# On the codifferential of the Kähler form and cosymplectic metrics on maximal flag manifolds 

Marlio Paredes and Sofía Pinzón


#### Abstract

Using moving frames we obtain a formula to calculate the codifferential of the Kähler form on a maximal flag manifold. We use this formula to obtain some differential type conditions so that a metric on the classical maximal flag manifold be cosymplectic.


Key Words: Codifferential, Kähler form, flag manifolds, differential forms.

## 1. Introduction

In this note we study the Kähler form on the classical maximal flag manifold $\mathbb{F}(n)=U(n) /(U(1) \times$ $\cdots U(1))$. The geometry of this manifold has been studied in several papers. Burstall and Salamon [2] showed the existence of a bijective relation between almost complex structures on $\mathbb{F}(n)$ and tournaments with $n$ vertices. This correspondence has been very important to study the geometry of the maximal complex manifold, see for example [5], [6], [9], [11], [12] and [13]. In [6], was showed the existence of a one to-one correspondence between (1,2)-symplectic metrics and locally transitive tournaments. In [4], this result was generalized for $(1,2)$-symplectic metrics defined using $f$-structures.

Mo and Negreiros [9], by using moving frames and tournaments, showed explicitly the existence of an $n$ dimensional family of invariant $(1,2)$-symplectic metrics on $\mathbb{F}(n)$. In order to do this, they obtained a formula to calculate the differential of the Kähler form by using the moving frames technique. In the present work we use a similar method in order to obtain a formula to calculate the codifferential of the Kähler form. An important reference to our calculations is the book by Griffiths and Harris [8]; we use definitions, results and notations contained in this book to differential forms of type $(p, q)$.

Finally, we use such formula to find some differential type conditions in order for a metric on a maximal flag manifold be cosymplectic. We show that a metric on the classical flag manifold is cosymplectic if and only if the complex functions $f_{k}^{i j}$ in the Kähler form (see (13)) satisfy different types of partial differential equations.

[^0]
## PAREDES, PINZÓN

## 2. Flag manifolds

The usual manifold of full flags of subspaces of $\mathbb{C}^{n}$ is defined by

$$
\begin{equation*}
\mathbb{F}(n)=\left\{\left(V_{1}, \ldots, V_{n}\right): V_{i} \subset V_{i+1}, \operatorname{dim} V_{i}=i\right\} \tag{1}
\end{equation*}
$$

The unitary group $U(n)$ acts transitively on $\mathbb{F}(n)$ turning this manifold into the homogeneous space

$$
\begin{equation*}
\mathbb{F}(n)=\frac{U(n)}{U(1) \times U(1) \times \cdots \times U(1)}=\frac{U(n)}{M}, \tag{2}
\end{equation*}
$$

where $M=U(1) \times U(1) \times \cdots \times U(1)$ is any maximal torus of $U(n)$.
Let $\mathfrak{p}$ be the tangent space of $\mathbb{F}(n)$ at the point $(M)$. It is known that $\mathfrak{u}(n)$, the Lie algebra of skewhermitian matrices, decomposes as

$$
\mathfrak{u}(n)=\mathfrak{p} \oplus \mathfrak{u}(1) \oplus \cdots \oplus \mathfrak{u}(1)
$$

where $\mathfrak{p} \subset \mathfrak{u}(n)$ is the subspace of zero-diagonal matrices.
In order to define any tensor on $\mathbb{F}(n)$ it is sufficient to give it on $\mathfrak{p}$, because the action of $U(n)$ on $\mathbb{F}(n)$ is transitive. An invariant almost complex structure on $\mathbb{F}(n)$ is determined by a linear map $J: \mathfrak{p} \rightarrow \mathfrak{p}$ such that $J^{2}=-I$ and commutes with the adjoint representation of the torus $M$ on $\mathfrak{p}$.

For each almost complex structure we assign a tournament, a special class of directed graph. A tournament or $n$-tournament $\mathcal{T}$, consists of a finite set $T=\left\{p_{1}, \ldots, p_{n}\right\}$ of $n$ players together with a dominance relation, $\rightarrow$, which assigns to every pair of players a winner, that is, $p_{i} \rightarrow p_{j}$ or $p_{j} \rightarrow p_{i}$. A tournament $\mathcal{T}$ can be represented by a directed graph in which $T$ is the set of vertices and any two vertices are joined by an oriented edge. If the dominance relation is transitive, then the tournament is called transitive. For a complete reference on tournaments see [10].

Given an invariant complex structure $J$, we define the associated tournament $\mathcal{T}(J)$ in the following way: if $J\left(a_{i j}\right)=\left(a_{i j}^{\prime}\right)$, then $\mathcal{T}(J)$ is such that for $i<j$

$$
\left(i \rightarrow j \Leftrightarrow a_{i j}^{\prime}=\sqrt{-1} a_{i j}\right) \quad \text { or } \quad\left(i \leftarrow j \Leftrightarrow a_{i j}^{\prime}=-\sqrt{-1} a_{i j}\right) \text {; }
$$

see [9].
We consider $\mathbb{C}^{n}$ equipped with the standard Hermitian inner product, that is, for $V=\left(v_{1}, \ldots, v_{n}\right)$ and $W=\left(w_{1}, \ldots, w_{n}\right)$ in $\mathbb{C}^{n}$, we have $\langle V, W\rangle=\sum_{i=1}^{n} v_{i} \overline{w_{i}}$. We use the convention $v_{\bar{\imath}}=\overline{v_{i}}$ and $f_{\bar{\imath} j}=\overline{f_{i \bar{\jmath}}}$.

A frame consists of an ordered set of $n$ vectors $\left(Z_{1}, \ldots, Z_{n}\right)$ such that $Z_{1} \wedge \ldots \wedge Z_{n} \neq 0$, and it is called unitary if $\left\langle Z_{i}, Z_{j}\right\rangle=\delta_{i \bar{\jmath}}$. The set of unitary frames can be identified with the unitary group $U(n)$.

If we write $d Z_{i}=\sum_{j} \omega_{i \bar{\jmath}} Z_{j}$, the coefficients $\omega_{i \bar{\jmath}}$ are the Maurer-Cartan forms of the unitary group $U(n)$. They are skew-Hermitian, this is, $\omega_{i \bar{\jmath}}+\omega_{\bar{\jmath} i}=0$. For more details see [3].

We may define all left-invariant metrics on $(\mathbb{F}(n), J)$ by (see [1])

$$
\begin{equation*}
d s_{\Lambda}^{2}=\sum_{i, j} \lambda_{i j} \omega_{i \bar{\jmath}} \otimes \omega_{\bar{\imath} j}, \tag{3}
\end{equation*}
$$

where $\Lambda=\left(\lambda_{i j}\right)$ is a simetric real matrix such that

$$
\begin{cases}\lambda_{i j}>0, & \text { if } \quad i \neq j  \tag{4}\\ \lambda_{i j}=0, & \text { if } \quad i=j\end{cases}
$$

and the Maurer-Cartan forms $\omega_{i \bar{\jmath}}$ are such that

$$
\begin{equation*}
\omega_{i \bar{\jmath}} \in \mathbb{C}^{1,0}(\text { forms of type }(1,0)) \quad \Longleftrightarrow i \xrightarrow{\mathcal{T}(J)} j \text {. } \tag{5}
\end{equation*}
$$

The metrics (3) are called of Borel type and they are almost Hermitian for every invariant almost complex structure $J$, that is, $d s_{\Lambda}^{2}(J X, J Y)=d s_{\Lambda}^{2}(X, Y)$ for all tangent vectors $X, Y$. When $J$ is integrable, $d s_{\Lambda}^{2}$ is said to be Hermitian.

Given $J$ an invariant almost complex structure on $\mathbb{F}(n)$ and $d s_{\Lambda}^{2}$ an invariant metric, the Kähler form with respect to $J$ and $d s_{\Lambda}^{2}$ is defined by

$$
\begin{equation*}
\Omega(X, Y)=d s_{\Lambda}^{2}(X, J Y) \tag{6}
\end{equation*}
$$

for any tangent vectors $X, Y$. For each permutation $\sigma$ of $n$ elements, this Kähler form can be written as (see [9])

$$
\begin{equation*}
\Omega=-2 \sqrt{-1} \sum_{i<j} \mu_{\sigma(i) \sigma(j)} \omega_{\sigma(i) \overline{\sigma(j)}} \wedge \omega_{\overline{\sigma(i)} \sigma(j)} \tag{7}
\end{equation*}
$$

where $\mu_{\sigma(i) \sigma(j)}=\varepsilon_{\sigma(i) \sigma(j)} \lambda_{\sigma(i) \sigma(j)}$ and

$$
\varepsilon_{i j}=\left\{\begin{array}{rll}
1, & \text { if } & \sigma(i) \rightarrow \sigma(j) \\
-1, & \text { if } & \sigma(j) \rightarrow \sigma(i) \\
0, & \text { if } & \sigma(i)=\sigma(j)
\end{array}\right.
$$

$\mathbb{F}(n)$ is said to be almost Kähler if and only if $\Omega$ is closed, that is, $d \Omega=0$. If $J$ is integrable and $\Omega$ is closed, then $\mathbb{F}(n)$ is said to be a Kähler manifold.

In [9], Mo and Negreiros proved the following result.

## Theorem 2.1

$$
\begin{equation*}
d \Omega=4 \sum_{i<j<k} C_{\sigma(i) \sigma(j) \sigma(k)} \Psi_{\sigma(i) \sigma(j) \sigma(k)}, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{i j k}=\mu_{i j}-\mu_{i k}+\mu_{j k} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Psi_{i j k}=\operatorname{Im}\left(\omega_{i \bar{\jmath}} \wedge \omega_{\bar{\imath} k} \wedge \omega_{j \bar{k}}\right) \tag{10}
\end{equation*}
$$

We denote by $\mathbb{C}^{p, q}$ the space of forms of type $(p, q)$ on $\mathbb{F}(n)$. Then, for any $i, j, k$, we have either $\Psi_{i j k} \in \mathbb{C}^{0,3} \oplus \mathbb{C}^{3,0} \quad$ or $\quad \Psi_{i j k} \in \mathbb{C}^{1,2} \oplus \mathbb{C}^{2,1}$. An invariant almost Hermitian metric $d s_{\Lambda}^{2}$ is said to be (1,2)symplectic if and only if $(d \Omega)^{1,2}=0$. If $\delta \Omega=0$, the codifferential of the Kähler form is zero, then the metric is said to be cosymplectic.

## PAREDES, PINZÓN

## 3. The codifferential of the Kähler form

In order to calculate the codifferential of the Kähler form we need to use the Hodge star operator. Now, following the book by Griffiths and Harris [8], we give a precise definition of the star operator.

If $\eta \in \mathbb{C}^{p, q}$, we can write

$$
\begin{equation*}
\eta=\sum_{I, J} \eta_{I J} \psi_{I} \wedge \overline{\psi_{J}} \tag{11}
\end{equation*}
$$

where $\eta_{I J}$ are complex functions, $I=\left\{i_{1}, \ldots, i_{p}\right\}, J=\left\{j_{1}, \ldots, j_{q}\right\}$ and $\psi_{I}, \psi_{J}$ are forms of type $(p, 0)$ and $(0, q)$ respectively. The Hodge star operator

$$
*: \mathbb{C}^{p, q} \longrightarrow \mathbb{C}^{N-p, N-q}
$$

transforms forms of type $(p, q)$ to forms of type $(N-p, N-q)$, where $N=n(n-1) / 2$ is the complex dimension of $\mathbb{F}(n)$. Then the star operator is defined by

$$
\begin{equation*}
* \eta=2^{p+q+N} \sum_{I, J} \epsilon_{I J} \overline{\eta_{I J}} \psi_{I^{0}} \wedge \overline{\psi_{J^{0}}}, \tag{12}
\end{equation*}
$$

where $I^{0}=\{1, \ldots, N\}-I, J^{0}=\{1, \ldots, N\}-J$ and $\epsilon_{I J}$ is the sign of the permutation

$$
(1, \ldots, N, 1, \ldots, N) \rightarrow\left(i_{1}, \ldots, i_{p}, j_{1}, \ldots, j_{q}, i_{1}^{0}, \ldots, i_{N-p}^{0}, j_{1}^{0}, \ldots, j_{N-q}^{0}\right)
$$

The codifferential operator transforms $p$-forms in ( $p-1$ )-forms. It is known that (see [8])

$$
\delta=(-1)^{m(p+1)+1} * d *,
$$

where $m$ is the real dimension of the manifold and $*$ is the Hodge star operator. In our case, $m$ is even, then

$$
\delta=-* d *
$$

By (7), up to isomorphisms, the Kähler form can be written in the following way:

$$
\Omega=-2 \sqrt{-1} \sum_{i<j} \mu_{i j} \omega_{i \bar{j}} \wedge \omega_{\bar{i} j}
$$

where $\mu_{i j}=\varepsilon_{i j} \lambda_{i j}$ and

$$
\varepsilon_{i j}=\left\{\begin{array}{rll}
1, & \text { if } i \rightarrow j \\
-1, & \text { if } & j \rightarrow i \\
0, & \text { if } & i=j
\end{array}\right.
$$

Then,

$$
\delta \Omega=-2 \sqrt{-1} \sum_{i<j} \mu_{i j} \delta\left(\omega_{i \bar{j}} \wedge \omega_{\bar{i} j}\right) .
$$

We know that $\omega_{i \bar{j}} \in \mathbb{C}^{1,0}$ and using (11) we can write

$$
\begin{equation*}
\omega_{i \bar{j}}=\sum_{k} f_{k}^{i j} d z_{k} \tag{13}
\end{equation*}
$$

## PAREDES, PINZÓN

where $f_{k}^{i j}$ are complex functions. It follows that

$$
\omega_{\bar{i} j}=\overline{\omega_{i \bar{j}}}=\sum_{k} \overline{f_{k}^{i j}} d \bar{z}_{k}
$$

and

$$
\omega_{i \bar{j}} \wedge \omega_{\bar{i} j}=\sum_{k, l} f_{k}^{i j} \overline{f_{l}^{i j}} d z_{k} \wedge d \bar{z}_{l}
$$

Now, we can prove the following result.
Theorem 3.1 The codifferential of the Kähler form is given by

$$
\begin{equation*}
\delta \Omega=-2^{2+2 N} \sqrt{-1} \sum_{i<j} \mu_{i j}\left\{\sum_{k, l} \frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial z_{l}} d z_{k}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial \bar{z}_{k}} d \bar{z}_{l}\right\} \tag{14}
\end{equation*}
$$

Proof. At first we use (12) to calculate $*\left(\omega_{i \bar{j}} \wedge \omega_{\bar{i} j}\right)$ and we obtain

$$
\begin{aligned}
*\left(\omega_{i \bar{j}} \wedge \omega_{\overline{i j}}\right)= & 2^{1+1-N} \sum_{k, l} \epsilon_{k l} \overline{f_{k}^{i j} \overline{f_{l}^{i j}}}\left\{\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge\right. \\
& \left.\wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\} \\
= & 2^{2-N} \sum_{k, l} \epsilon_{k l} \overline{f_{k}^{i j}} f_{l}^{i j}\left\{\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge\right. \\
& \left.\wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\}
\end{aligned}
$$

where $\widehat{d z_{k}}$ and $\widehat{d \bar{z}_{l}}$ mean that these terms are removed and $\epsilon_{k l}$ is the sign of the permutation

$$
(1, \ldots, N, 1, \ldots, N) \rightarrow(1, \ldots, \widehat{k}, \ldots, N, 1, \ldots, \widehat{l}, \ldots, N, k, l)
$$

We calculate $\epsilon_{k l}$ in the following way:

$$
\begin{aligned}
(1, \ldots, \widehat{k}, \ldots, N, 1, \ldots, \widehat{l}, \ldots, & N, k, l) \rightarrow \\
& \rightarrow(-1)^{N-1}(1, \ldots, \widehat{k}, \ldots, N, k, 1, \ldots, \widehat{l}, \ldots, N, l) \\
& \rightarrow(-1)^{N-1}(-1)^{N-k}(1, \ldots, k, \ldots, N, 1, \ldots, \widehat{l}, \ldots, N, l) \\
\rightarrow & (-1)^{2 N-k-1}(-1)^{N-l}(1, \ldots, k, \ldots, N, 1, \ldots, l, \ldots, N) \\
& \rightarrow(-1)^{3 N-k-l-1}(1, \ldots, N, 1, \ldots, N,)
\end{aligned}
$$

then, $\epsilon_{k l}=(-1)^{3 N-k-l-1}$. It implies that

$$
\begin{gathered}
*\left(\omega_{i \bar{j}} \wedge \omega_{\overline{i j}}\right)=2^{2-N} \sum_{k, l}(-1)^{3 N-k-l-1} \overline{f_{k}^{i j}} f_{l}^{i j}\left\{\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge\right. \\
\left.\wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\}
\end{gathered}
$$

## PAREDES, PINZÓN

Now we calculate the exterior differential of this differential form,

$$
\begin{aligned}
d *\left(\omega_{i \bar{j}} \wedge \omega_{\bar{i} j}\right)=2^{2-N} \sum_{k, l} & (-1)^{3 N-k-l-1} d\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right) \wedge\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \\
& \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)
\end{aligned}
$$

We know that

$$
d\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)=\sum_{m} \frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial z_{m}} d z_{m}+\frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial \bar{z}_{m}} d \bar{z}_{m}
$$

then,

$$
\begin{gathered}
d *\left(\omega_{i \bar{j}} \wedge \omega_{\bar{\imath} j}\right)=2^{2-N} \sum_{k, l}(-1)^{3 N-k-l-1}\left\{\frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial z_{k}} d z_{k} \wedge\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge\right. \\
\wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)+\frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial \bar{z}_{l}} d \bar{z}_{l} \wedge\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge \\
\left.\wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\}
\end{gathered}
$$

On the other hand,

$$
\begin{aligned}
& \frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial z_{k}} d z_{k} \wedge\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)= \\
& (-1)^{k-1} \frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial z_{k}}\left(d z_{1} \wedge \ldots \wedge d z_{k} \wedge \ldots \wedge d z_{N}\right) \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)
\end{aligned}
$$

and

$$
\begin{gathered}
\frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial \bar{z}_{l}} d \bar{z}_{l} \wedge\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)= \\
(-1)^{N-1+l-1} \frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial \bar{z}_{l}}\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{l} \wedge \ldots \wedge d \bar{z}_{N}\right) .
\end{gathered}
$$

This implies

$$
\begin{gathered}
d *\left(\omega_{i \bar{j}} \wedge \omega_{\bar{i} j}\right)=2^{2-N} \sum_{k, l}\left\{(-1)^{3 N-l} \frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial z_{k}}\left(d z_{1} \wedge \ldots \wedge d z_{k} \wedge \ldots \wedge d z_{N}\right) \wedge\right. \\
\wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)+(-1)^{k+1} \frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial \bar{z}_{l}}\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge \\
\left.\wedge\left(d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{l} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\} .
\end{gathered}
$$

## PAREDES, PINZÓN

Finally, we apply the star operator to the last form to calculate

$$
* d *\left(\omega_{i \bar{j}} \wedge \omega_{\bar{i} j}\right) .
$$

In order to better understand the procedure we calculate separately the following expressions:

$$
2^{2-N} \sum_{k, l}(-1)^{3 N-l} *\left\{\frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial z_{k}}\left(d z_{1} \wedge \ldots \wedge d z_{k} \wedge \ldots \wedge d z_{N}\right) \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\}
$$

and

$$
2^{2-N} \sum_{k, l}(-1)^{k+1} *\left\{\frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial \bar{z}_{l}}\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{l} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\}
$$

To the first, by using the formula (12), we have

$$
\begin{gathered}
2^{2-N} \sum_{k, l}(-1)^{3 N-l} *\left\{\frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial z_{k}}\left(d z_{1} \wedge \ldots \wedge d z_{k} \wedge \ldots \wedge d z_{N}\right) \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\}= \\
=2^{2-N} \sum_{k, l}(-1)^{3 N-l} 2^{3 N-1} \epsilon_{I J} \frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial z_{k}} d \bar{z}_{l}
\end{gathered}
$$

where $I=\{1, \ldots, N\}$ and $J=\{1, \ldots, \widehat{l}, \ldots, N\} . \epsilon_{I J}$ is the sign of the permutation

$$
(1, \ldots, N, 1, \ldots, N) \rightarrow(1, \ldots, N, 1, \ldots, \widehat{l}, \ldots, N, l)
$$

to which it is easy to see that $\epsilon_{I J}=(-1)^{N-l}$. Then,

$$
\begin{gathered}
2^{2-N} \sum_{k, l}(-1)^{3 N-l} *\left\{\frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial z_{k}}\left(d z_{1} \wedge \ldots \wedge d z_{k} \wedge \ldots \wedge d z_{N}\right) \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge \widehat{d \bar{z}_{l}} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\}= \\
=2^{1+2 N} \sum_{k, l}(-1)^{4 N-2 l} \frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial \bar{z}_{k}} d \bar{z}_{l}=2^{1+2 N} \sum_{k, l} \frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial \bar{z}_{k}} d \bar{z}_{l} .
\end{gathered}
$$

Similarly, we can prove

$$
\begin{gathered}
2^{2-N} \sum_{k, l}(-1)^{k+1} *\left\{\frac{\partial\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right)}{\partial \bar{z}_{l}}\left(d z_{1} \wedge \ldots \wedge \widehat{d z_{k}} \wedge \ldots \wedge d z_{N}\right) \wedge\left(d \bar{z}_{1} \wedge \ldots \wedge d \bar{z}_{l} \wedge \ldots \wedge d \bar{z}_{N}\right)\right\}= \\
=-2^{1+2 N} \sum_{k, l} \frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial z_{l}} d z_{k} .
\end{gathered}
$$

So, we obtain

$$
* d *\left(\omega_{i \bar{j}} \wedge \omega_{\bar{i} j}\right)=2^{1+2 N} \sum_{k, l} \frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial \bar{z}_{k}} d \bar{z}_{l}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial z_{l}} d z_{k}
$$

## PAREDES, PINZÓN

and it implies that

$$
\delta\left(\omega_{i \bar{j}} \wedge \omega_{\bar{i} j}\right)=2^{1+2 N} \sum_{k, l} \frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial z_{l}} d z_{k}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial \bar{z}_{k}} d \bar{z}_{l}
$$

Therefore, we arrive to the desired formula:

$$
\delta \Omega=-2^{2+2 N} \sqrt{-1} \sum_{i<j} \mu_{i j}\left\{\sum_{k, l} \frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial z_{l}} d z_{k}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial \bar{z}_{k}} d \bar{z}_{l}\right\}
$$

## 4. Cosymplectic metrics

San Martin and Negreiros [14], proved that the metrics $d s_{\Lambda}^{2}$ in (3) are cosymplectic. The condition for $d s_{\Lambda}^{2}$ to be cosymplectic is the codifferential of the Kähler form $\delta \Omega$ be zero, however, they did not calculate this codifferential because they used another equivalent condition due to Gray and Hervella [7].

By Theorem 3.1 we can write the following proposition.
Proposition 4.1 $A$ metric on $(\mathbb{F}(n), J)$ is cosymplectic if and only if the functions $f_{k}^{i j}$ in the Kähler form satisfy the partial differential equation

$$
\begin{equation*}
\sum_{i<j} \mu_{i j}\left\{\sum_{k, l} \frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial z_{l}} d z_{k}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial \bar{z}_{k}} d \bar{z}_{l}\right\}=0 \tag{15}
\end{equation*}
$$

Expanding the sums over $k$ and $l$ in (15) and reordering, we obtain the following system of partial differential equations:

$$
\begin{align*}
& \sum_{i<j} \mu_{i j}\left(\frac{\partial\left(f_{k}^{i j} \overline{f_{1}^{i j}}\right)}{\partial z_{1}}+\cdots+\frac{\partial\left(f_{k}^{i j} \overline{f_{N}^{i j}}\right)}{\partial z_{N}}\right)=0, \quad k=1, \ldots, N,  \tag{16}\\
& \sum_{i<j} \mu_{i j}\left(\frac{\partial\left(\overline{f_{1}^{i j}} f_{1}^{i j}\right)}{\partial \overline{z_{1}}}+\cdots+\frac{\partial\left(\overline{f_{1}^{i j}} f_{N}^{i j}\right)}{\partial \overline{z_{N}}}\right)=0, \quad k=1, \ldots, N . \tag{17}
\end{align*}
$$

Actually, equation (17) is the conjugate of equation (16) ; then we have the following result.
Proposition 4.2 A metric on $(\mathbb{F}(n), J)$ is cosymplectic if and only if the functions $f_{k}^{i j}$ in the Kähler form satisfy the system of partial differential equations

$$
\begin{equation*}
\sum_{i<j} \mu_{i j}\left(\frac{\partial\left(f_{k}^{i j} \overline{f_{1}^{i j}}\right)}{\partial z_{1}}+\cdots+\frac{\partial\left(f_{k}^{i j} \overline{f_{N}^{i j}}\right)}{\partial z_{N}}\right)=0, \quad k=1, \ldots, N . \tag{18}
\end{equation*}
$$

## PAREDES, PINZÓN

On the other hand, we can write equation (14) as

$$
\begin{aligned}
\delta \Omega= & -2^{2+2 N} \sqrt{-1} \sum_{i<j} \mu_{i j}\left\{\sum_{k=1}^{N}\left(\frac{\partial\left(f_{k}^{i j} \overline{f_{1}^{i j}}\right)}{\partial z_{1}}+\cdots+\frac{\partial\left(f_{k}^{i j} \overline{f_{N}^{i j}}\right)}{\partial z_{N}}\right) d z_{k}+\right. \\
& \left.-\sum_{k=1}^{N}\left(\frac{\partial\left(\overline{f_{1}^{i j}} f_{1}^{i j}\right)}{\partial \overline{z_{1}}}+\cdots+\frac{\partial\left(\overline{f_{1}^{i j}} f_{N}^{i j}\right)}{\partial \overline{z_{N}}}\right) d \overline{z_{k}}\right\} \\
= & -2^{2+2 N} \sqrt{-1} \sum_{i<j} \mu_{i j} \sum_{k=1}^{N}\left\{\left(\sum_{l=1}^{N} \frac{\partial}{\partial z_{l}}\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)\right) d z_{k}-\left(\sum_{l=1}^{N} \frac{\partial}{\partial \overline{z_{l}}}\left(\overline{f_{k}^{i j}} f_{l}^{i j}\right) d \overline{z_{k}}\right)\right\} .
\end{aligned}
$$

Like $z-\bar{z}=2 \sqrt{-1} \operatorname{Im} z$, for every complex number $z$, then

$$
\begin{aligned}
\delta \Omega & =-2^{2+2 N} \sqrt{-1} \sum_{i<j} \mu_{i j} \sum_{k=1}^{N}\left\{2 \sqrt{-1} \operatorname{Im}\left(\sum_{l=1}^{N} \frac{\partial}{\partial z_{l}}\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right) d z_{k}\right)\right\} \\
& =2^{3+2 N} \sum_{i<j} \mu_{i j}\left\{\sum_{k, l=1}^{N} \operatorname{Im}\left(\frac{\partial}{\partial z_{l}}\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right) d z_{k}\right)\right\} \\
& =2^{3+2 N} \operatorname{Im}\left\{\sum_{i<j} \mu_{i j}\left(\sum_{k, l=1}^{N}\left(\frac{\partial}{\partial z_{l}}\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right) d z_{k}\right)\right)\right\}
\end{aligned}
$$

Then, we have the following proposition, equivalent to propositions (4.1) and (4.2).

Proposition 4.3 A metric on $(\mathbb{F}(n), J)$ is cosymplectic if and only if the functions $f_{k}^{i j}$ in the Kähler form satisfy the equation

$$
\begin{equation*}
\operatorname{Im}\left\{\sum_{i<j} \mu_{i j}\left(\sum_{k, l=1}^{N}\left(\frac{\partial}{\partial z_{l}}\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right) d z_{k}\right)\right)\right\}=0 \tag{19}
\end{equation*}
$$

We can write this relation in real coordinates using the complex operators

$$
\frac{\partial}{\partial z_{i}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{i}}-\sqrt{-1} \frac{\partial}{\partial y_{i}}\right), \quad \frac{\partial}{\partial \bar{z}_{i}}=\frac{1}{2}\left(\frac{\partial}{\partial x_{i}}+\sqrt{-1} \frac{\partial}{\partial y_{i}}\right)
$$

and the complex differential forms

$$
d z_{i}=d x_{i}+\sqrt{-1} d y_{i}, \quad d \bar{z}_{i}=d x_{i}-\sqrt{-1} d y_{i}
$$

So, we obtain that a metric on $(\mathbb{F}(n), J)$ is cosymplectic if and only if the functions $f_{k}^{i j}$ in the Kähler form satisfy the following equations:

$$
\begin{align*}
& \sum_{i<j} \mu_{i j}\left\{\sum_{k, l}\left(\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right.}{\partial x_{l}} d x_{k}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial x_{k}} d x_{l}\right)+\left(\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial y_{l}} d y_{k}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial y_{k}} d y_{l}\right)\right\}=0  \tag{20}\\
& \sum_{i<j} \mu_{i j}\left\{\sum_{k, l}\left(\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial x_{l}} d y_{k}-\frac{\partial\left(f_{k}^{i j} f_{l}^{i j}\right)}{\partial y_{k}} d x_{l}\right)+\left(\frac{\partial\left(f_{k}^{i j} f_{l}^{i j}\right)}{\partial x_{k}} d y_{l}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial y_{l}} d x_{k}\right)\right\}=0 . \tag{21}
\end{align*}
$$

Here, the sums are calculated over all $k$ and $l$, therefore the left side of the equation (20) is null. Then, we have the result.

Proposition 4.4 A metric on $(\mathbb{F}(n), J)$ is cosymplectic if and only if the functions $f_{k}^{i j}$ in the Kähler form satisfy the following equation

$$
\sum_{i<j} \mu_{i j}\left\{\sum_{k, l}\left(\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial x_{l}} d y_{k}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial y_{k}} d x_{l}\right)+\left(\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial x_{k}} d y_{l}-\frac{\partial\left(f_{k}^{i j} \overline{f_{l}^{i j}}\right)}{\partial y_{l}} d x_{k}\right)\right\}=0 .
$$

## References

[1] Black, M.: Harmonic maps into homogeneous spaces. Essex. Longman Group. Pitman Research Notes in Mathematics Series 255, 1991.
[2] Burstall, F. E., Salamon, S.: Tournaments, flags and harmonic maps. Math. Ann. 277, 249-265 (1987).
[3] Chern, S. S., Wolfson, J. G.: Harmonic maps of the two-sphere into a complex Grassmann manifold II. Ann. of Math. 125, 301-335 (1987).
[4] Cohen, N., Negreiros, C. J. C., Paredes, M., Pinzón, S., San Martin L. A. B.: $f$-Structures on the classical flag manifold which admit (1,2)-symplectic metrics. Tohoku Math. J. (2) 57, 261-271 (2005)
[5] Cohen, N., Negreiros, C. J. C., San Martin, L. A. B.: (1,2)-symplectic metrics, flag manifolds and tournaments. Bull. London Math. Soc. 34, 641-649 (2002).
[6] Cohen, N., Paredes, M., Pinzón, S.: Locally transitive tournaments and the classification of (1,2)-symplectic metrics on maximal flag manifolds. Illinois J. Math. 48, 1405-1415 (2004).
[7] Gray, A., Hervella, L. M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123, 35-58 (1980).
[8] Griffiths, P., Harris, J.: Principles of algebraic geometry. New York. John Wiley \& Sons 1978.
[9] Mo, X., Negreiros, C. J. C.: (1, 2)-Symplectic structures on flag manifolds. Tohoku Math. J. (2) 52, 271-282 (2000).
[10] Moon, J. W.: Topics on tournaments. New York. Holt, Rinehart and Winston 1968.
[11] Paredes, M.: Aspectos da geometria complexa das variedades bandeira. Ph.D. Thesis, State University of Campinas, Brazil, 2000.

## PAREDES, PINZÓN

[12] Paredes, M.: Some results on the geometry of full flag manifolds and harmonic maps. Rev. Col. Mat. 34, 57-89 (2000).
[13] Paredes, M.: Families of (1,2)-symplectic metrics on full flag manifolds. Internat. J. Math. Math. Sci. 29, 651-664 (2002).
[14] San Martin, L. A. B., Negreiros, C. J. C.: Invariant almost Hermitian structures on flag manifolds. Adv. Math. 178, 277-310 (2003).

Marlio PAREDES
Received 13.10.2008
School of Science and Technology
University of Turabo
Gurabo, PR 00778-3030, USA
e-mail: maparedes@suagm.edu
Sofía PINZÓN
Escuela de Matemáticas
Universidad Industrial de Santander
Bucaramanga, Carrera 27 - Calle 9, Colombia
e-mail: spinzon@uis.edu.co


[^0]:    2000 AMS Mathematics Subject Classification: 14M15, 32M10, 58A10.

