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Direct and inverse theorems for the Bézier variant of certain

summation-integral type operators

Asha Ram Gairola and P. N. Agrawal

Abstract

Recently, the Bézier variant of some well known operators were introduced (cf. [8]–[9])and their rates

of convergence for bounded variation functions have been investigated (cf. [2], [10]). In this paper we

establish direct and inverse theorems for the Bézier variant of the operators Mn introduced in [5] in terms

of Ditzian-Totik modulus of smoothness ωϕλ (f, t)(0 � λ � 1). These operators include the well known

Baskakov-Durrmeyer and Szász-Durrmeyer type operators as special cases.

Key Words: Degree of approximation, Ditzian-Totik modulus of continuity.

1. Introduction

In order to approximate Lebesgue integrable functions on the interval [0,∞), Gupta and Mohapatra [5]
considered the operators

Mn(f, x) =
∞∑

k=0

pn,k(x, c)

∞∫
0

bn,k(t, c)f(t) dt, (1.1)

where pn,k(x, c) = (−1)k xk

k!
ϕ(k)

n,c(x), bn,k(t, c) = (−1)k+1 tk

k!
ϕ(k+1)

n,c (t) and

(i) for c > 0, ϕn,c(x) = (1 + cx)−n/c and x ∈ [0,∞);

(ii) for c = 0, ϕn,c(x) = e−nx and x ∈ [0,∞).

Here we observe that, for the case c > 0, the operators Mn reduce to Baskakov-Durrmeyer operators; and
when c = 0 these become Szász-Durrmeyer type operators. Some approximation properties of these operators
were studied in [6]. The rate of convergence by the operators Mn for the particular value c = 1 was studied in

[4].
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For α � 1, and f ∈ LB [0,∞), the class of all bounded Lebesgue integrable functions on the positive real
line, the Bézier variant Mn,α of the operators Mn is defined by

Mn,α(f, x) =
∞∑

k=0

Qα
n,k(x, c)

∞∫
0

bn,k(t, c)f(t) dt, (1.2)

where Qα
n,k(x, c) = Jα

n,k(x, c) − Jα
n,k+1(x, c) with Jn,k(x, c) =

∞∑
ν=k

pn,ν(x, c).

For α = 1, the operators Mn,α reduce to the operators Mn.

In order to make the paper self contained we recall the definitions of the unified K -functional and the
Ditzian-Totik modulus of smoothness (cf. [3]).

Let ϕ(x) =
√

x(1 + cx), 0 � λ � 1, then

ωϕλ(f, t) = sup
0<h�t

sup
x−hϕλ(x)/2�0

∣∣Δ̃hϕλ(x)f(x)
∣∣

= sup
0<h�t

sup
x−hϕλ(x)/2�0

∣∣∣∣f
(

x +
hϕλ(x)

2

)
− f

(
x − hϕλ(x)

2

)∣∣∣∣ ,
where 0 � λ � 1, ϕ(x) is an admissible weight function of Ditzian-Totik modulus of smoothness and the
corresponding K -functional is defined as

Kϕλ(f, t) = inf
g∈Wλ

{
‖f − g‖ + t‖ϕλg′‖

}
, t ∈ (0,∞),

where Wλ =
{
g : g ∈ ACloc, ‖ϕλg′‖ < ∞

}
.

It is well known that (cf. [3]) there exists a constant C > 0 such that

C−1ωϕλ(f, t) � Kϕλ(f, t) � C ωϕλ(f, t). (1.3)

Our main result is the following theorem.

Theorem 1 Let f ∈ LB [0,∞), ϕ(x) =
√

x(1 + cx), 0 � λ � 1, c � 0 and 0 < β < 1. Then, there holds the

implication (i) ⇔ (ii) in the following statements:

(i)
∣∣Mn,α(f, x) − f(x)

∣∣ = O
(

α1/2ϕ1−λ(x)√
n

)

(ii) ωϕλ(f, x) = O(xβ).
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Corollary 1 For α = 1, λ = 0, and c = 0 we get, in particular, the following error estimate for the Szász-
Durrmeyer type operators, obtained in [7]:

∣∣Mn(f, x) − f(x)
∣∣ � ω

(
f,

√
x

n

)
.

Corollary 2 For α = 1, λ = 0, and c = 1, the following error estimate for the Baskakov Durrmeyer operators
is obtained as in [4]:

∣∣Mn(f, x) − f(x)
∣∣ � Cω

(
f,

√
x(1 + x)

n

)
.

Section 2 of this paper contains some definitions and auxiliary results. In Section 3 we establish our main
theorem. Further, the constant C is not the same at each occurrence.

2. Preliminaries

In this section we give some Lemmas and their corollaries which will be used in our main theorem.

Lemma 1 [5] For m ∈ N ∪ {0}, if we define the m-th order moment for the operators Mn by

μn,m(x, c) =
∞∑

k=0

pn,k(x, c)

∞∫
0

bn,k(t, c)(t − x)m dt

then

μn,0(x, c) = 1 μn,1(x, c) =
1 + cx

n − c

and

μn,2(x, c) =
2cx2(n + c) + 2x(n + 2c) + 2

(n − c)(n − 2c)
.

Also, there holds the following recurrence relation

[n − c(m + 1)]μn,m+1(x, c) = x(1 + cx)[μ(1)
n,m(x, c) + 2mμn,m−1(x, c)]

+ [(1 + 2cx)(m + 1) − cx]μn,m(x, c), n > c(m + 1).

Corollary 3 If c � 0 and K > 2, then for sufficiently large n, we have

μn,2(x, c) � Kϕ2(x)
n

. (2.1)

Lemma 2 For the functions Jn,k(x, c) and Qα
n,k(x, c) , we have

1 = Jn,0(x, c) > Jn,1(x, c) > ... > Jn,k(x, c) > Jn,k+1(x) > ... (2.2)
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0 < Qα
n,k(x, c) < α pn,k(x, c), α � 1, (2.3)

M ′
n,α(1, x) = 0 (2.4)

∣∣M ′
n,α(f, x)

∣∣ � α

∣∣∣∣∣
∞∑

k=0

(
Jα−1

n,k (x, c) − Jα−1
n,k+1(x)

)
J ′

n,k+1(x) × (2.5)

×
∞∫
0

f(t)bn,k(t, c) dt + M ′
n(f, x)

∣∣∣∣∣.
Proof. (2.2-2.4) are easy to prove therefore we leave their proofs. Now, from definition of Qα

n,k(x, c) and in

view of the inequality
|aα − bα| � α|a− b| with 0 � a, b � 1 and α � 1 (2.6)

(cf. [9], Lemma 3) we have

Qα
n,k(x, c) = Jα

n,k(x, c)− Jα
n,k+1(x, c)

� α (Jn,k(x, c) − Jn,k+1(x, c)) = α pn,k(x, c).

Again,

M ′
n,α(f, x) =

∞∑
k=0

Q′α
n,k(x, c)

∞∫
0

bn,k(t, c)f(t) dt

= α

∞∑
k=0

{
Jα−1

n,k (x, c)J ′
n,k(x, c) − Jα−1

n,k+1(x, c)J ′
n,k+1(x, c)

}
×

×
∞∫
0

bn,k(t, c)f(t) dt

= α

∞∑
k=0

[ {
Jα−1

n,k (x, c) − Jα−1
n,k+1(x, c)

}
J ′

n,k+1(x, c) ×

×
∞∫
0

bn,k(t, c)f(t) dt

+
{
J ′

n,k(x, c) − J ′
n,k+1(x, c)

}
Jα−1

n,k (x, c)

∞∫
0

bn,k(t, c)f(t) dt
]
.

�

Now, (2.5) follows in view of (2.2).

Corollary 4 From (2.1) and (2.3), it follows that

Mn,α

(
(t − x)2, x

)
� α

Cϕ2(x)
n

, C > 2.
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Lemma 3 For the functions Am,n(x) given by

Am,n(x) ≡ nm
∞∑

ν=0

( ν

n
− x

)m

pn,ν(x, c),

we have A0,n(x) = 1, A1,n(x) = 0 and there holds the recurrence relation

Am+1,n(x) = ϕ2(x)
[
A′

m,n(x) + n mAm−1,n(x)
]
, (2.7)

where m � 1, x ∈ [0,∞) and ϕ2(x) = x(1 + cx).

Corollary 5 From the recurrence relation (2.7) there holds

A2m,n(x) � Cm nmϕ2m(x), ∀m ∈ N0,

where Cm is a constant that depends on m.

Using induction on m in the recurrence relation (2.7) this result follows easily hence details are omitted.

Lemma 4 For f ∈ Wλ, ϕ(x) =
√

x(1 + cx), 0 � λ, t, x > 0, we have∣∣∣∣∣∣
t∫

x

f ′(u) du

∣∣∣∣∣∣ � 2
(
x−λ/2(1 + ct)−λ/2 + ϕ−λ(x)

)
|t − x|

∥∥ϕλf ′∥∥.

Proof. In view of Hölder’s inequality, we have∣∣∣∣∣∣
t∫

x

f ′(u) du

∣∣∣∣∣∣ �
∥∥ϕλf ′∥∥

∣∣∣∣∣∣
t∫

x

du

ϕλ(u)

∣∣∣∣∣∣

�
∥∥ϕλf ′∥∥|t − x|1−λ

∣∣∣∣∣∣
t∫

x

du

ϕ(u)

∣∣∣∣∣∣
λ

.

Since, ∣∣∣∣∣∣
t∫

x

du

ϕ(u)

∣∣∣∣∣∣ �

∣∣∣∣∣∣
t∫

x

du√
u

∣∣∣∣∣∣
(

1√
1 + cx

+
1√

1 + ct

)

and ∣∣∣∣∣∣
t∫

x

du√
u

∣∣∣∣∣∣ � 2|t − x|√
x

,

using the inequality |a + b|p � |a|p + |b|p, 0 � p � 1, we get∣∣∣∣∣∣
t∫

x

f ′(u) du

∣∣∣∣∣∣ �
∥∥ϕλf ′∥∥|t − x| 2λ

xλ/2

∣∣∣∣∣ 1√
1 + cx

+
1√

1 + ct

∣∣∣∣∣
λ

�
∥∥ϕλf ′∥∥|t − x| 2λ

xλ/2

(
(1 + ct)−λ/2 + (1 + cx)−λ/2

)
.
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Hence the lemma follows. �

Lemma 5 For any non negative real number m, there holds the ineguality

Mn,α

(
(1 + c t)−m, x

)
� Km(1 + c x)−m, (2.8)

where Km is a constant depending on m only.

Proof. For c = 0, there is nothing to prove. Hence we assume c > 0. From the definition of Mn,α , we get

Mn,α

(
(1 + c t)−m, x

)
=

∞∑
k=0

Qα
n,k(x, c)

k∏
i=0

(n + ci)

k!

∞∫
0

tk

(1 + ct)
n
c +k+1+m

dt,

=
∞∑

k=0

Qα
n,k(x)

Γ(n
c

+ m)
Γ(n

c + m + k + 1)

k∏
i=0

(n + ci)

ck+1
.

Now,

Qα
n,k(x) = Jα

n,k(x) − Jα
n,k+1(x)

=

( ∞∑
ν=k

xν

ν !
n(n + c)...(n + c(ν − 1))(1 + c x)

−n
c −ν

)α

−
( ∞∑

ν=k+1

xν

ν !
n(n + c)...(n + c(ν − 1))(1 + c x)

−n
c −ν

)α

� α(1 + c x)−
n
c −k

k!
n(n + c)...(n + c(k − 1)) (using(2.6))

� α(1 + cx)−m

(
α(1 + c x)m−n

c −k

k!
n(n + c)...(n + c(k − 1))

)
.

Hence, we have the estimate

Mn,α

(
(1 + c t)−m, x

)

� α(1 + c x)−m
∞∑

k=0

Γ(n
c + m)

k−1∏
i=0

(n + ci)2(n + ck)

Γ(n
c

+ m + k + 1)ck+1
×

×(1 + c x)m−n
c −k

k!
. (2.9)

The series in the right hand side of (2.9) is convergent.

This follows the lemma. �
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Lemma 6 For the functions Jn,k(x, c) and pn,k(x, c), there hold the relations:

(i) ϕ2(x)
∑∞

ν=k p′n,ν(x) =
∑∞

ν=k(ν − nx)pn,ν(x, c) ;

(ii) (1 + cx)J ′
n,k(x, c) + nJn,k(x, c) = nJn,k−1(x, c) + cxJ ′

n,k−1(x, c),

where c � 0, ϕ2(x) = x(1 + cx).

Proof. The relation (i) is easy to prove, hence the proof is omitted.

We consider the case c > 0 as (ii) is true for c = 0. We have

I =
∞∑

ν=k

νpn,ν(x, c)

=
∞∑

ν=k

(−1)ν(xν)
(ν − 1)!

∂ ν

∂xν
(1 + cx)−n/c

= − cx

1 + cx

∞∑
ν=k

(−1) ν−1(xν−1)
(ν − 1)!

∂ ν−1

∂xν−1
(1 + cx)−n/c

=
cx

1 + cx

∞∑
ν=k−1

pn,ν(x, c)
(n

c
+ m

)

=
cx

1 + cx

[n

c
Jn,k−1(x, c) + x(1 + cx)J ′

n,k−1(x, c) + nxJn,k−1(x, c)
]

= nxJn,k−1(x, c) + cx2J ′
n,k−1(x, c).

This together (i) gives (ii). �

Corollary 6 From (i), we get

x(1 + cx)J ′
n,k(x, c) =

∞∑
ν=k

(ν − nx)pn,ν(x, c)

=
∞∑

ν=k+1

(ν − nx)pn,ν(x, c) + kpn,k(x, c)− nxpn,ν(x, c)

= cx2J ′
n,k(x, c) + kpn,k(x, c) (Using(ii)).

Hence, we have

J ′
n,k(x, c) =

k

x
pn,k(x, c).

We now establish a Bernstein type lemma for the operators Mn,α which is useful while establishing the inverse

theorem.

Lemma 7 For the operators Mn,α there hold the estimates:
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(i) |ϕλ(x)M ′
n,α(f, x)| � C α‖ϕλf ′‖;

(ii) |ϕλ(x)M ′
n,α(f, x)| � C αϕλ−1(x)

√
n‖f‖,

where λ � 1.

Proof. In view of (2.4) and (2.5), we can write

M ′
n,α(f, x) = M ′

n,α(f, x) − f(x)M ′
n,α(1, x)

= M ′
n,α

( t∫
x

f ′(u) du, x
)

� α

∣∣∣∣∣
∞∑

k=0

(
Jα−1

n,k (x, c)− Jα−1
n,k+1(x)

)
J ′

n,k+1(x) ×

×
∞∫
0

( t∫
x

f ′(u) du
)
bn,k(t, c) dt

∣∣∣∣∣ +

∣∣∣∣∣M ′
n(

( t∫
x

f ′(u) du
)
, x)

∣∣∣∣∣
:= E1 + E2, say. (2.10)

Now, we find estimates for E1 and E2 separately as follows. In view of the inequality (2.6) and Corallary 6,
we have

E1 = α

∣∣∣∣∣
∞∑

k=0

(
Jα−1

n,k (x, c) − Jα−1
n,k+1(x)

)
J ′

n,k+1(x)

∞∫
0

( t∫
x

f ′(u) du
)
bn,k(t, c) dt

� α

x

∞∑
k=0

kpn,k(x, c)

∞∫
0

∣∣∣
t∫

x

f ′(u) du
∣∣∣bn,k(t, c) dt

� 2α

x

∞∑
k=0

kpn,k(x, c) ×

×
∞∫
0

(
x−λ/2(1 + ct)−λ/2 + ϕ−λ(x)

)
|t − x|

∥∥ϕλf ′∥∥bn,k(t, c) dt
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Using Lemma 4, we get

E1 � 2α‖ϕλf ′∥∥
x1+λ/2

∞∑
k=0

kpn,k(x, c) ×

×
∞∫
0

(1 + ct)−λ/2|t − x|bn,k(t, c) dt +

+
2α‖ϕλf ′∥∥
xϕλ(x)

∞∑
k=0

kpn,k(x, c)

∞∫
0

|t− x|bn,k(t, c) dt

= E11 + E12, say. (2.11)

Applying Hölder’s inequality, we get

E11 � 2α‖ϕλf ′∥∥
x1+λ/2

∞∑
k=0

kpn,k(x, c)×

×
( ∞∫

0

(1 + ct)−λbn,k(t, c) dt
)1/2( ∞∫

0

(t − x)2bn,k(t, c) dt
)1/2

.

Now, it can be easily shown that
∞∫
0

(t − x)2bn,k(t, c) dt = O(x2). Therefore, we get the following estimate for

E11 :

E11 �
2α‖ϕλf ′∥∥

xλ/2

∞∑
k=0

kpn,k(x, c)
( ∞∫

0

(1 + ct)−λbn,k(t, c) dt
)1/2

�
2α‖ϕλf ′∥∥

xλ/2

( ∞∑
k=0

k2pn,k(x, c)
)1/2( ∞∑

k=0

pn,k(x, c)

∞∫
0

(1 + ct)−λbn,k(t, c) dt
)1/2

�
2α‖ϕλf ′∥∥

xλ/2

1
(1 + cx)λ/2

(in view of Lemma 5).

Next, using Corallary 4, and Hölder’s inequality for summation, we get

E12 �
2α‖ϕλf ′∥∥
xϕλ(x)

( ∞∑
k=0

k2pn,k(x, c)
)1/2( ∞∑

k=0

pn,k(x, c)

∞∫
0

(t − x)2bn,k(t, c) dt
)1/2

�
2α‖ϕλf ′∥∥

ϕλ(x)
.

Combining, the estimates for E11 and E12, we obtain

E1 � Cα‖ϕλf ′∥∥
ϕλ(x)

. (2.12)
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Again, the estimate for E2 are obtained along the lines of E1 for α = 1. Hence, we get (i).

Now, we have as in the proof of part (i)

M ′
n,α(f, x) = � α

∣∣∣∣∣
∞∑

k=0

(
Jα−1

n,k (x, c) − Jα−1
n,k+1(x)

)
J ′

n,k+1(x) ×

×
∞∫
0

f(t)bn,k(t, c) dt

∣∣∣∣∣ +

∣∣∣∣∣M ′
n(f(t), x)

∣∣∣∣∣
:= F1 + F2, say. (2.13)

For F1, we get the estimate

F1 � α‖f‖
∣∣∣∣∣

∞∑
k=0

(
Jα−1

n,k (x, c) − Jα−1
n,k+1(x)

)
J ′

n,k+1(x)

� α‖f‖ n

ϕ2(x)

∞∑
ν=k

∣∣∣ν
n
− x

∣∣∣ pn,ν(x, c)

� α‖f‖
√

n

ϕ(x)
Using Corrollary 3. (2.14)

Similar estimate is established for F2 as it is obtained by putting α = 1 in the estimate of F1.

Hence the Lemma is established from (2.10) to (2.14). �

3. Proof of the main theorem

Proof. By the definition of Kϕλ(f, t) for fixed n, x, λ, we can choose g = gn,x,λ ∈ Wλ such that

‖f − g‖ +
α1/2ϕ1−λ(x)√

n

∥∥ϕλg′
∥∥ � 2Kϕλ

(
f,

α1/2ϕ1−λ(x)√
n

)
. (3.1)

Since, Mn,α is constant preserving, we can write

|Mn,α(f, x) − f(x)| � 2‖f − g‖ + |Mn,α(g, x) − g(x)|. (3.2)
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Using the representation g(t) = g(x) +

t∫
x

g′(u) du, and in view of Lemma 4, we have

|Mn,α(g, x) − g(x)| =
∣∣∣Mn,α

( t∫
x

g′(u) du
)∣∣∣

� 2
∥∥ϕλg′

∥∥[
ϕ−λ(x)Mn,α(|t − x|, x)

+x−λ/2Mn,α

( |t − x|
(1 + c t)λ/2

, x

)]

:= 2
∥∥ϕλg′

∥∥[J1 + J2]. (3.3)

Now, in view of Schwarz’s inequality and Corollary 4, we get

J1 = ϕ−λ(x)
∞∑

k=0

Qα
n,k(x, c)

∞∫
0

bn,k(t, c)|t− x| dt

� α1/2ϕ−λ(x)

( ∞∑
k=0

Qα
n,k(x, c)

∞∫
0

bn,k(t, c) dt

)1/2

×

×
( ∞∑

k=0

Qα
n,k(x, c)

∞∫
0

bn,k(t, c)(t − x)2 dt

)1/2

� α1/2 Kϕ1−λ(x)√
n

. (3.4)

Next, using Schwarz’s inequality, Corollary 4 and Lemma 5 we get

J2 = x−λ/2Mn,α

( |t − x|
(1 + c t)λ/2

, x

)

�
(
Mn,α

(
(t − x)2, x

))1/2 (
Mn,α

(
(1 + c t)−λ, x

))1/2

� x−λ/2α1/2(1 + c x)−λ/2 ϕ(x)√
n

= Cα1/2 ϕ1−λ(x)√
n

. (3.5)

Hence, from (3.4) and (3.5) we have the estimate

|Mn,α(g, x) − g(x)| � Cα1/2 ϕ1−λ(x)√
n

∥∥ϕλg′
∥∥. (3.6)

Thus, from (3.3)–(3.6) the implication (ii) ⇒ (i) follows.
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Proof of the implication (i) ⇒ (ii).

We have ∣∣Δ̃hϕλ(x)f(x)
∣∣ �

∣∣Mn,α(z) − f(z)
∣∣ +

∣∣Mn,α(x) − f(x)
∣∣ +

∣∣Δ̃hϕλ(x)Mn,α(f, x)
∣∣

� 2Cδβ
x,h +

∣∣Δ̃hϕλ(x)Mn,α(f, x)
∣∣,

where δx,h = max{y, z}, y = x − hϕλ(x)/2 and z = x + hϕλ(x)/2.

We define a weighted Steklov type average function g as

g(x) :=
1

δϕλ(x)

δ
2ϕλ(x)∫

−δ
2 ϕλ(x)

f(x + u) du λ � 0.

Then, we obtain

(g − f)(x) =
1

δϕλ(x)

δ
2ϕλ(x)∫

−δ
2 ϕλ(x)

[f(x + u) − f(x)] du

� Cωϕλ(x)(f, δ).

Also, it follows that

|g′(x)| =
∣∣∣ 1
δϕλ(x)

(
f
(
x +

δ

2
ϕλ(x)

)
− f

(
x − δ

2
ϕλ(x)

)∣∣∣
� 1

δϕλ(x)
ωϕλ(x)(f, δ). (3.7)

In view of Lemma 7(i), it follws that

∣∣M ′
n,α(g, x)

∣∣ � C
α

δϕλ(x)
ωϕλ(x)(f, δ). (3.8)

Using Bernstein type inequalities, and then using (3.7) and (3.8), we get the estimate∣∣∣Δ̃hϕλ(x)Mn,α(f, x)
∣∣∣ � hϕλ(x)

(
|M ′

n,α(f − g, x)|+ |M ′
n,α(g, x)|

)
� Cαhϕλ(x)

(
ϕ−1(x)

√
n‖f − g‖ + ‖g′‖

)
� C αh

(
ϕλ−1

√
n +

1
δ

)
ωϕλ(x)(f, δ).

Consequently, we obtain

ωhϕλ(x)(f, x) � 2Cδβ
x,h + C αh

(
ϕλ−1

√
n +

1
δ

)
ωϕλ(x)(f, δ).

Choosing δx,h = δ and following the argument of [1] the implication (i) ⇒ (ii) follows. �
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Remark 1 From (3.1)–(3.6), we get

|Mn,α(f, x) − f(x)| � CKϕλ

(
f,

α1/2ϕ1−λ(x)√
n

)
.

In view of (1.3), this further gives

|Mn,α(f, x) − f(x)| � ωϕλ

(
f,

α1/2ϕ1−λ(x)√
n

)
.
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