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Weak Hardy space and endpoint estimates for singular integrals on

space of homogeneous type

Yong Ding and Xinfeng Wu

Abstract

We develop the theory of weak Hardy spaces H1,∞ on space of homogeneous type. As some applications,

we show that certain singular integral operators and fractional integral operators are bounded from H1,∞ to

L1,∞ and L
1

1−α
,∞ , respectively. We give also the endpoint estimates for Nagel and Stein’s singular integrals

studied in [10].
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1. Introduction and the main nesults

The theory of weak Hardy spaces on Rn was first studied in [3] as the special Hardy-Lorentz spaces,
which are the intermediate spaces between two Hardy spaces. The atomic decomposition characterization of
H1,∞(Rn) was given by R. Fefferman and Soria [4]. In 1991, Liu established weak Hp spaces on Homogeneous
groups [9]. Recently, Ding and Lan [2] studied weak anisotropic Hardy spaces.

The theory of weak Hardy spaces is very important in Harmonic Analysis since it can sharpen the endpoint
weak type estimate for variant important operators (see, for example, [4]). Recently, Nagel and Stein [10] studied
certain singular integral operators on an unbounded model polynomial domains, which were applied to some
problems in several complex variables (see [11]). Motivated by considering the endpoint weak type estimate for

Nagel and Stein’s singular integrals, in this paper, we want to develop the weak Hardy space H1,∞ on general
space of homogeneous type satisfying certain reverse doubling condition. Our theory is so general that it can
be applied to variant different settings such as Euclidean spaces with A∞ -weights, Ahlfors n-regular metric
measure spaces, Lie groups of polynomial growth and Carnot-Carathéodory spaces with doubling measure (see
[7]). We remark that the corresponding Hardy spaces in this setting were studied in [5, 6, 7].

First we recall the notions of spaces of homogeneous type in the sense of Coifman and Weiss [1].

Definition 1.1 Let (X , d) be a metric space with a regular Borel measure μ such that all balls defined by d
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have finite and positive measures. The quasi metric satisfies the triangle inequality

d(x, z) ≤ τ (d(x, y) + d(y, z)). (1.1)

For any x ∈ X and r > 0 , set B(x, r) = {y ∈ X : d(x, y) < r} . (X, d, μ) is called a space of homogeneous type
if there exists a constant C1 ≥ 1 such that for all x ∈ X and r > 0 ,

μ(B(x, 2r)) ≤ C1μ(B(x, r)). (1.2)

We also assume that μ has the following reverse doubling condition: there exists C > 1 such that for all x ∈ X
and r > 0

μ(B(x, 2r)) ≥ Cμ(B(x, r)). (1.3)

It can be shown from (1.2) and (1.3) that there exist constants 1 < d ≤ D < ∞ such that for all x ∈ X
and s > 1

sdμ(B(x, r)) ≤ μ(B(x, sr)) ≤ sDμ(B(x, r)). (1.4)

Denote
V (x, y) = μ(B(x, d(x, y))).

It is easy to see

V (x, y) ≈ V (y, x). (1.5)

Now, let us recall some definitions. The first one is (ε1, ε2, ε3)-approximately of the identity (in short,
(ε1, ε2, ε3)-AOTI), which was used to define Hardy spaces in [5].

Definition 1.2 ((ε1, ε2, ε3)-AOTI) Let ε1 ∈ (0, 1], ε2 > 0 and ε3 > 0 . A sequence {Sk}k∈Z of bounded

linear integral operators on L2(X ) is said to be an approximation of the identity of order (ε1, ε2, ε3) (in short,
(ε1, ε2, ε3)-AOTI), if there exists a constant C4 > 0 such that for all k ∈ Z and all x, x′, y and y′ ∈ X ,
Sk(x, y) , the integral kernel of Sk is a function from X × X into C satisfying

(i) |Sk(x, y)| ≤ C4
1

V2−k (x)+V2−k (y)+V (x,y)
2−kε2

(2−k+d(x,y))ε2 ;

(ii) |Sk(x, y) − Sk(x′, y)| ≤ C4
d(x,x′)ε1

(2−k+d(x,y))ε1
1

V2−k (x)+V2−k (y)+V (x,y)
2−kε2

(2−k+d(x,y))ε2

for d(x, x′) ≤ (2−k + d(x, y))/2 ;

(iii) Property (ii) holds with x and y interchanged;

(iv) |[Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]| ≤ C4
d(x,x′)ε1

(2−k+d(x,y))ε1

d(y,y′)ε1

(2−k+d(x,y))ε1

× 1
V2−k (x)+V2−k (y)+V (x,y)

2−kε3

(2−k+d(x,y))ε3 for max{d(x, x′), d(y, y′)} ≤ (2−k + d(x, y))/3 ;

(v)
∫
X Sk(x, y)dy =

∫
X Sk(x, y)dx = 1 .
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Here and in the sequel, we write dx instead of dμ(x) for simplicity.

Definition 1.3 (Test function) Let x ∈ X , r ∈ (0,∞), β ∈ (0, 1] and γ ∈ (0,∞) . A function ϕ on X is said
to be a test function of type (x1, r, β, γ) if

(i) |ϕ(x)| ≤ C 1
μ(B(x,r+d(x,x1)))

(
r

r+d(x1,x)

)γ

for all x ∈ X ;

(ii) |ϕ(x) − ϕ(y)| ≤ C
(

d(x,y)
r+d(x1,x)

)β
1

μ(B(x,r+d(x,x1)))

(
r

r+d(x1,x)

)γ

for all x, y ∈ X satisfying d(x, y) ≤ (r +

d(x1, x))/2.

We denote by G(x1, r, β, γ) the set of all test functions of type (x1, r, β, γ). If ϕ ∈ G(x1, r, β, γ) we define
its norm by ‖ϕ‖G(x1,r,β,γ) := inf{C : (i) and (ii) hold} . The space G(x1, r, β, γ) is called the space of test

functions.

To give the definition of weak Hardy space H1,∞(X ), we recall the following definitions of maximal
functions. Let ε1 ∈ (0, 1] , ε2 > 0, ε3 > 0 and 0 < ε < min{ε1, ε2} and {Sk}k∈Z be an (ε1, ε2, ε3)-AOTI and

Sk(f)(x) =
∫
X

Sk(x, y)f(y)dy.

For f ∈ (Gε
0(β, γ))′ and β, γ ∈ (0, ε), the non-tangential maximal operator Mσ is defined by

Mσ(f)(x) := sup
k∈Z

sup
d(x,y)≤σ2−k

|Sk(f)(y)|.

The radial maximal operator M0 is defined by

M0f(x) := sup
k∈Z

|Sk(f)(x)|.

The grand maximal operator Mg is defined by

Mgf(x) := sup
{
|〈f, ϕ〉| : ϕ ∈ Gε

0(β, γ), ‖ϕ‖G(x,r,β,γ) ≤ 1 for some r > 0
}

.

Definition 1.4 Let ε1 ∈ (0, 1] , ε2 > 0 , ε3 > 0 , ε ∈ (0, min{ε1, ε2}) and {Sk}k∈Z be an (ε1, ε2, ε3)-AOTI. Let

p ∈ (0,∞] , σ ∈ (0,∞) and f ∈ (Gε
0(β, γ))′ with some β, γ ∈ (0, ε) . The weak Hardy spaces H1,∞ is defined by

H1,∞(X ) = {f ∈ (Gε
0(β, γ))′ : Mσf ∈ L1,∞(X )}.

The H1,∞ norm of f is defined by
‖f‖H1,∞(X ) := ‖Mσf‖L1,∞(X ).

Remark 1.1 It has been proved in [5, 6, 7] that the Hp(X ) can equivalently be defined via Littlewood-Paley
functions related to sub-Laplacians, or non-tangetial maximal functions and dyadic maximal functions. By
interpolation theory, we can replace Mα in the definition of H1,∞ by other maximal functions or Littlewood-
Paley functions as above.
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Remark 1.2 Let M denote the centered Hardy-Littlewood maximal operator on X defined by

M(f)(x) = sup
r>0

1
μ(B(x, r))

∫
B(x,r)

f(y)dy for f ∈ L1
loc(X ).

M is proved to be weak type (1, 1) in [1]. Since H1,∞(X ) can be characterized by radial maximal function
and M0(f)(x) � M(f)(x), we have the inclusion relationship

L1(X ) ⊂ H1,∞(X ) and ‖f‖H1,∞ � ‖f‖L1 . (1.6)

The first result in the paper is the following theorem.

Theorem 1.1 Given f ∈ H1,∞ , there exists a sequence of bounded functions {fk}∞k=−∞ with the following
properties:

(a) f − ∑
|k|≤N fk → 0 in the sense of distributions and |fk| ≤ C2k .

(b) Each fk may be further decomposed as fk =
∑∞

l=1 hkl in L1 , where the hkl satisfies:

(i) hkl is supported in a ball Bkl with {Bkl} having bounded overlap for each k .

(ii)
∫

Qkl
hkldx = 0.

(iii) ‖hkl‖L∞ ≤ C2k and
∑

l μ(Bkl) ≤ C12−k . Moreover, C1 is (up to an absolute constant) less than

the H1,∞ norm of f .

Conversely, if f is a distribution satisfying (a) and (i)-(iii) in (b), then f ∈ H1,∞ and ‖f‖H1,∞ ≤ cC1

(where c is some absolute constant).

Using this atom decomposition characterizations of H1,∞ , we can prove the endpoint weak type estimate for
certain singular integrals, which generalizes the result in [4].

Theorem 1.2 Suppose that Tf(x) = p.v.
∫
X K(x, y)f(y)dy is a bounded operator on L2(X ) with its kernel K

satisfies Dini’s condition,
∫ 1

0
(Γ(δ)/δ)dδ < ∞ , where

Γ(δ) = sup
d(y,z) �=0

∫
d(x,y)>δ−1d(y,z)

|K(x, y) − K(x, z)|dx.

Then for f ∈ H1,∞(X ) ,

|{x ∈ X : |Tf(x)| > α}| ≤ C‖f‖H1,∞(X )/α.

In particular, T is of weak type (1, 1) by (1.6).

For the fractional integrals Tα with α between 0 and 1, we have the following conclusion:
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Theorem 1.3 Suppose that Tαf(x) =
∫
X Kα(x, y)f(y)dy is a bounded operator from Lp0 (X ) to Lq0(X ) for

some 1 < p0 < q0 < ∞ satisfying 1
p0

− 1
q0

= α and 0 < α < 1 . If Kα satisfies the following regularity in the

second variable: there exists constants C, ε > 0 such that for all x, y, y′ ∈ X with d(y, y′) ≤ d(x, y)/2 and
x �= y ,

|Kα(x, y) − Kα(x, y′)| ≤ C
d(y, y′)ε

V (x, y)1−αd(x, y)ε
. (1.7)

Then for 0 < α < ε
D

, Tα is bounded from H1,∞(X ) to L
1

1−α ,∞(X ) . Moreover, there exists a constant C such
that for each λ > 0 ,

μ({x : |Tαf(x)| > λ}) ≤ C

(‖f‖H1,∞(X )

λ

) 1
1−α

.

In particular, Tα is of weak type (1, 1
1−α) by (1.6).

We also get the following H1(X ) → L
1

1−α (X ) estimate for Tα .

Theorem 1.4 Under the same conditions of Theorem 1.3, then

(1) there exists a constant C > 0 such that for all (1, q0)-atom a , ‖Tαa‖
L

1
1−α (X )

≤ C;

(2) if the kernel Kα satisfies regularity condition like (1.7) in the first variable, then Tα is bounded form

H1(X ) to L1/(1−α)(X ) .

Remark 1.3 If (1.7) holds for d(y, y′) ≤ d(x, y)/c with some c > 1, then the conclusions of Theorems 1.3 and
1.4 remain true.

Finally, we give an application of Theorem 1.2. In [10], Nagel and Stein considered a class of singular

integral operator T̃ on an unbounded model polynomial domain M , which initially is given as a map from

C∞
0 (M) to C∞(M). The distribution kernel K̃(x, y) of T̃ coincides with a C∞ function away from the diagonal

of M × M , and the following four properties are supposed to hold:

(a) If ϕ, ψ ∈ C∞
0 (M) have disjoint supports, then

〈T̃ϕ, ψ〉 =
∫

M×M

K̃(x, y)ϕ(y)ψ(x) dx dy.

(b) If ϕ is a normalized bump function associated to a ball of radius r , then |∂a
X T̃ϕ| � r−a . More

precisely, for each integer a ≥ 0, there is another integer b ≥ 0 and a constant Ma,b so that whenever ϕ is a
C∞ function supported in a ball B(x0 , r), then

sup
x∈M

ra|(∂a
X T̃ϕ)(x)| ≤ Ma,b sup

c≤b
sup

x∈B(x0,r)

rc |∂c
X(ϕ)|.

239



DING, WU

(c) If x �= y , then for every a ≥ 0

|∂a
X,Y K̃(x, y)| � d(x, y)−aV (x, y)−1, (1.8)

where d denotes the quasi metric on M and V (x, y) denotes the measure of ball B(x, d(x, y)).

(d) Properties (a) through (c) also hold with x and y interchanged. That is, these properties also hold

for the adjoint operator T̃ t defined by

〈T̃ tϕ, ψ〉 = 〈T̃ψ, ϕ〉.

Note that the measure on M is just the Lebesgue measure on C×R and the properties (1.2), (1.3) hold
in this setting (see [10, Section 2.1]). The smoothness condition (1.8) guarantees the required Dini’s condition
in Theorem 1.2, so we have this corollary:

Corollary 1.1 The Nagel and Stein’s singular integral operator T̃ is bounded from H1,∞(M) to L1,∞(M) ; in
particular, it is of weak-type (1, 1) .

2. Proofs of theorems

In this section, we will give the proofs of Theorems 1.1–1.4.

Proof of Theorem 1.1 For k an integer we set Ωk = {x ∈ X : Mgf(x) > 2k} . Let Bkj be the Whitney

decomposition of Ωk ’s and ϕk
j are the bump functions associated to Bkj . Let

mk
j =

1∫
X ϕk

j

∫
X

fϕk
j .

By Proposition 4.14 in [5], we have

f(x) =

⎛⎝f(x)χΩc
k
(x) +

∞∑
j=1

mk
j ϕk

j (x)

⎞⎠ +
∞∑

j=1

(f(x) − mk
j )ϕk

j (x)

:= gk(x) +
∞∑

j=1

(f(x) − mk
j )ϕk

j (x).

(2.1)

and |mk
j | ≤ C2k . Thus we find

f =
∞∑

k=1

gk+1 − gk :=
∞∑

k=1

fk a.e.
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One can check

fk =
∞∑

i=1

[
(f − mk

i )ϕk
i −

∞∑
j=1

(f − mk+1
ij )ϕk

i ϕk+1
j

]

+
∞∑

j=1

[ ∞∑
i=1

(f − mk+1
ij )ϕk

i ϕk+1
j − (f − mk+1

j )ϕk+1
j

]

=
∞∑

i=1

hk
i +

∞∑
j+1

γk
j ,

(2.2)

where

mk+1
ij =

1∫
ϕk

i ϕk+1
j

∫
fϕk

i ϕk+1
j .

Now we have

|hk
j | ≤ C2k+1, |γk

j | ≤ C2k+1, and
∫

hk
j = 0 =

∫
γk

j .

Finally we observe that μ(Ωk) ≤ C2−k since f ∈ H1,∞(X ). Thus we finish construction of the atom
decomposition.

For the converse, we fix α > 0, and choose k0 so that 2k0 ≤ α < 2k0+1 . Write

f =
k0−1∑

k=−∞
fk +

∞∑
k=k0

fk = F1 + F2.

Now since

M0(F1)(x) ≤
k0−1∑

k=−∞
M0(fk)(x) ≤ C

k0−1∑
k=−∞

2k ≤ C2α,

we have
|{M0(f)(x) > (C2 + 1)α}| ≤ |{M0(F2)(x) > α}|.

Set

Ak0 =
∞⋃

k=k0

⋃
i≥1

3τBk
i ,

where 3τBk
i denotes the ball with radii of 3rk

i centered at xk
i . By (1.2),

|Ak0| ≤ C
log2 C1+1
1 C02−k0 ≤ C/α

Therefore it suffices to estimate
I = μ({x /∈ Ak0 : M0(F2)(x) > α}).

Note that, for x /∈ 3τBk
i and y ∈ Bk

i , we have

d(x, y) ≥ 1
τ
d(x, xk

i ) − d(y, xk
i ) ≥ 2d(y, xk

i ).
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Thus by (ii) of Definition 1.2, in the same region, we have

|Sj(x, y) − Sj(x, xk
i )| � d(y, xk

i )ε1

d(x, y)ε1V (x, y)
.

Hence by the cancellation condition of hki ,

M0(fk)(x) = sup
j

∣∣∣∣∫ [Sj(x, y) − Sj(x, xk
i )]fk(y)dy

∣∣∣∣
≤C2k μ(Bk

i )d(y, xk
i )ε1

V (x, y)d(x, y)ε1

≤C2k μ(Bk
i )1+

ε1
D

V (x, xk
i )

1+
ε1
D

.

(2.3)

Now, we shall use the following result in measure theory which was independently founded by Stein-Taibleson-
Weiss [12] and by Kalton [8].

Lemma 2.1 Let gk be a sequence of measurable functions and let 0 < p < 1 . Assume that |{|gk| > λ}| ≤ C/λp

with C independent of k and λ. Then, for every numerical sequence {ck} in lp we have

∣∣∣∣∣
{

x :
∣∣ ∑

k

ckgk

∣∣ > λ

}∣∣∣∣∣ ≤ 2 − p

1 − p

C

λp

∑
k

|ck|p.

Using this lemma with gki = V (x, xk
i )

−1− ε1
D , p = (1 + ε1

D
)−1 , and cki = 2kμ(Bk

i )1+
ε1
D , we obtain

I ≤ Cε1,D

αp

∑
k≥k0

∑
i

2kpμ(Bk
i ) ≤ C1

Cε1,D

αp
2k0(p−1) ≤ C1Cε1,D/α. (2.4)

Hence, f ∈ H1,∞(X ) and ‖f‖H1,∞(X ) ≤ cC1 .

Thus we complete the proof of Theorem 1.1. �

Proof of Theorem 1.2 For α > 0, take k0 ∈ Z such that 2k0 ≤ α < 2k0+1 . Let f =
∑∞

k=−∞ fk =∑∞
k=−∞

∑
i hk

i be an atom decomposition and supphk
i ⊂ Bk

i . Write

f =
k0∑

k=−∞
fk +

∞∑
k=k0+1

fk := F1 + F2.

Then F1 ∈ L2(X ) and

‖F1‖2 ≤ C

k0∑
k=−∞

2k(
∑

i

μ(Bk
i ))1/2 ≤ C‖f‖1/2

H1,∞(X )

k0∑
k=−∞

2k/2 ≤ C‖f‖1/2
H1,∞(X )α

1/2.
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Hence by the L2(X ) boundedness of T ,

|{x ∈ X : |TF1(x)| > α}| ≤ 1
α2

‖TF1‖2
L2(X )

≤ 1
α2

‖T‖2
L2(X )→L2(X )‖F1‖2

L2(X )

≤C‖T‖2
L2(X )→L2(X )‖f‖H1,∞(X )/α.

(2.5)

Let B̄k
i denote the dilation of Bk

i by the factor of
[
(3
2 )(k−k0)/D + 1

]
τ and let

Ak0 =
∞⋃

k=k0+1

⋃
i

B̄k
i ,

then,

|Ak0| ≤
∞∑

k=k0+1

∑
i

(
3
2

)k−k0

μ(Bk
i ) ≤

∞∑
k=k0+1

(
3
2

)k−k0

2−k‖f‖H1,∞

≤
∞∑

k=k0+1

(
3
4

)k−k0

‖f‖H1,∞/α ≤ C‖f‖H1,∞/α.

(2.6)

It suffices to show
∫
Ac

k0
|TF2(x)|dx ≤ C‖f‖H1,∞ . By Fubini’s theorem and the cancellation conditions for hk

i ,

∫
Ac

k0

|TF2(x)|dx ≤ C

∞∑
k=k0+1

2k
∑

i

∫
Bk

i

∫
(B̄k

i )c

|K(x, y) − K(x, xk
i )|dxdy. (2.7)

Since x ∈ [(B̄k
i ]c and y ∈ Bk

i , we have

d(x, y) ≥ 1
τ

d(x, xk
i ) − d(y, xk

i ) ≥
(

3
2

)(k−k0)/D

· d(y, xk
i ).

Thus,

∫
Ac

k0

|TF2(x)|dx ≤C

∞∑
k=k0+1

2k
∑

i

μ(Bk
i ) · Γ

((2
3
)(k−k0)/D

)

≤C‖f‖H1,∞ ·
∞∑

k=k0+1

Γ
((2

3
)(k−k0)/D

)

≤C

∫ 1

0

Γ(δ)
δ

dδ · ‖f‖H1,∞ .

(2.8)

This ends the proof of Theorem 1.2. �
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Proof of Theorem 1.3 Fix λ . Set q = 1
1−α and η = λq‖f‖1−q

H1,∞ . Take k̄0 ∈ Z such that 2k̄0 ≤ η < 2k̄0+1 .

Split f into two parts

f =
k̄0∑

k=−∞
fk +

∞∑
k=k̄0+1

fk := F3 + F4.

From atom decomposition for H1,∞ function f , it follows that

‖F3‖Lp0(X ) ≤C

k̄0∑
k=−∞

2k

(∑
i

μ(Bk
i )

)1/p0

≤C‖f‖1/p0
H1,∞(X )

k̄0∑
k=−∞

2k(1−1/p0)

≤C‖f‖1/p0

H1,∞(X )η
1−1/p0

=Cλq(1−1/p0)‖f‖1−q(1−1/p0)
H1,∞(X ) .

(2.9)

By the Lp0(X ) → Lq0 (X ) boundedness of Tα and (2.9),

μ({x ∈ X : |TαF3(x)| > λ}) ≤ cλq0‖TαF3‖q0
Lq0(X )

≤ cλq0‖F3‖q0
Lp0 (X )

≤ C

(‖f‖H1,∞

λ

)q

.

(2.10)

Let B̃k
i = 3τBk

i and Ek̄0
=

⋃∞
k=k̄0+1

⋃
i B̃k

i , By Theorem 1.1,

μ(Ek̄0
) ≤ C

∞∑
k=k̄0+1

∑
i

μ(Bk
i )

≤ C‖f‖H1,∞(X )

∞∑
k=k̄0+1

2−k

≤ C‖f‖H1,∞(X )η
−1

= C

(‖f‖H1,∞

λ

)q

.

(2.11)

To finish the proof, it suffices to show

μ({x ∈ Ec
k̄0

: |TαF4(x)| > λ}) ≤ C

(‖f‖H1,∞

λ

)q

. (2.12)

Note that if x ∈ Ec
k̄0

and y ∈ Bk
i , then by (1.1),

d(x, y) ≥ 1
τ
d(x, xk

i ) − d(xk
i , y) ≥ 2d(xk

i , y).
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Thus by the use of cancellation condition of hk
i , Mincowski’s inequality and (1.7),

μ({x ∈ Ec
k̄0

: |TαF4(x)| > λ})

≤ λ−1

∫
Ec

k̄0

|TαF4(x)|dx

≤ λ−1
∞∑

k=k̄0+1

∞∑
i=0

∫
Bk

i

|hk
i (y)|

∫
Ec

k̄0

|Kα(x, y) − Kα(x, xk
i )|dxdy

≤ λ−1
∞∑

k=k̄0+1

∞∑
i=0

∫
Bk

i

|hk
i (y)|

∫
Ec

k̄0

d(y, xk
i )ε

V (x, y)1−αd(x, y)ε
dxdy.

(2.13)

By (1.2)–(1.5), ∫
Ec

k̄0

d(y, xk
i )ε

V (x, y)1−αd(x, y)ε
dx

=
∞∑

j=1

∫
2jd(xk

i ,y)≤d(x,y)<2j+1d(xk
i ,y)

d(y, xk
i )ε

V (x, y)1−αd(x, y)ε
dx

�
∞∑

j=1

d(y, xk
i )ε[

μ(B(y, 2jd(xk
i , y)))

]1−α (2jd(xk
i , y))ε

· μ(B(y, 2j+1d(xk
i , y)))

�
∞∑

j=1

2−j(ε−αD)
[
μ(B(y, d(xk

i , y)))
]α

�V (xk
i , y)α � μ(Bk

i )α.

(2.14)

This estimate together with (2.13) yields,

μ({x ∈ Ec
k̄0

: |TαF2(x)| > λ}) �λ−1
∞∑

k=k̄0+1

2k

( ∞∑
i=0

μ(Bk
i )

)1+α

�λ−1
∞∑

k=k̄0+1

2−kα‖f‖1+α
H1,∞(X )

�λ−1η−α‖f‖1+α
H1,∞(X )

=
(‖f‖H1,∞

λ

)q

,

(2.15)

which gives (2.12). Thus we complete the proof of Theorem 1.3. �

Proof of Theorem 1.4 The proof of (1) is rather standard. For the sake of completeness, we give the details.

Let a be an (1, q0)-atom supported on B(x0 , r). Let q1 = 1
1−α

. Write

‖Tαa‖q1
Lq1(X ) =

∫
B(x0,2r)

|Tαa(x)|q1dx +
∫
X\B(x0,2r)

|Tαa(x)|q1dx := I1 + I2.
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Since q0 > q1 , Hölder inequality together with the Lp0 → Lq0 boundedness of Tα yields

I1 ≤ ‖Tαa‖q1
Lq0μ(B(x0, 2r))1−q1/q0 � ‖a‖q1

p0
μ(B(x0, 2r))q1−q1/p0 � 1.

Next, if d(x, x0) ≥ 2r ≥ 2(y, x0), since
∫
X a(x)dμ(x) = 0, by (1.7) we have

|Tαa(x)| =
∣∣∣∣∫

X
[Kα(x, y) − Kα(x, x0)]a(y)dy

∣∣∣∣
� rε

V (x, x0)1−αd(x, x0)ε
‖a‖L1(X )

� rε

V (x, x0)1−αd(x, x0)ε
.

(2.16)

From this we obtain

I2 �
∫
X\B(x0,2r)

rq1ε

V (x, x0)q1−q1αd(x, x0)q1ε
dx

=
∞∑

j=1

∫
2jr≤d(x,x0)<2j+1r

rq1ε

V (x, x0)d(x, x0)q1ε
dx

�
∞∑

j=1

rq1ε

μ(B(x0, 2jr))(2jr)q1ε

∫
d(x,x0)<2j+1r

dx

� 1.

(2.17)

The conclusion (2) is a direct consequence of the conclusion (1) and Theorem 1.4 follows. �
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