developing field of mathematics
and mathematical physics, and spectral properties of quantum graphs and different inverse problems have
been studied in both forward [25, 26, 27, 32, 34, 39] and inverse [3, 7, 28, 33, 36, 37, 42, 45, 46], etc.
Some results on trace formula and the inverse scattering problems for Laplacians on metric graphs have been
studied [6, 16, 29, 40, 43], etc.

2. Main results

In this paper, we consider the following boundary value problems for Schrodinger systems on star-shaped

metric graphs consisting of d segments of equal length:
- +aqi(x)y; =Ny, j=1,2,---,d; d>2, deN, (2.1)

which are subject to the boundary conditions

y;(0)=0, j=1,2, ,d (2.2)
or
Y(0)=0, j=1,2,--- 4, (2.3)
at the pendant vertices 0, and
(A ) =1h(A ) = = yg(A, ), (2.4)
y1(Am) + (A7) + -+ ya(A ) =0, (2.5)
at the central vertex 7. In equation (2.1), ¢; € C[0,7n], j = 1,2,---,d, are real-valued functions. (2.4) and

(2.5) are called a ¢'-type conditions.

For convenience, we denote by A, A the operator acting in Hilbert space L2[0, 7] = @le L?[0, 7] for
the problem (2.1), (2.2), (2.4) and (2.5) or (2.1), (2.3), (2.4) and (2.5), respectively.

It is easy to verify that operators A; and As are both self-adjoint, and each operator’s spectrum,
which consists of eigenvalues with the unique accumulation point +oo, is real and lower bounded, and can
be determined by the variational principle. Counting multiplicities of the eigenvalues, we can arrange those

eigenvalues {\,}52; in an ascending order as

AL S A< S A S
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The asymptotic expressions of eigenvalues and trace formulae for the operators A; and A, are established
with residue techniques and asymptotic analysis method. In particular, the formulae presented here can be

helpful in solving inverse problems. We end this paper with results in the spirit of Ambarzumyan.
In the case ¢; =0,j =1,2,---,d, in (2.1), we can calculate the eigenvalues of operators A; and Ay (for
the detail, see the proofs of Theorems 2.1 and 2.2 in section 3). Denote by uﬁj,j =12,---,dn=1,2,---,

the spectrum of self-adjoint operator A;, then
fig =1 (2.6)
and
MﬁjZ(n——)z,jzl,Z--,d—l,n=1,2,---. (2.7)

2

Each of the eigenvalues n* is simple, and (n — %)2 is of multiplicity d — 1.

Denote by uij,j =1,2,---,d,n=0,1,2,---, the spectrum of self-adjoint operator As, then

1\2
ufzv,d=<n—§> =12 (2.8)
and
py;=n*j=1,2-,d=1,n=0,1,2---. (2.9)
Each of the eigenvalues (n — %)2 , n=1,2 -, is simple, and each of the eigenvalues n?, n=0,1,2,---, is of
multiplicity d — 1.

Suppose that ¢;(z) € C0,n], j =1, 2, ---, d, let {)\ﬁj,j =1,2,---,d}%2, be the sequence of the
eigenvalues of the operator A; and {)\,J:f jd =12, ,d}5 , be the sequence of eigenvalues of the operator
A, and denote

_ 1 (7
6= 5 | s (2.10)

The main results of this paper is as follows.

Theorem 2.1 For sufficiently large n, the eigenvalues of the operator Ay possess the asymptotic expression

d
1 1
D _ 7. _
\//\n,d—n+nd;qg+0<n>, (2.11)
and

1 j 1

1
2

where cjo, 1 < j <d—1, are the solutions of the equation for c

> I e-a=o0 (2.13)

J=1j#1e{1,2, - ,d}
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Theorem 2.2 For sufficiently large n, the eigenvalues of the operator A possess the asymptotic expression

\/:N,d:("—%)'*‘ﬁzd:ri-O(%), (2.14)

and
. 1
,/Aﬁj=n+@+0<‘>aJ’=1,2,---,d—1, (2.15)
) n n

where c¢jo, 1 <j<d-—1, are solutions of the equation (2.13).

Theorem 2.3 The trace formula for the operator Ay reads as

0o d d _
ZnZI [Zj:l O‘r?,j - Mr?,j) -2 Zj:l Qj]

2.16
= 125l (™) — 45(0)] = 57 X5 5(m) + § 5 45 o
Theorem 2.4 The trace formula for the operator As reads as
2921 A + L [ (N — i) — 255 4 o
= 10 i) + 0] - 4 S () + 4 T 6 |
Denote the set of eigenvalues of the operator A;, i = 1,2, by o(A;), respectively.
Theorem 2.5 Let the real-valued functions q; € C|0,7], j=1, 2, ---, d, and my, k=1,2,---, be a strictly

ascending infinite sequence of positive integers.

(a) If either {(my — )% : k =1,2,---} C 0(A1) and the multiplicity of each eigenvalue (my — 3)* is
d—1 or {m?:k=1,2,---} Co(A;) holds, then Z?Zl g =0.

(b) If either {m3 : k = 1,2,---} C o(A2) and the multiplicity of each eigenvalue m3 is d — 1 or
{(mr —3)?:k=1,2,---} Co(A2) holds, then Z?Zl q; =0.

(c) If either {0}y U{m3 : k =1,2,---} C 0(A2) and the multiplicity of each eigenvalue mi is d—1 or
{0} U{(ms, — 3)? : k = 1,2,---} C o(As) holds, where 0 is the first eigenvalue of As, then qj(z) =0, j =
1,2, .d.

3. The eigenvalue asymptotics

In this section, with the Gelfand-Levitan equation from [11, 30], we first derive the equation for eigenvalues
of the operator A; or As, respectively. Then, with the help of the Rouché theorem we give the asymptotic
expressions of large eigenvalues of the operators A; and As. The method used here is similar to the well-known

techniques in the scalar case.
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We first study the equation for eigenvalues of the operator A;. Denote by s;(A,z), j =1,2,---,d, the

solutions of (2.1) satisfying the initial conditions
5(A,0) =0, s5(A,0) =1, (3.1)
then the solutions of equations (2.1) satisfying the conditions (2.2) are
yi(Ax) = ¢js5(A @), (3.2)

where ¢; are arbitrary constants. Substituting (3.2) into (2.4) and (2.5), we obtain the following equation for

eigenvalues of the operator Aj:

d
e1(A) = 22521 si(A ™) [1, s1(A, ) = 0. (3.3)
Making use of the formulae in [11, 30], we have

si(\z) = Sin(&/gw) COb(fw)K + 3 Ji KLy (2,t) cos(VAt)dt;

si(\x) = cos(vAx) + KJ\(/w—w) sin(vAz) + \/_fo b (1) sin(v/\t)dt

(3.4)

where both of the first partial derivatives K;»@(x,t) and K§7t(x,t) of Kj(x,t), j = 1,2,---,d, exist and
K} . (x,-) € L?[0,7] and K} ,(x,-) € L?[0,7].
If for brevity, we put

/ (7, t)sin(VAt)dt, b, :/W K (m,t) cos(VAt)dt
0

then by the Riemann-Lebesgue lemma,
a; — 0, b; = 0 asreal A — oco. (3.5)

By (3.3) and (3.4), we have

L), (3.6)

d .
B sin(vVAr)  bj — cos(VAT)K; K, sin(vr a
= E [ e + ] x H [cos(VAT) + —= sin(VAr) + 7

A VA

J=1 A J#lE{1,2,- ,d}

where K; = K;(m,m) = 1 [ ¢;(2)dz.
Now we try to get the equation for eigenvalues of the operator As. Denote by 5;(\, x), j =1,2,---,d,

the solutions of (2.1) satisfying the initial conditions

5(0,0) =1, (), 0) = 0. (3.7)

J

Then the solutions of equations (2.1) satisfying the conditions (2.3) are

yj()\,l') :Ejgj()‘vx)v (3'8)



YANG, HUANG, YANG

where ¢; are arbitrary constants. Substituting (3.8) into (2.4) and (2.5), we obtain the following equation for

eigenvalues of the operator As:

500 [[50 (3.9)

d
=1 I£]

J

Using the formulae in [11, 30], we have

gj(}\,f):COS(\/XI')‘i‘%kj(f, \/—fo (2, t) sin(v/Xt)dt; (5.10)
S\ )= \/Xsm(\/_x)—i—K (z, x) cos(V/Az) —i—fo G () cos(V/At)dt, '

where both of the first partial derivatives IN(;w(x,t) and I~(§7t(x,t) of Kj(x,t), j = 1,2,---,d, exist and
K} . (z,-) € L?[0,7] and K} ,(z,-) € L?[0,7].
If for brevity, we put

/K (7, ) sin(VAt) t,d—/ (7, 1) cos(VAt)dt,
then by the Riemann-Lebesgue lemma,
¢; — 0, dj = 0 asreal A — 0. (3.11)

From (3.9) and (3.10), we obtain that

p2(N) = S, [eos(VAT) + BRI K 1 ) T, [—VAsin(vAr) + K cos(VAT) + di, (3.12)

where K; = 3§ [ ¢;(z)da.

Furthermore, the kernels of the transformations K (x, 1), K i(x,t), 5 =1,2,---, d, satisfy the following
partial differential equations [8, 11]

K;Iww_qj(x)Kj:KZtﬂ K (1’ LL’ 2f0 q] dl’ K (1’,0):0,

o (3.13)
K_;:ww - qj(x)Kj:KZttv K (CL‘ CL‘ =3 fo qJ d:L' K ( ):0'
When ¢;(z) € C*0, 7], (3.13) can be written as Volterra integral equations
x+t m+
K(x,t) :%[fo+ dx—fo x)dx] —|—f02 dem . gi(c+7)K;(oc + 7,0 —T)do,
B e 9 B (3.14)
Kj(z,t) =3[[,% qilz dx—l—fo x)dx] —|—f02 de E gj(c +17)Kj(0c + 7,0 — T)do,
which are solvable. By (3.14) a direct calculation yields that
BKJ (w T) _ G (w)+qJ 0 _ o' (w)alw]2
aKa(w z) _ qJ(w) (0 | g qJ(w)dw]z,
Iz . (3.15)
BKJ (w ) _ 4 (w) 40 _ g (w)dw]
[ ]

BKJ(w ®) _ qj(w)"'qj(o) + Jo q](w)de
ox
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When ¢;(z) € C[0,n], by integration by parts we get

aj = — AT L [T () cos(VAN L, o
by = SOOI [ R (1) sin(VAd |
and
¢ = W — L [T K () cos(vAt)t, o1
g = sin<\/Xw\>/f;;,m<m> — 5 Jo K u(m, 1) sin(vA0)dt. |
Now we can prove the theorems in this paper.
Proof of Theorem 2.1
Write ¢1(A) as
21 = @l (V) + &), (3.18)

where

0)(y) = 45OVAT)
p1 (A = 7 (V) (3.19)

and & (A) is the remainder.

It is easy to obtain zeros uﬁ ; of the function cpgo)()\), counting multiplicities of zero,

1
VERa=n \fuly=n=g, =12 d=Tin=12, (3.20)

where {n?}32, are all simple zeros and {n — 1)?}°2, are all zeros of order d — 1.

Since the zeros of ¢1()\), the eigenvalues for the self-adjoint operator A;, are real, we may suppose
[Im\| < k for some fixed constant x > 0.

Now it follows from (3.6), (3.18) and (3.19) that there exists a constant ¢ > 0 such that

|&MN=MMM—¢@MM<§T

for all [ImA| < x and || > 1. Since the function dsin(v/Ar)cos? ! (v/Ar) is a periodic function we can find

A > 0 such that |<p§0)()\)| > ﬁ for all A € C\|J,, C», where C), are circles of radii  with the centers at the

points p2 ., j=1,2,--,d. Thus, for all A € {A|]A € C\U, Cn,|VA| > max{%,1}}, we have
c

1) — oV (V)] < o7 <

5 R%rddWML (3.21)

Let )\ﬁj,j =1,2,---,d,n=1,2,---, be the eigenvalues of the operator A;, i.e., zeros of p1(\). By the Rouché

theorem and taking sufficiently small r, we obtain the following results. For sufficiently large integer n, there
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lie exactly 1 and d — 1 zeros of ¢1(A) in a suitable neighborhood of uﬁ 4 and uﬁ ;(j # d), respectively, and

VAL g =n+an, (3.22)

1
\/)\ﬁj=n—§+ﬁn,j,j=1,2,---,d—1, (3.23)

where «, = o(l) and 3,; = o(1) as n — oo. It is not difficult to see that a,, = O(1/n) and 3, ; =

denote

O(1/(n—1/2)). In fact, we can calculate limy, o noy, and lim,—.oo(n — 3)Bn ;-

Substituting A?; into ¢1(A) = 0, then, from (3.6), (3.16) and (3.22), we have
sin(a,m) = O(1/n).

Using Lagrange inversion formula, then we get

oy = ¢ + 7_", (3.24)
n n
where ¢o is a constant depending on ¢;(z), j =1,2,---,d, and v, — 0 as n — co.
Similarly, we get
s .
B = —0 4 Jon (3.25)
n—gz n
where ¢; 0,1 <4 < d—1, are constants depending on ¢;(z), j=1,2,---,d,and v, , = 0 as n — 0.

Substituting (3.22) and (3.24) into the equation ¢1(A) =0, we obtain

S (1) sin( @ + o(1/m))ym — S OAGHAMIIT 4 o1 /)]

j=1 n

X Hl#[(—l)" cos( 2 + o(1/n))m +O(1/n)] =0,

expanding the left-hand side of the resulting equation in power series, we have

d
[com — K + o(1)] H[l +o(1)] =0,
j=1 1#]
and let n — oo, we obtain
1 < 1
COZE;Kj:E;@' (3.26)

Substituting (3.23) and (3.25) into the equation ¢1(X) =0, by (3.16), then it yields

d e . . K cos :iol-i-o(l/n))ﬂ'
0= 2 j=1leos(GzT +o(1/m))m +o(1/n)] X [Ty lsin(= +o(1/n))m — P +o(1/n)]

T
n—z

= S5+ o(1/m)] ¢ Tl [52F = 25 + o(1/n)].

1
2
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Let n — oo, we have

d

> Tteio—a) (3.27)

J=11#£]5

From (3.22)—(3.27), the theorem follows. O
Proof of Theorem 2.2
Its proof is similar to that of Theorem 2.1
Write ¢a(A) as
0
p2(0) = o8 (A) + Ex(N), (3.28)
where
(X)) = d cos(VAm)[=VAsin(Var)] %~ (3.29)
and E;()) is the remainder. It is easy to obtain zeros p}); of function cp( )()\)
N _ 1 — .
/’Ln _n__un_1727"'7
v Hnd 2 (3.30)
\/Mﬁ:j:nv j:1727"'7d_1; n:071727"'7
where {(n — 3)2}%2, are all simple zeros and {n?}°°, are all zeros of order d — 1
By the Rouché theorem we have
1
YMa=n— 5 +0u, (3.31)
JAY =t =12, d - 1, (3.32)
where 6,, = o(1) and v,, ; = o(1) as n — co. It is not difficult to see that 6,, = O(1/(n—1)) and v, ; = O(1/n).
From (3.28) and (3.31) we get
6, = Jo_ | T (3.33)
n— b) n
where fy is a constant depending on ¢;(x), j =1,2 d,and 5, — 0 as n — o
Similarly,
9i0 | Yim
= 950 | Tin. 3.34
Vn,j n + n ( )
where g;j0,1 < j <d—1, are constants depending on ¢;(z), and %;, — 0 as n — oo
Moreover, substituting (3.31) and (3.33) into the equation ¢3(A) = 0, we have
1
=3 Z (3.35)
and gj0, 1 <j <d-—1, are the solutions of the equation (2.13)
O
189
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4. Trace formulae

Let I'y, be the counterclockwise square contours ABCD), integer Ng =0,1,2,--- — oo, with
A=(No+ 1)1 —d), B=(No+3)(1+1i),
C=(No+H(=1+i), D=(No+1)(~1—1i).

Obviously, pf; and ) ; defined in (3.20) and (3.30), which are the zeros of the function cp,(co)()\), k=12,

don’t lie on the contour I'y,. To obtain trace formulae we need the following lemma in complex analysis.

Lemma 4.1 (refer to [1, 8]) Suppose w(A),wo(N) are two entire functions, wo(A\) has no zeros on a closed

contour I', of A-complex plane. If these functions satisfy the estimate

W) _ | V) as(V)

o) 7 3 +0(1/VA3) onTy,,

where the functions a%X), k=1,2, are single valued and analytic on I'n, and ak(\/X) are uniformly bounded

on I'n,. Then, on I'n,,

1 w(A
ZFNO A — i) = — 5 fFNO log wo((A)) dA
(4.1)

ai (VX az(VN)=ai(vN)/2
= — 5k o (S0 4 220RERIAEI G 1 O(1/No),
where A, 1, are the zeros of entire functions w(\),wo(A) inside the contour T'y, listed with multiplicity,

respectively.

Proof of Theorem 2.3
The computation of trace for the operator A; is based on Lemma 4.1 and asymptotic analysis method.

p1(N)
e

Step 1, we give the estimate for ) on the contour I'y, .

By (3.6) and (3.16), and integration by parts, on the contour I'y,, we have

e1(\) . 1x~d K cot(VAm) bj
ooy = az=l T TR )

a K tan(vAm)
X Hl?'é][l + \/Xcosl(\/Xﬂ') + = VA ]

_ d 34 K cot(vAT) _
= 1+ %[% >ia K tan(vAr) — ST 1oL

d _
X Zj:l K;’@(ﬂ-? ™) + dT2 Zi1<i2€{1,2,»~ ,d} Ki Ki, tan2(\/X7r)

d,: K’ ()
_2 Zi1<i2€{172,m,d} K K, + =5=——— d]’ ]+ O(1/VA3).
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Next, the power series expansion tells us

\ B d 4 K cot(vAnr)
log £ = L2l 20 | K tan(vr) — SEL T 4 L

d—1
ERIeY =T
Z] 1 (W W) + d2 Zzl<12€{1 2, ,d} KilKiz tanz(\/XW)

d

| K (m,m) d—1)2 ;—~d
_%Zilaze{l,z,m,d} KilKiz + == d]’ - (2d2) (ijl Kj)ztanz(\/XW)

— ok (X0 Kj)? cot?(Vam) + G0 K2+ O(1/VA3).

From the above arguments it follows that the zeros A j of 1 (M) are the eigenvalues of the operator
Ay, and the zeros pl); of cp(o)( A) are the eigenvalues of the problem (2.1), (2.2), (2.4) and (2.5) with

q; =0,7=1,2,---,d. By Rouché’s theorem, the number of zeros of ¢1(A) and cp( )()\) inside the contour Iy,
is just the same for sufficiently large Ny .

Finally, by (4.2) and Lemma 4.1, for sufficiently large Ny, it follows that

S AR —n?+ A2 —(n- %)ﬂ:—% b log “Z}J)(A) dA. (4.3)

n=1 n=1j=1 No 1 (A

Using well-known formulae
cotz=142:3 L tan,ZZZZO:O(%_H)%W, N
esc?z=30 m, sec?z=3">2 W, (44)
we get

2r oy, CRTAN= B oL Ty = 2,

77 fry, DSPTAN = —1+ O(1/No), (4.5)
57 fry, SESPTAN = —14+ O(1/Ny).

Substituting (4.2) into (4.3), together with (3.15) and (4.5), we have

S SR =P ) =15 ai(m) — g5 (0)) = & 00 () + 2L S K+ O(1/No),

SN AR = iD= 25 K = 2 [as(m) = q5(0)] = o S0y () + 2 S0 K+ O(1/No).

(4.6)
Let Ny — oo in (4.6), we have
oo d d d d -
The proof of theorem is completed. O
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Proof of Theorem 2.4
Its proof is similar to that of Theorem 2.3.

p2(N)
on the contour I'y, .
OISy No

By (3.12), (3.17) and (3.29), and integration by parts, on contour Ty, , we obtain

Step 1, we give the estimate for

ea(N) 1 d K~tan(\/X7r) cj
EorvE 7 2=l + 25 )

d K COt(\/XT()
oS 2 s wrevs e R e
?:1 K; tan(\/Xﬂ')]
d

=14+ %[_(d;” Z?:l K cot(v/AT) + Z

s
d 75 _
X Zj:l K/ jo(m,m) + —dd2 Zi1<i26{172,~» ,d} Ki K, COtz(\/XW)
>4 K (m,m)
-3 Dircise{1,2,0 ay Kin Kip + =5 ——=] + O(1/VA3).

Next, the power series expansion tells us

2 —1 5~ >4, K tan(v/3r) B
log ;(23)((;) = \/L;[_dTl > a1 K cot (V) + Lz TRV AT %[_dTilX

d 7 _
Zj:l K'jo(m, m) + de Zi1<i2€{1,2,~»,d} Ki Ki, COtz(\/XW)

qu: R/",t(ﬂ',ﬂ')
-3 Dir<ise (1,2, ay K Ky + = (4.7)
—1)2 d d
— - (71 Kj)? cot? (V) — s (54 Kj)? tan® (V)
_ d —
+dd21 (Zj:l Kj)z] + O(l/ )‘3)'

By Lemma 4.1, we obtain

EnilAa = (1= 3T+ T[S Ay = 0] = — 53 6, log Z535AA (4.8)
Substituting (4.7) into (4.8), together with (3.15) and (4.5), we have

Z(j;} )‘é\,fj + Zﬁfil ?:1 (Arj:f,j - Mizv,j)

= 1 2521105 (m) + 45 (0)] = 57 Xy a5(m) + HEHL S50 K+ O(1/No),

ie.
d—1 N d d
Zj:l )‘é\,fj + Znil[zj‘:l()‘rjxj - Mrj:f,j) - 2Zj:1 Qj]

=130 gi(m) + q;(0)] — o5 0 qi(m) + 5L 1 K + O(1/Ny).
Let Ny — 0o, we have
d—1 \N [e'S) d N N d _
Dic1 A0 T 2 Do (AR — ) — 2 @]
d d 1—d -
= %Zj:l[qj(ﬂ-) + Qj(o)] - % Zj:l Qj(ﬂ) + dTil Zj:l qj-

The proof of theorem is finished. O
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5. The inverse problems

From a historical viewpoint, the paper [2] of Ambarzumyan may be thought to be the starting point of
the inverse spectral theory aiming to reconstruct the potential from the spectrum (or spectra), Ambarzumyan

proved the following theorem:
If g€ C[0,7], and {n*:n=0,1,2,---} is the spectra set of the boundary value problem
—y" (@) + q(x)y(x) = Ay(z), y'(0) =y (7) =0,
then q(z) =0 in [0,7].

Proof of Theorem 2.5

(a) If {m? : k = 1,2,---} C o(A;1) and my, k = 1,2,---, be a strictly ascending infinite sequence of
positive integers, by the estimate (2.11) of large eigenvalue, it follows 2?21 g; =0.

If {(mp—3)?:k=1,2,---} C o(A;) and the multiplicity of each eigenvalue (my — 3)? is d — 1, then,
by the estimate (2.12) of large eigenvalue, we have ¢;o =0, j =1,2,---,d—1. Since ¢jo, 1 <j <d—1, are

. . . d -

the solutions of the equation (2.13), it follows Zj:1 g;=0.

(b) Similarly, applying estimates (2.14) and (2.15) of large eigenvalue, we obtain Zj‘l:1 q; =0.

(¢c) From (b), we first obtain

d
> g =0 (5.1)
j=1

Next, we show that Y0 = (y1(x), y2(x), - ,ya(2))" = ﬁ[el +ep+--Fep1—(d—1)er +epp1+

- -+ e4], which satisfy boundary conditions (2.3), (2.4) and (2.5), is an eigenfunction corresponding to the first
eigenvalue 0 of the operator As, where ey, is the unit vector whose k-th component is 1 (k=1,2,---,d). By

the variational principle, we obtain

0= inf AY)Y) = inf / y_dx—i—/ qi(z)]y;|*dx),
YED(A2)7IIY||:1( 2 ) YeD(A2), -y llysl12= 1 / Z J |J|

where Y = (y1, 2, ya) T, ||yj|1* = [y |y;|*dz. Now |[Yio|| = 1 and Yy € D(As) are obvious, and so, for
1<k <d, it follows

0 < (A2Yk0, Yi0) = Z / qj(x)dx + (d —1)? / w(z)dx] £ ay. (5.2)

J 1,5#k

Together with (5.1), we get

d
2 k=1 Ok = dd-Dr 1)71' Zk 1[2; 1,J¢kfo qj(x)dx + (d —1) fo qr(7)dz]

_12] lquJ dx_2z_] qu_O
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Thus, the right hand side of (5.2) is exactly 0, the test function Yo makes the functional (A2Y,Y)/||Y]|?
achieve its minimum value and is thus the first eigenfunction. Substituting Yy into the equation (2.1), we
obtain ¢;(z) =0, j =1,2,---,d. The proof is finished. O
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