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The principal eigencurves for a nonselfadjoint elliptic operator
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Abstract

In this paper we study the existence of the principal eigencurves for a nonselfadjoint elliptic operator.

We obtain their variational formulation. We establish also the continuity and the differentiability of the

principal eigencurves.
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1. Introduction

In this paper we consider the following problem

(Pμ)

⎧⎪⎪⎨
⎪⎪⎩

To find (λ, u) ∈ R × H1(Ω) \ {0} such that

Lu − μm1(x)u = λm2(x)u in Ω,

Bu = 0 on ∂Ω,

where Ω is a bounded C1,1 domain in R
N (N ≥ 1) with boundary ∂Ω, L is a second order elliptic operator of

the form

Lu := −div(A(x) < u)+ < a(x),∇u > +a0(x)U,

and B is a first order boundary operator of Neumann or Robin type:

Bu := 〈b(x),∇u〉+ b0(x)u,

where 〈, 〉 denotes the scalar product in R
N , the coefficient of L and B satisfy the condition where A(x) =

(ai,j(x)) is a symmetric, uniformly positive definite N × N matrix, with ai,j ∈ C0,1(Ω), a and a0 ∈ L
∞(Ω),

b and b0 ∈ C0,1(Ω), with 〈b, ν〉 > 0 (where ν is the unit exterior normal) and b0 ≥ 0 on ∂Ω, μ is a real

parameter; and m1 and m2 ∈ L
∞(Ω) are possibly indefinite weights, with m1 and m2 �≡ 0 .

The selfadjoint case (a ≡ 0) was considered by several authors, in particular P.A. Binding and Y. X. Huang in

[1] , A. Dakkake and M. Hadda in [2] . For μ = 0, the problem (Pμ) was studied by T. Godoy, J. P. Gossez and
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S. Paczka in [3] . They gave a formula of minimax type (called Holland’s formula (cf., e.g., [6])) for the principal

eigenvalues of this problem. They gave also an application of this formula of minimax to the antimaximum

principle.

In this paper we study the existence of the principal eigencurves for the problem (Pμ). We obtain their

variational formulation. We also establish the continuity and the differentiability of the principal eigencurves.

The remainder of this paper is organized as follows: In section 2, which has a preliminary character, we collect

some results on the existence of principal eigencurves. In section 3, we establish a formula of the minmax type

for the principal eigencurves of the problem (Pμ) (cf. Theorem 3.1). In section 4, we establish the continuity

(cf. Proposition 4.1) and the differentiability (cf. Proposition 4.3) of the principal eigencurve.

2. Existence of the principal eigencurves

Our purpose in this preliminary section is to collect some results relative to the principal eigenvalues

λ�(μ) of problem (Pμ).

Definition. We say that a principal eigenvalue of problem (Pμ), an eigenvalue λ�(μ) ∈ R such that (Pμ)

admits a solution (λ�(μ), u) with u ≥ 0. The graph of μ → λ�(μ) is called the principal eigencurve of (Pμ).

Unless otherwise stated solutions of (Pμ) are understood in the strong sense, i.e., u ∈ W 2,p(Ω) for some

1 < p < ∞ , with the equation in Ω satisfied a.e., and the boundary condition satisfied in the sense of traces.

We will denote by W (Ω) the intersection of all W 2,p(Ω) spaces for 1 < p < ∞ .

The following proposition concerns the maximum principle.

Proposition 2.1 [3] Assume a0 ≥ 0 and let u ∈ W 2,p(Ω) with p ≥ N satisfy Lu ≥ 0 in Ω , Bu ≥ 0 on ∂Ω ,

with either Lu �≡ 0 or Bu �≡ 0 . Then u > 0 on Ω .

Another basic tool is the following existence, unicity and regularity result, which follows e.g. from

Theorem 2.4.2.7 in [5] .

Proposition 2.2 Let 1 < p < ∞ . If l ∈ R is sufficiently large, then the problem

(L + l)u = f in Ω, Bu = 0 on ∂Ω, (2.1)

has for any f ∈ Lp(Ω) a unique solution u ∈ W 2,p(Ω) . Moreover, the solution operator (L + l)−1 : f → u is

continuous from Lp(Ω) onto W 2,p(Ω) . This operator will be looked as an operator from C(Ω) (equipped with

its usual norm) into itself (and then sometime denoted by SlC ).

Proposition 2.3 [3] Assume l sufficiently large.

1. SlC is compact and strongly positive.

2. The spectral radius ρl of SlC is > 0 and ρl is an algebraically simple eigenvalue of SlC , having an

eigenfunction which is > 0 on Ω . In addition, there is no other eigenvalue having a nonnegative

eigenfunction.
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3. ρl is also an algebraically simple eigenvalue of the adjoint S�
lC , having a nonnegative eigenvector ψ ∈

Lp(Ω) for any p < ∞ . In addition ψ does not depend on l .

4. For every f ∈ C(Ω) with f ≥ 0 , f �≡ 0 , the equation λu − SlCu = f has exactly one solution u , which

is > 0 on Ω , if λ > ρl , and no solution u ≥ 0 if λ ≤ ρl .

Remark 2.4 The above propositions apply in particular to the operator L − μm1 .

Theorem 2.5 Assume first a0 − μm1 ≥ 0 with either a0 − μm1 �≡ 0 or b0 �≡ 0 . Then

1. If m2 changes sign, then (Pμ) admits exactly two principal eigencurves, one is positive and the other is

negative.

2. If m2 ≥ 0, then (Pμ) admits exactly one principal eigenvalues, which is positive.

3. If m2 ≤ 0, then (Pμ) admits exactly one principal eigencurves, which is negative.

Assume now a0 − μm1 ≡ 0 and b0 ≡ 0 . Then

4. Let ψ be the function provided by Proposition 2.3. If m2 changes sign and
∫
Ω

ψm2 < 0 , then (Pμ) admits

exactly two principal eigencurves, 0 and another one which is positive.

5. If m2 changes sign and
∫
Ω

ψm2 > 0 , then (Pμ) admits exactly two principal eigencurves, 0 and another

one which is negative.

6. If m2 changes sign and
∫
Ω

ψm2 = 0 , then (Pμ) admits only 0 as principal eigencurve.

7. If m2 ≥ 0, then (Pμ) admits only 0 as principal eigencurve.

8. If m2 ≤ 0 , then (Pμ) admits only 0 as principal eigencurve.

Moreover all the principal eigenvalues associated to the principal eigencurves above are simple.

Proof. [Proof of Theorem 2.5] The proof of this theorem follows directly from Theorem 2.6 in [3] by taking

L − μm1 instead of L . �

3. Minimax formula of principal eigencurves

The weights and the operators L and B in this section are assumed to satisfy the conditions indicated

at the beginning of introduction, with in addition a ∈ C0,1(Ω̄), a0 − μm1 ≥ 0 and b = Aν (i.e., the derivation

in B is taken in the conormal direction). Our purpose is to give a formula of minimax type for the principal

eigencurves of (Pμ).
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Theorem 3.1 Let μ → λ�(μ) ≥ 0 be the largest principal eigencurve of (Pμ) corresponding to any of the case

1, 2, 4, 5, 7 of Theorem 2.5. Then

λ�(μ) = min
u∈U

max
v∈H1(Ω)

Λ(u) − Qu(v) +
∫

∂Ω b0(x)u2 − μ
∫
Ω m1(x)u2∫

Ω
m2(x)u2

, (3.1)

where

U := {u ∈ H1(Ω) ∩ L∞(Ω) : ess inf u > 0 and
∫

Ω

m2u
2 > 0},

Λ(u) :=
∫

Ω

〈A∇u,∇u〉+ 〈a,∇u〉u + a0u
2,

Qu(v) :=
∫

Ω

u2(〈A∇v,∇v〉 − 〈a,∇v〉).

Moreover, the minimum in (3.1) is achieved at some u ∈ W (Ω) and the corresponding maximum in (3.1) is

then achieved at some v ∈ W (Ω) .

Remark 3.2 Formula (3.1) can be stated equivalently as

λ�(μ) = min
u∈U

Λ(u) − Qu(Wu) +
∫
∂Ω

b0(x)u2 − μ
∫
Ω

m1u
2∫

Ω
m2u2

, (3.2)

where Wu is the function provided by the following lemma.

Lemma 3.3 [3] For any u ∈ H1(Ω) ∩ L∞(Ω) with ess inf u > 0 , the minimum of Qu on H1(Ω) is achieved

at some Wu . This Wu is unique up to an additive constant and can be characterized at the weak solution (also

unique up to an additive constant) of

−div(u2(2A∇Wu − a)) = 0 in Ω, 〈u2(2A∇Wu − a), ν〉 = 0 on ∂Ω. (3.3)

Moreover,

Qu(Wu) = −
∫

Ω

u2〈A∇Wu,∇Wu〉 = −1
2

∫
Ω

u2〈a,∇Wu〉.

Finally, if u ∈ C0,1(Ω), then Wu ∈ W (Ω) and satisfies (3.3) in the strong sense.

Remark 3.4 The remaining cases of Theorem 2.5 (i.e., the negative eigencurve in 1 and in 3, the zero eigencurve

in 4, the negative eigencurve in 5 and the zero eigencurve in 8 can be handled by Theorem 3.1, after changing

m2 to −m2.

Remark 3.5 The zero eigencurve in case 6 of Theorem 2.5 is given by the following theorem

Theorem 3.6 Assume a0 −μm1 ≡ 0 and b0 ≡ 0 . Assume also that m2 changes sign with
∫
Ω

m2ψ ≡ 0 . Then

0 = inf
u∈U

∫
Ω
〈A∇u,∇u〉+

∫
Ω
〈a,∇u〉u− Qu(Wu)∫

Ω m2u2
. (3.4)
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Formula (3.4) in the selfadjoint case was established in [4] . It is also proved in [4] , in that case, that the

infimum is never achieved.

The proofs of Theorem 3.1 and Theorem 3.6 follow respectively from Theorem 3.1 and Theorem 3.6 in

[3] by taking L − μm1 instead of L .

Remark 3.7 In the selfadjoint case, the minimum of the Rayleigh quotient is achieved at the eigenfunction.

In the nonselfadjoint case, the minimum in (3.1) is achieved after multiplying the eigenfunction by a suitable

function
√

G . This function G is introduced in the following Lemma 3.8.

Lemma 3.8 [3] Let u ∈ C0,1(Ω) with u > 0 on Ω . Then the problem

−div(u2(A∇G + aG)) = 0 on Ω, 〈u2(A∇G + aG), ν〉 = 0 on ∂Ω, (3.5)

has a solution G ∈ W (Ω) , which is unique up to a multiplicative constant and which satisfies G > 0 on Ω .

4. Continuity and differentiability of the principal eigencurves

The assumptions on the weights and on the operators L and B in this section are those of Section 3,

with in addition a0 − μm1 > 0 a.e. We will denote by D := {μ ∈ R; a0 − μm1 > 0} . Our purpose in this

section is to study the continuity and the differentiability of the principal eigencurve μ → λ�(μ) in D . In the

particular case where m2 ≡ 1, some of the results of this section are contained in Lemma 2.5 of [3].

Proposition 4.1 The function μ → λ�(μ) is concave and continuous in D .

Proof. For μ1 , μ2 ∈ D and t ∈ (0, 1), we have

λ�(tμ1 + (1 − t)μ2) = min
u∈U

Λ(u) − Qu(Wu) +
∫

∂Ω
b0u

2 − (tμ1 + (1 − t)μ2)
∫
Ω

m1u
2∫

Ω
m2u2

≥ t min
u∈U

Λ(u) − Qu(Wu) +
∫

∂Ω
b0u

2 − μ1

∫
Ω

m1u
2∫

Ω
m2u2

+ (1 − t)min
u∈U

Λ(u) − Qu(Wu) +
∫

∂Ω b0u
2 − μ2

∫
Ω m1u

2∫
Ω

m2u2

= tλ�(μ1) + (1 − t)λ�(μ2).

Thus μ → λ�(μ) is concave in D , then the continuity of μ → λ�(μ) in D follows from the concavity. �

Next we study the continuity of μ → u�(μ) in D , where u�(μ) is a principal eigenfunction associated to

λ�(μ).
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Theorem 4.2 Let μ, μ0 ∈ D . And let u�(μ) be a principal eigenfunction associated to λ�(μ) such that

u�(μ) > 0 and ‖u�(μ)‖H1(Ω) :=
[∫

Ω
〈A∇u�(μ),∇u�(μ)〉 +

∫
Ω
(u�(μ))2

]1/2 = 1 . Then u�(μ) → u�(μ0) in

H1(Ω) as μ → μ0 , where u�(μ0) is a principal eigenfunction associated to λ�(μ0) .

Proof. (λ�(μ), u�(μ)) is a solution of problem (Pμ). Thus for all v ∈ H1(Ω), we have

∫
Ω

〈A∇u�(μ),∇v〉 +
∫

Ω

〈a,∇u�(μ)〉v +
∫

∂Ω

b0u
�(μ)v +

∫
Ω

(a0 − μm1)u�(μ)v

= λ�(μ)
∫

Ω

m2u
�(μ)v.

(4.1)

u�(μ) is bounded in H1(Ω). So, for a subsequence, u�(μ) → u weakly in H1(Ω) and strongly in L2(Ω).

Passing to the limit in (4.1), we obtain

∫
Ω

〈A∇u,∇v〉 +
∫

Ω

〈a,∇u〉v +
∫

∂Ω

b0uv +
∫

Ω

(a0 − μ0m1)uv = λ�(μ0)
∫

Ω

m2uv. (4.2)

Taking v = u�(μ) in (4.1), we obtain

∫
Ω

〈A∇u�(μ),∇u�(μ)〉 +
∫

Ω

〈a,∇u�(μ)〉u�(μ) +
∫

∂Ω

b0(u�(μ))2 +
∫

Ω

(a0 − μm1)(u�(μ))2

= λ�(μ)
∫

Ω

m2(u�(μ))2,

which implies that

1 +
∫

Ω

〈a,∇u�(μ)〉u�(μ) +
∫

∂Ω

b0(u�(μ))2 +
∫

Ω

(a0 − 1 − μm1)(u�(μ))2 = λ�(μ)
∫

Ω

m2(u�(μ))2. (4.3)

Passing to the limit in (4.3), we obtain

1 +
∫

Ω

〈a,∇u〉u +
∫

∂Ω

b0u
2 +

∫
Ω

(a0 − 1 − μm1)u2 = λ�(μ0)
∫

Ω

m2u
2. (4.4)

For v = u in (4.2), we have

∫
Ω

〈A∇u,∇u〉+
∫

Ω

u2 +
∫

Ω

〈a,∇u〉u +
∫

∂Ω

b0u
2 +

∫
Ω

(a0 − 1 − μ0m1)u2

= λ�(μ0)
∫

Ω

m2u
2.

(4.5)

By (4.4) and (4.5), we have

‖u‖2
H1(Ω) =

∫
Ω

〈A∇u,∇u〉+
∫

Ω

u2 = 1.

Thus u �≡ 0 and by (4.2), u is a principal eigenfunction associated to λ�(μ0). By the simplicity of λ�(μ0), we

have u = u�(μ0), where ‖u�(μ0)‖H1(Ω) = 1. Finally by the uniform convexity of H1(Ω), one concludes that
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u�(μ) → u�(μ0) in H1(Ω). �

Now we study the differentiability of μ → λ�(μ).

Proposition 4.3 The function μ → λ�(μ) is differentiable in D with

(λ�)
′
(μ) = −

∫
Ω

m1(ũ(μ))2∫
Ω

m2(ũ(μ))2
,

where ũ(μ) satisfies the conditions of the following lemma

Lemma 4.4 Let μ, μ0 ∈ D , and let u�(μ) be an eigenfunction associated to λ�(μ) such that u�(μ) > 0 , with

‖u�(μ)‖H1(Ω) = 1 . And let G�(μ) be the function provided by Lemma 3.8 for u = u�(μ) . If ‖G�(μ)‖H1(Ω) = 1 ,

then G�(μ) → G�(μ0) strongly in L2(Ω) and ũ(μ) := u�(μ)
√

G�(μ) → ũ(μ0) := u�(μ0)
√

G�(μ0) strongly in

L2(Ω) as μ → μ0 .

Proof. [Proof of Lemma 4.4.] Assume that p > max(2, N). By Theorem 4.2, we have u�(μ) → u�(μ0)

strongly in H1(Ω) as μ → μ0 . The equation

Lu�(μ) − μm1(x)u�(μ) = λ�(μ)m2(x)u�(μ) in Ω

implies that

|div(A∇u�(μ))|2 + |u�(μ)|2 = |(λ�(μ)m2(x) + μm1(x) − a0)u�(μ) − 〈a,∇u�(μ)〉|2 + |u�(μ)|2 in Ω.

Integrating and using the Hölder inequality, we obtain ‖u�(μ)‖W2,p(Ω) := (|div(A∇u�(μ))|2 + |u�(μ)|2) 1
2 ≤ cμ,

where μ → cμ is a continuous function in D . Thus u�(μ) is bounded in W 2,p(Ω). So, for a subsequence,

u�(μ) → u� weakly in W 2,p(Ω) and strongly in C(Ω̄) as μ → μ0 . Moreover u�(μ) → u� strongly in H1(Ω)

as μ → μ0 . By unicity of the limit, we have u� = u�(μ0). Consequently u�(μ) → u�(μ0) strongly in C(Ω̄).

On the other hand, G�(μ) is bounded in H1(Ω). So, for a subsequence, G�(μ) → G� weakly in H1(Ω) and

strongly in L2(Ω). By (3.5), we have for all v ∈ H1(Ω)

∫
Ω

(u�(μ))2〈A∇G�(μ),∇v〉 +
∫

Ω

(u�(μ))2〈aG�(μ),∇v〉 = 0.

Passing to the limit, we obtain

∫
Ω

(u�(μ0))2〈A∇G�,∇v〉 +
∫

Ω

(u�(μ0))2〈aG�,∇v〉 = 0.

One deduces by Lemma 3.8 that G� = G�(μ0) and G�(μ) → G�(μ0) strongly in L2(Ω). Thus ũ(μ) → ũ(μ0)

strongly in L2(Ω). �
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Proof. [Proof of Proposition 4.3.] Let ũ(μ) := u�(μ)
√

G�(μ), where u�(μ) is an eigenfunction associated

to λ�(μ) such that u�(μ) > 0 and ‖u�(μ)‖H1(Ω) = 1. And G�(μ) is the function provided by Lemma 3.8 for

u = u�(μ) with ‖G�(μ)‖H1(Ω) = 1. By Remark 3.7, we have

λ�(μ) =
Λ(ũ(μ)) − Qũ(μ)(Wũ(μ)) +

∫
∂Ω

b0(x)(ũ(μ))2 − μ
∫
Ω

m1(ũ(μ))2∫
Ω

m2(ũ(μ))2

≤ Λ(ũ(μ0)) − Qũ(μ0)(Wũ(μ0)) +
∫

∂Ω
b0(x)(ũ(μ0))2 − μ

∫
Ω

m1(ũ(μ0))2∫
Ω

m2(ũ(μ0))2

=
Λ(ũ(μ0)) − Qũ(μ0)(Wũ(μ0)) +

∫
∂Ω

b0(x)(ũ(μ0))2 − μ0

∫
Ω

m1(ũ(μ0))2∫
Ω

m2(ũ(μ0))2

+ (μ0 − μ)

∫
Ω m1(ũ(μ0))2∫
Ω

m2(ũ(μ0))2

= λ�(μ0) + (μ0 − μ)

∫
Ω m1(ũ(μ0))2∫
Ω

m2(ũ(μ0))2
.

In the same way, we have

λ�(μ0) ≤ λ�(μ) + (μ − μ0)

∫
Ω

m1(ũ(μ))2∫
Ω

m2(ũ(μ))2
.

Thus

(μ0 − μ)

∫
Ω

m1(ũ(μ))2∫
Ω

m2(ũ(μ))2
≤ λ�(μ) − λ�(μ0) ≤ (μ0 − μ)

∫
Ω

m1(ũ(μ0))2∫
Ω

m2(ũ(μ0))2
.

Dividing by μ0 − μ . Letting μ → μ0 and using the Lemma 4.4, we obtain the result. �
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Département de Mathématiques et Informatique
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