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Abstract

In this paper we study Moufang-Klingenberg planes M(A) defined over a local alternative ring A of

dual numbers. We show that some collineations of M(A) preserve cross-ratio and thus establish a relation

between harmonicity and harmonic position.
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1. Introduction

As stated in [10, p. 55], a one-dimensional projectivity has two different analogues in two dimensions:
one relating points to points and lines to lines, the other relating points to lines and lines to points. The
former kind is a collineation, the latter a correlation. Although the general theory is due to von Staudt, and
the names collineation and correlation to Möbius (1827), some special collineations were used much earlier,
e.g. by Newton and La Hire. Moreover, the classical transformations of the Euclidean plane, viz. translations,
rotations, reflexions, and dilations, all provide instances of collineations.

In the Euclidean plane, Desargues established the fundamental fact that cross-ratio (a concept originally
introduced by Pappus of Alexandria c. 300 A.D) is invariant under projection [3, p. 133]. For this reason,
cross-ratio is one of the most important concepts of projective geometry.

In this paper we are interested in the class (which we will denote by M(A)) of Moufang-Klingenberg
(MK) planes coordinatized by a local alternative ring A := A (ε) = A + Aε (where A is an alternative field,

ε /∈ A and ε2 = 0) introduced by Blunck in [7]. We will show that some collineations, which were used in
obtaining the important result that the collineations group of M(A) acts transitively on 4-gons [8, Theorem 3],
preserve cross-ratio. As we stated in [1], by collineations preserving cross-ratio we will generalize the relation
between harmonicity and harmonic position which is given for the points of only the line [1, 0, 0] in [1, Theorem
16], to any line of M(A). For more information about some well-known properties of cross-ratio in the case of
Moufang planes or MK-planes M(A), respectively, we refer the reader to [11, 4, 9] or [7, 1].

Section 2 includes some basic definitions and results from the literature.
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In Section 3 we will give four collineations of M(A) from [8] and we show that these collineations preserve
cross-ratio.

In Section 4 we will show that the relation between harmonicity (which is an algebraic property) and
harmonic position (which is a geometric property), is valid for any line in M(A), and is the main result of this
paper.

2. Preliminaries

Let M = (P, L,∈,∼) consist of an incidence structure (P, L,∈) (points, lines, incidence) and an
equivalence relation ‘∼ ’ (neighbour relation) on P and on L, respectively. Then M is called a projective
Klingenberg plane (PK-plane), if it satisfies the following axioms:

(PK1) If P, Q are non-neighbour points, then there is a unique line PQ through P and Q .

(PK2) If g, h are non-neighbour lines, then there is a unique point g ∩ h on both g and h .

(PK3) There is a projective plane M∗ = (P∗, L∗,∈) and an incidence structure epimorphism Ψ : M →
M∗ , such that the conditions

Ψ(P ) = Ψ(Q) ⇔ P ∼ Q, Ψ(g) = Ψ(h) ⇐⇒ g ∼ h

hold for all P, Q ∈ P , g, h ∈ L .

An incidence structure automorphism preserving and reflecting the neighbour relation is called a collineation
of M .

A Moufang-Klingenberg plane (MK-plane) is a PK-plane M that generalizes a Moufang plane, and for
which M∗ is a Moufang plane (for the exact definition, see [2]).

An alternative ring (field) R is a not necessarily associative ring (field) that satisfies the alternative laws

a (ab) = a2b, (ba) a = ba2, ∀a, b ∈ R . An alternative ring R with identity element 1 is called local if the set I
of its non-unit elements is an ideal.

We are now ready to give consecutively two important lemmas related to alternative rings, which will be
used in the proof of Theorem 4.

Lemma 1 The subring generated by any two elements of an alternative ring is associative (cf. [13, Theorem
3.1]).

Lemma 2 The identities

x (y (xz)) = (xyx) z; ((yx) z)x = y (xzx) ; (xy) (zx) = x (yz) x,

which are known as Moufang identities, are satisfied in every alternative ring (cf. [12, p. 160]).

For any local alternative ring R one can construct MK-plane M (R), and vice versa. Detailed information
about the coordinatization of MK-planes can be found in [2].

Let A be an alternative field and ε 
∈ A . Consider A := A (ε) = A+Aε with componentwise addition
and multiplication as follows:

(a1 + a2ε) (b1 + b2ε) = a1b1 + (a1b2 + a2b1) ε, (ai, bi ∈ A, i = 1, 2) .
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Then A is a local alternative ring with ideal I = Aε of non-units. The set of formal inverses of the non-units
of A is denoted as I−1 . Calculations with the elements of I−1 are defined as ([6]):

(aε)−1 + t : = (aε)−1 := t + (aε)−1 ; q (aε)−1 :=
(
aq−1ε

)−1

(aε)−1
q : =

(
q−1aε

)−1
;

(
(aε)−1

)−1

:= aε,

where (aε)−1 ∈ I−1, t ∈ A , q ∈ A \ I . (Other terms are not defined.) We will often need these calculations in
the proof of Theorem 4. For more information about A and its relation to MK-planes, the reader is referred to
the papers of Blunck [6, 7].

Throughout this paper we restrict ourselves to the MK-plane M(A) and we assume charA 
= 2 .

Blunck [7] gives the following algebraic definition of the cross-ratio for the points on the line g := [1, 0, 0]
in M(A):

(A, B; C, D) : = (a, b; c, d) =<
(
(a − d)−1 (b − d)

) (
(b − c)−1 (a − c)

)
>

(Z, B; C, D) : =
(
z−1, b; c, d

)
=<

(
(1− dz)−1 (b − d)

) (
(b − c)−1 (1 − cz)

)
>

(A, Z; C, D) : =
(
a, z−1; c, d

)
=<

(
(a − d)−1 (1 − dz)

) (
(1 − cz)−1 (a − c)

)
>

(A, B; Z, D) : =
(
a, b; z−1, d

)
=<

(
(a − d)−1 (b − d)

) (
(1 − zb)−1 (1 − za)

)
>

(A, B; C, Z) : =
(
a, b; c, z−1

)
=<

(
(1 − za)−1 (1 − zb)

)(
(b − c)−1 (a − c)

)
>,

where A = (0, a, 1), B = (0, b, 1), C = (0, c, 1), D = (0, d, 1), Z = (0, 1, z) are pairwise non-neighbour points

of g and < x >=
{

y−1xy
∣∣ y ∈ A

}
.

In [6, Theorem 2], it is shown that the transformations

tu (x) = x + u where u ∈ A; ru (x) = xu where u ∈ A \ I

i (x) = x−1; lu (x) = ux =
(
ir−1

u i
)
(x) where u ∈ A \ I

are defined on the line g preserve cross-ratios. This fact will assume a very important role in the proof of
Theorem 4.

We give the following result from [1, Theorem 8]. This result states a simple way for calculation of the
cross-ratio of the points on any line in M(A).

Theorem 3 Let {O, U, V, E} be the basis of M(A) , where O = (0, 0, 1) , U = (1, 0, 0) , V = (0, 1, 0) , E =
(1, 1, 1) (see [2, Section 4]). Then, according to types of lines, the cross-ratio of the points on the line l can be
calculated as follows:

If A, B, C, D and Z are the pairwise non-neighbour points
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(a) of the line l = [m, 1, k] , where A = (a, am + k, 1), B = (b, bm + k, 1), C = (c, cm + k, 1), D =
(d, dm + k, 1) are not near the line UV = [0, 0, 1] and Z = (1, m + zp, z) is near to UV ,

(b) of the line l = [1, n, p], where A = (an + p, a, 1), B = (bn + p, b, 1), C = (cn + p, c, 1), D = (dn + p, d, 1)
are not neighbour to V and Z = (n + zp, 1, z) ∼ V ,

(c) of the line l = [q, n, 1], where A = (1, a, q + an), B = (1, b, q + bn), C = (1, c, q + cn), D = (1, d, q + dn)
are not neighbour to V and Z = (z, 1, zq + n) ∼ V ,

then

(A, B; C, D) = (a, b; c, d) ; (Z, B; C, D) =
(
z−1, b; c, d

)
;

(A, Z; C, D) =
(
a, z−1; c, d

)
; (A, B; Z, D) =

(
a, b; z−1, d

)
;

(A, B; C, Z) =
(
a, b; c, z−1

)
.

In the next section, we deal with some collineations of M(A).

3. Some collineations preserving cross-ratio

In this section we would like to show that the following collineations [8, Lemma 3] preserve cross-ratios.
In the next section we will only use that these collineations preserve harmonicity, a special case of cross-ratio.
We start by giving the collineations, where w, z, q, n ∈ A :

For any u, v ∈ A , the map Tu,v transforms points and lines as

(x, y, 1) → (x + u, y + v, 1) , (1, y, zε) → (1, y + z(v − uy)ε, zε) ,

(wε, 1, zε) → ((w + zu)ε, 1, zε) ;

[m, 1, k] → [m, 1, k + v − um] , [1, nε, p] → [1, nε, p + u − vnε] ,

[qε, nε, 1] → [qε, nε, 1] .

The map I1 transforms points and lines as

(x, y, 1) →
(
x−1, x−1y, 1

)
if x /∈ I, (x, y, 1) → (1, y, x) if x ∈ I,

(1, y, zε) → (zε, y, 1) , (wε, 1, zε) → (zε, 1, wε) ;

[m, 1, k] → [k, 1, m] , [1, nε, p] → [p, nε, 1] if p ∈ I,

[1, nε, p] →
[
1,−(np−1)ε, p−1

]
if p /∈ I, [qε, nε, 1] → [1, nε, qε] .
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The map F transforms points and lines as

(x, y, 1) → (y, x, 1) , (1, y, zε) → (y, 1, zε) if y ∈ I,

(1, y, zε) →
(
1, y−1, (y−1z)ε

)
if y /∈ I, (wε, 1, zε) → (1, wε, zε) ;

[m, 1, k] → [1, m, k] if m ∈ I, [m, 1, k] →
[
m−1, 1,−km−1

]
if m /∈ I,

[1, nε, p] → [nε, 1, p] , [qε, nε, 1] → [nε, qε, 1] .

For any u ∈ A , the map Gu transforms points and lines as

(x, y, 1) → (x, y − xu, 1) , (1, y, zε) → (1, y − u, zε) , (wε, 1, zε) → (wε, 1, zε) ;

[m, 1, k] → [m − u, 1, k] , [1, nε, p] → [1, nε, p + ((pu)n)ε] ,

[qε, nε, 1] → [(q + un)ε, nε, 1] .

By the following theorem we will show that the collineations Tu,v , I1 , F and Gu preserve the cross-ratio.
In the proof of this theorem we will use the following facts: the transformations tu , ru , i and lu preserve cross-

ratio, Lemma 1, Moufang identities, the inverse of an element a = a1 + a2ε of A is a−1 = a−1
1 − a−1

1 a2a
−1
1 ε

and finally the calculations by elements of I−1 given in section 2.

Theorem 4 The collineations Tu,v , I1 , F and Gu preserve cross-ratio.

Proof. Let A, B, C, D and Z be points with the property given in the statement of Theorem 3. Then it is
obvious that

(A, B; C, D) = (a, b; c, d) , (1)

(Z, B; C, D) =
(
z−1, b; c, d

)
,

(A, Z; C, D) =
(
a, z−1; c, d

)
,

(A, B; Z, D) =
(
a, b; z−1, d

)
,

(A, B; C, Z) =
(
a, b; c, z−1

)

where z ∈ I . In this case we must find the effect of ϕ to the points of any line where ϕ is any one of the
collineations Tu,v , I1 , F and Gu . Remainder of the proof is conducted in the following four parts.

Part i) Let ϕ =Tu,v . If l = [m, 1, k] then

ϕ (X) = ϕ (x, xm + k, 1) = (x + u, xm + k + v, 1) ,

ϕ (Z) = ϕ (1, m + zk, z) = (1, m + zk + z (v − u (m + zk)) , z)

and ϕ (l) = [m, 1, k + v − um] . From (a) of Theorem 3, we have

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a + u, b + u; c + u, d + u) σ= (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z−1, b + u; c + u, d + u

) σ=
(
z−1, b; c, d

)
,
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where σ = t−u and (x1, x2, x3, x4)
σ= (y1, y2, y3, y4) means σ (xi) = yi for i = 1, 2, 3, 4.

If l = [1, n, p] then

ϕ (X) = ϕ (xn + p, x, 1) = (xn + p + u, x + v, 1) ,

ϕ (Z) = ϕ (n + zp, 1, z) = (n + zp + zu, 1, z) ,

and ϕ (l) = [1, n, p + u − vn] . From (b) of Theorem 3 we obtain

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a + v, b + v; c + v, d + v) σ= (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z−1, b + v; c + v, d + v

) σ=
(
z−1, b; c, d

)
,

where σ = t−v .

If l = [q, n, 1] then

ϕ (X) = ϕ (1, x, q + xn) = (1, x + (q + xn) (v − ux) , q + xn) ,

ϕ (Z) = ϕ (z, 1, zq + n) = (z + nu, 1, zq + n)

and ϕ (l) = [q, n, 1]. From (c) of Theorem 3 we have

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a1, b1; c1, d1) (2)
σ= (a + (an) v − q (ua) ,

b + (bn) v − q (ub) ;

c + (cn) v − q (uc) ,

d + (dn)v − q (ud) ),

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
(z + nu)−1

, b1; c1, d1

)

σ= (z−1,

b + (bn) v − q (ub) ;

c + (cn) v − q (uc) ,

d + (dn)v − q (ud) )

where a1 = a+(q + an) (v − ua), b1 = b+(q + bn) (v − ub), c1 = c+(q + cn) (v − uc), d1 = d+(q + dn) (v − ud)
and σ = i ◦ t−nu ◦ i ◦ t−qv . In the latter case, there are four subcases: u ∈ I or u /∈ I , while v ∈ I and u ∈ I
or u /∈ I while v /∈ I .

Case 1. Let v ∈ I , u ∈ I . Then (xn) v = q (ux) = 0 since n , q ∈ I . So, the cross-ratios in (2) are,
respectively,

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a, b; c, d)

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z−1, b; c, d

)
.

Case 2. Let v ∈ I , u /∈ I . Then (xn) v = 0. So, the cross-ratios in (2) are, respectively,

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) σ= (a, b; c, d)

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) σ=
(
z−1, b; c, d

)
,
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where σ = l(u−uqu)−1 ◦ lu , (Note that
(
zu−1

)
(uqu) = 0 since z , q ∈ I .)

Case 3. Let v /∈ I , u ∈ I . Then q (ux) = 0. So, the cross-ratios in (2) are, respectively,

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) σ= (a, b; c, d)

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) σ=
(
z−1, b; c, d

)
,

where σ = r(v−1+n)−1 ◦ rv−1 . (Note that n (vz) = 0 since n , z ∈ I .)

Case 4. Let v /∈ I , u /∈ I . Then the cross-ratios in (2) are, respectively,

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) σ= (a − q (ua) , b− q (ub) ; c − q (uc) , d − q (ud))

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) σ=
(
z−1, b− q (ub) ; c− q (uc) , d− q (ud)

)
,

where σ = r(v−1+n)−1 ◦ rv−1 . (Note that n (vz) = 0.) Finally, the remaining proof follows from Case 2.

Part ii) Let ϕ =I1 . If l = [m, 1, k] , then

ϕ (X) = ϕ (x, xm + k, 1) =
(
x−1, x−1 (xm + k) , 1

)
where x /∈ I,

ϕ (X) = ϕ (x, xm + k, 1) = (1, xm + k, x) where x ∈ I,

ϕ (Z) = ϕ (1, m + zk, z) = (z, m + zk, 1)

and ϕ (l) = [k, 1, m] . From (a) of Theorem 3 we have

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
a−1, b−1; c−1, d−1

) σ= (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z, b−1; c−1, d−1

) σ=
(
z−1, b; c, d

)

where σ = i .

If l = [1, n, p], then

ϕ (X) = ϕ (xn + p, x, 1) =
(
(xn + p)−1

, (xn + p)−1
x, 1

)
where xn + p /∈ I,

ϕ (X) = ϕ (xn + p, x, 1) = (1, x, xn + p) where xn + p ∈ I,

ϕ (Z) = ϕ (n + zp, 1, z) = (z, 1, n + zp) ,

ϕ (l) =
[
1,−np−1, p−1

]
where p /∈ I and ϕ (l) = [p, n, 1] where p ∈ I . From (b) of Theorem 3, the cross-ratio

of the points of
[
1,−np−1, p−1

]
is

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = ((an + p)−1
a, (bn + p)−1

b;

(cn + p)−1 c, (dn + p)−1 d)
σ= (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) = ((n + zp)−1 , (bn + p)−1 b;

(cn + p)−1
c, (dn + p)−1

d)
σ=

(
z−1, b; c, d

)
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where σ = i ◦ rp−1 ◦ t−n ◦ i . Similarly, from (c) of Theorem 3, if the cross-ratio of the points of [p, n, 1] is
calculated then we see that it has the desired property.

If l = [q, n, 1] then

ϕ (X) = ϕ (1, x, q + xn) = (q + xn, x, 1) ,

ϕ (Z) = ϕ (z, 1, zq + n) = (zq + n, 1, z)

and ϕ (l) = [1, n, q] . From (b) of Theorem 3 we immediately have

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z−1, b; c, d

)
.

Part iii) Let ϕ =F. If l = [m, 1, k], then

ϕ (X) = ϕ (x, xm + k, 1) = (xm + k, x, 1) ,

ϕ (Z) = ϕ (1, m + zk, z) =
(
1, (m + zk)−1

, (m + zk)−1
z
)

where m + zk /∈ I,

ϕ (Z) = ϕ (1, m + zk, z) = (m + zk, 1, z) where m + zk ∈ I,

ϕ (l) =
[
m−1 , 1,−km−1

]
where m /∈ I and ϕ (l) = [1, m, k] where m ∈ I . From (a) of Theorem 3, the

cross-ratio of the points of
[
m−1, 1,−km−1

]
is

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (am + k, bm + k; cm + k, dm + k)
σ= (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z−1 (m + zk) , bm + k; cm + k, dm + k

)

σ=
(
z−1, b; c, d

)
,

where σ = rm−1 ◦ t−k . Similarly, from (b) of Theorem 3, if the cross-ratio of the points of [1, m, k] is calculated
then we see that it has the desired property.

If l = [1, n, p] then

ϕ (X) = ϕ (xn + p, x, 1) = (x, xn + p, 1) ,

ϕ (Z) = ϕ (n + zp, 1, z) = (1, n + zp, z)

and ϕ (l) = [n, 1, p]. From (a) of Theorem 3 we immediately have

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z−1, b; c, d

)
.

If l = [q, n, 1] then

ϕ (X) = ϕ (1, x, q + xn) =
(
1, x−1, x−1 (q + xn)

)
where x /∈ I,

ϕ (X) = ϕ (1, x, q + xn) = (x, 1, q + xn) where x ∈ I,

ϕ (Z) = ϕ (z, 1, zq + n) = (1, z, zq + n)
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and ϕ (l) = [n, q, 1]. From (c) of Theorem 3 we obtain

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
a−1, b−1; c−1, d−1

) σ= (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z, b−1; c−1, d−1

) σ=
(
z−1, b; c, d

)
,

where σ = i .

Part iv) Let ϕ =Gu . If l = [m, 1, k], then

ϕ (X) = ϕ (x, xm + k, 1) = (x, xm + k − xu, 1) ,

ϕ (Z) = ϕ (1, m + zk, z) = (1, m + zk − u, z)

and ϕ (l) = [m − u, 1, k] . From (a) of Theorem 3 we immediately have

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z−1, b; c, d

)
.

If l = [1, n, p] then

ϕ (X) = ϕ (xn + p, x, 1) = (xn + p, x− (xn + p)u, 1) ,

ϕ (Z) = ϕ (n + zp, 1, z) = (n + zp, 1, z)

and ϕ (l) = [1, n, p + (pu)n] . From (b) of Theorem 3, we obtain

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a − (an + p)u, b− (bn + p)u;

c − (cn + p)u, d− (dn + p)u),
σ= (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) = (z−1, b − (bn + p)u;

c − (cn + p)u, d− (dn + p)u)
σ=

(
z−1, b; c, d

)
,

where σ = tpu and nu = 0 while u ∈ I or σ = r(u−1−n)−1 ◦ tp ◦ ru−1 and nz = 0 while u /∈ I.

If l = [q, n, 1], then

ϕ (X) = ϕ (1, x, q + xn) = (1, x− u, q + xn) ,

ϕ (Z) = ϕ (z, 1, zq + n) = (z, 1, zq + n)

and ϕ (l) = [q + un, n, 1]. From (c) of Theorem 3 we have

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a − u, b− u; c − u, d− u) σ= (a, b; c, d) ,

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z−1, b − u; c − u, d− u

) σ=
(
z−1, b; c, d

)

where σ = tu .
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Consequently, by considering other all cases we get

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (D)) = (a, b; c, d)

(ϕ (Z) , ϕ (B) ; ϕ (C) , ϕ (D)) =
(
z−1, b; c, d

)

(ϕ (A) , ϕ (Z) ; ϕ (C) , ϕ (D)) =
(
a, z−1; c, d

)

(ϕ (A) , ϕ (B) ; ϕ (Z) , ϕ (D)) =
(
a, b; z−1, d

)

(ϕ (A) , ϕ (B) ; ϕ (C) , ϕ (Z)) =
(
a, b; c, z−1

)

for every collineation ϕ . Combining the last result and the result of (1), the proof is completed. �

In the next section, we examine the relation between harmonicity and harmonic position in M(A)

4. Harmonicity and points in harmonic position

In the final section we will show that the relation between harmonicity and harmonic position, given for
the points of only the line g in [1, Theorem 16], is valid for any line in M(A). That is, we will generalize this
relation to any line of M(A).

We begin by giving consecutively two definitions in M(A) from [8] and [1], respectively.

Definition 5 In M(A) , any pairwise non-neighbour four points is called an (ordered) 4-gon if no three of its
elements are on neighbour lines.

Definition 6 Let l be a line in M(A) . Let A , B , C , D be pairwise non-neighbour four points of l . Then
A , B , C , D are called harmonic if (A, B; C, D) = < −1 > and A , B , C , D are called in harmonic position
if there exists a 4-gon (P1 , P2 , Q1 , Q2) such that P1P2 ∩ Q1Q2 = A , P1Q2 ∩ P2Q1 = B , P1Q1 ∩ l = C ,
P2Q2 ∩ l = D (see Figure 1). We let h (A, B, C, D) represent the statement: A , B , C , D are harmonic. We
let H (A, B, C, D) represent the statement: A , B , C , D are in harmonic position.

A BC D

1Q 2Q

1P

2P

Figure 1
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By the following theorem we will be able to generalize the relation between harmonicity and harmonic
position which is given for the points of only the line g = [1, 0, 0] in [1, Theorem 16], to any line of M(A).

Theorem 7 There exists a collineation transforming one of any two lines to other. In other words, M(A) is
line-transitivite.

Proof. For the proof, it suffices to show that there exists a collineation Γ which transforms any line l of
M(A) to g = [1, 0, 0]. In this case, since

[m, 1, k] Gm→ [0, 1, k] F→ [1, 0, k]
T−k,0→ [1, 0, 0] ,

[1, n, p] F→ [n, 1, p] Gn→ [0, 1, p] F→ [1, 0, p]
T−p,0→ [1, 0, 0] ,

and finally

[q, n, 1] I1→ [1, n, q] F→ [n, 1, q] Gn→ [0, 1, q] F→ [1, 0, q]
T−q,0→ [1, 0, 0] ,

then the transformation Γ : M(A) → M(A)

Γ :=

⎧⎪⎨
⎪⎩

T−k,0 ◦ F ◦ Gm; if l = [m, 1, k]
T−p,0 ◦ F ◦ Gn ◦ F; if l = [1, n, p]
T−q,0 ◦ F ◦ Gn ◦ F ◦ I1; if l = [q, n, 1]

is a collineation which transforms l to g . �

Now, we will give a result which is easily obtained by Theorem 7 and Theorem 4.

Corollary 8 The transformation Γ , in the proof of Theorem 7, preserves cross-ratio.

So, we can state the main result of this paper.

Corollary 9 In M(A) , H (A, B, C, D) if and only if h (A, B, C, D) where A , B , C , D are the points of any
line l .

Proof. Let l be any line in M(A). Let Γ be the collineation transforming l to g = [1, 0, 0], which is given in
the proof of Theorem 7. Then, the proof is obvious since the collineation Γ preserves cross-ratio by Corollary 8
and any collineation is an incidence structure automorphism which preserves and reflects the neighbour relation
and hence maps a configuration as in Figure 1 to a configuration of the same type. �
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