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On the codifferential of the Kähler form and cosymplectic metrics

on maximal flag manifolds

Marlio Paredes and Sof́ıa Pinzón

Abstract

Using moving frames we obtain a formula to calculate the codifferential of the Kähler form on a maximal

flag manifold. We use this formula to obtain some differential type conditions so that a metric on the classical

maximal flag manifold be cosymplectic.
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1. Introduction

In this note we study the Kähler form on the classical maximal flag manifold F(n) = U(n)/(U(1) ×
· · ·U(1)). The geometry of this manifold has been studied in several papers. Burstall and Salamon [2] showed

the existence of a bijective relation between almost complex structures on F(n) and tournaments with n vertices.
This correspondence has been very important to study the geometry of the maximal complex manifold, see for
example [5], [6], [9], [11], [12] and [13]. In [6], was showed the existence of a one to-one correspondence

between (1, 2)-symplectic metrics and locally transitive tournaments. In [4], this result was generalized for

(1, 2)-symplectic metrics defined using f -structures.

Mo and Negreiros [9], by using moving frames and tournaments, showed explicitly the existence of an n-

dimensional family of invariant (1, 2)-symplectic metrics on F(n). In order to do this, they obtained a formula
to calculate the differential of the Kähler form by using the moving frames technique. In the present work
we use a similar method in order to obtain a formula to calculate the codifferential of the Kähler form. An
important reference to our calculations is the book by Griffiths and Harris [8]; we use definitions, results and

notations contained in this book to differential forms of type (p, q).

Finally, we use such formula to find some differential type conditions in order for a metric on a maximal
flag manifold be cosymplectic. We show that a metric on the classical flag manifold is cosymplectic if and only

if the complex functions f ij
k in the Kähler form (see (13)) satisfy different types of partial differential equations.
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2. Flag manifolds

The usual manifold of full flags of subspaces of Cn is defined by

F(n) = {(V1, . . . , Vn) : Vi ⊂ Vi+1, dimVi = i}. (1)

The unitary group U(n) acts transitively on F(n) turning this manifold into the homogeneous space

F(n) =
U(n)

U(1) × U(1) × · · · × U(1)
=

U(n)
M

, (2)

where M = U(1) × U(1) × · · · × U(1) is any maximal torus of U(n).

Let p be the tangent space of F(n) at the point (M). It is known that u(n), the Lie algebra of skew-
hermitian matrices, decomposes as

u(n) = p ⊕ u(1) ⊕ · · · ⊕ u(1) ,

where p ⊂ u(n) is the subspace of zero-diagonal matrices.

In order to define any tensor on F(n) it is sufficient to give it on p , because the action of U(n) on F(n)

is transitive. An invariant almost complex structure on F(n) is determined by a linear map J : p → p such that

J2 = −I and commutes with the adjoint representation of the torus M on p .

For each almost complex structure we assign a tournament, a special class of directed graph. A tour-
nament or n-tournament T , consists of a finite set T = {p1, . . . , pn} of n players together with a dominance
relation, → , which assigns to every pair of players a winner, that is, pi → pj or pj → pi . A tournament T
can be represented by a directed graph in which T is the set of vertices and any two vertices are joined by an
oriented edge. If the dominance relation is transitive, then the tournament is called transitive. For a complete
reference on tournaments see [10].

Given an invariant complex structure J , we define the associated tournament T (J) in the following way:

if J(aij) = (a′
ij), then T (J) is such that for i < j

(
i → j ⇔ a′

ij =
√
−1 aij

)
or

(
i ← j ⇔ a′

ij = −
√
−1 aij

)
;

see [9].

We consider Cn equipped with the standard Hermitian inner product, that is, for V = (v1, . . . , vn) and

W = (w1, . . . , wn) in Cn , we have 〈V, W 〉 =
n∑

i=1
viwi . We use the convention vı̄ = vi and fı̄j = fij̄ .

A frame consists of an ordered set of n vectors (Z1, . . . , Zn) such that Z1 ∧ . . .∧Zn �= 0, and it is called

unitary if 〈Zi, Zj〉 = δij̄ . The set of unitary frames can be identified with the unitary group U(n).

If we write dZi =
∑

j ωij̄Zj , the coefficients ωij̄ are the Maurer-Cartan forms of the unitary group U(n).

They are skew-Hermitian, this is, ωij̄ + ωj̄i = 0. For more details see [3].

We may define all left-invariant metrics on (F(n), J) by (see [1])

ds2
Λ =

∑
i,j

λijωij̄ ⊗ ωı̄j, (3)
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where Λ = (λij) is a simetric real matrix such that{
λij > 0, if i �= j,
λij = 0, if i = j,

(4)

and the Maurer-Cartan forms ωij̄ are such that

ωij̄ ∈ C
1,0 (forms of type (1,0)) ⇐⇒ i

T (J)−→ j. (5)

The metrics (3) are called of Borel type and they are almost Hermitian for every invariant almost complex

structure J , that is, ds2
Λ(JX, JY ) = ds2

Λ(X, Y ) for all tangent vectors X, Y . When J is integrable, ds2
Λ is

said to be Hermitian.
Given J an invariant almost complex structure on F(n) and ds2

Λ an invariant metric, the Kähler form

with respect to J and ds2
Λ is defined by

Ω(X, Y ) = ds2
Λ(X, JY ), (6)

for any tangent vectors X, Y . For each permutation σ of n elements, this Kähler form can be written as (see

[9])

Ω = −2
√
−1

∑
i<j

μσ(i)σ(j)ωσ(i)σ(j) ∧ ωσ(i)σ(j), (7)

where μσ(i)σ(j) = εσ(i)σ(j)λσ(i)σ(j) and

εij =

⎧⎨⎩
1, if σ(i) → σ(j),

−1, if σ(j) → σ(i),
0, if σ(i) = σ(j).

F(n) is said to be almost Kähler if and only if Ω is closed, that is, dΩ = 0. If J is integrable and Ω is

closed, then F(n) is said to be a Kähler manifold.

In [9], Mo and Negreiros proved the following result.

Theorem 2.1

dΩ = 4
∑

i<j<k

Cσ(i)σ(j)σ(k)Ψσ(i)σ(j)σ(k), (8)

where
Cijk = μij − μik + μjk, (9)

and
Ψijk = Im(ωij̄ ∧ ωı̄k ∧ ωjk̄). (10)

We denote by Cp,q the space of forms of type (p, q) on F(n). Then, for any i, j, k , we have either

Ψijk ∈ C0,3 ⊕ C3,0 or Ψijk ∈ C1,2 ⊕ C2,1 . An invariant almost Hermitian metric ds2
Λ is said to be (1,2)-

symplectic if and only if (dΩ)1,2 = 0. If δΩ = 0, the codifferential of the Kähler form is zero, then the metric
is said to be cosymplectic.
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3. The codifferential of the Kähler form

In order to calculate the codifferential of the Kähler form we need to use the Hodge star operator. Now,
following the book by Griffiths and Harris [8], we give a precise definition of the star operator.

If η ∈ Cp,q , we can write

η =
∑
I,J

ηIJψI ∧ ψJ , (11)

where ηIJ are complex functions, I = {i1, . . . , ip} , J = {j1, . . . , jq} and ψI , ψJ are forms of type (p, 0) and

(0, q) respectively. The Hodge star operator

∗ : C
p,q −→ C

N−p,N−q

transforms forms of type (p, q) to forms of type (N −p, N −q), where N = n(n−1)/2 is the complex dimension

of F(n). Then the star operator is defined by

∗ η = 2p+q+N
∑
I,J

εIJηIJψI0 ∧ ψJ0 , (12)

where I0 = {1, . . . , N} − I , J0 = {1, . . . , N} − J and εIJ is the sign of the permutation

(1, . . . , N, 1, . . . , N) → (i1, . . . , ip, j1, . . . , jq, i
0
1, . . . , i

0
N−p, j

0
1 , . . . , j0

N−q).

The codifferential operator transforms p-forms in (p − 1)-forms. It is known that (see [8])

δ = (−1)m(p+1)+1 ∗ d ∗ ,

where m is the real dimension of the manifold and ∗ is the Hodge star operator. In our case, m is even, then

δ = − ∗ d ∗ .

By (7), up to isomorphisms, the Kähler form can be written in the following way:

Ω = −2
√
−1

∑
i<j

μijωij ∧ ωij,

where μij = εijλij and

εij =

⎧⎨⎩ 1, if i → j ,
−1, if j → i ,

0, if i = j .

Then,

δΩ = −2
√
−1

∑
i<j

μij δ(ωij ∧ ωij).

We know that ωij ∈ C1,0 and using (11) we can write

ωij =
∑

k

f ij
k dzk , (13)

308



PAREDES, PINZÓN

where f ij
k are complex functions. It follows that

ωij = ωij =
∑

k

f ij
k dzk ,

and

ωij ∧ ωij =
∑
k,l

f ij
k f ij

l dzk ∧ dzl .

Now, we can prove the following result.

Theorem 3.1 The codifferential of the Kähler form is given by

δΩ = −22+2N
√
−1

∑
i<j

μij

⎧⎨⎩∑
k,l

∂
(
f ij

k f ij
l

)
∂zl

dzk −
∂

(
f ij

k f ij
l

)
∂zk

dzl

⎫⎬⎭ . (14)

Proof. At first we use (12) to calculate ∗(ωij ∧ ωij) and we obtain

∗(ωij ∧ ωij) = 21+1−N
∑
k,l

εklf
ij
k f ij

l

{
(dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzN)∧

∧ (dz1 ∧ . . . ∧ d̂zl ∧ . . .∧ dzN)
}

,

= 22−N
∑
k,l

εklf
ij
k f ij

l

{
(dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzN)∧

∧ (dz1 ∧ . . . ∧ d̂zl ∧ . . .∧ dzN)
}

,

where d̂zk and d̂zl mean that these terms are removed and εkl is the sign of the permutation

(1, . . . , N, 1, . . . , N) → (1, . . . , k̂, . . . , N, 1, . . . , l̂, . . . , N, k, l).

We calculate εkl in the following way:

(1, . . . , k̂, . . . , N, 1, . . . , l̂, . . . , N, k, l) →

→ (−1)N−1(1, . . . , k̂, . . . , N, k, 1, . . . , l̂, . . . , N, l),

→ (−1)N−1(−1)N−k(1, . . . , k, . . . , N, 1, . . . , l̂, . . . , N, l),

→ (−1)2N−k−1(−1)N−l(1, . . . , k, . . . , N, 1, . . . , l, . . . , N),

→ (−1)3N−k−l−1(1, . . . , N, 1, . . . , N, ),

then, εkl = (−1)3N−k−l−1 . It implies that

∗(ωij ∧ ωij) = 22−N
∑
k,l

(−1)3N−k−l−1 f ij
k f ij

l

{
(dz1 ∧ . . .∧ d̂zk ∧ . . .∧ dzN )∧

∧ (dz1 ∧ . . . ∧ d̂zl ∧ . . . ∧ dzN )
}

.
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Now we calculate the exterior differential of this differential form,

d ∗ (ωij ∧ ωij) = 22−N
∑
k,l

(−1)3N−k−l−1 d
(
f ij

k f ij
l

)
∧ (dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzN)

∧ (dz1 ∧ . . .∧ d̂zl ∧ . . . ∧ dzN ).

We know that

d
(
f ij

k f ij
l

)
=

∑
m

∂
(
f ij

k f ij
l

)
∂zm

dzm +
∂

(
f ij

k f ij
l

)
∂zm

dzm ,

then,

d ∗ (ωij ∧ ωij) = 22−N
�
k,l

(−1)3N−k−l−1

�
∂
�
f ij

k f ij
l

�
∂zk

dzk ∧ (dz1 ∧ . . . ∧�dzk ∧ . . . ∧ dzN)∧

∧ (dz1 ∧ . . . ∧ �dzl ∧ . . . ∧ dzN ) +
∂
�
f ij

k f ij
l

�
∂zl

dzl ∧ (dz1 ∧ . . . ∧�dzk ∧ . . . ∧ dzN)∧

∧ (dz1 ∧ . . . ∧ �dzl ∧ . . . ∧ dzN )

�
.

On the other hand,

∂
(
f ij

k f ij
l

)
∂zk

dzk ∧ (dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzN) ∧ (dz1 ∧ . . . ∧ d̂zl ∧ . . . ∧ dzN ) =

(−1)k−1
∂

(
f ij

k f ij
l

)
∂zk

(dz1 ∧ . . . ∧ dzk ∧ . . . ∧ dzN) ∧ (dz1 ∧ . . . ∧ d̂zl ∧ . . . ∧ dzN)

and

∂
(
f ij

k f ij
l

)
∂zl

dzl ∧ (dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzN) ∧ (dz1 ∧ . . . ∧ d̂zl ∧ . . . ∧ dzN ) =

(−1)N−1+l−1
∂

(
f ij

k f ij
l

)
∂zl

(dz1 ∧ . . . ∧ d̂zk ∧ . . . ∧ dzN) ∧ (dz1 ∧ . . . ∧ dzl ∧ . . . ∧ dzN ) .

This implies

d ∗ (ωij ∧ ωij) = 22−N
∑
k,l

{
(−1)3N−l

∂
(
f ij

k f ij
l

)
∂zk

(dz1 ∧ . . .∧ dzk ∧ . . .∧ dzN )∧

∧ (dz1 ∧ . . .∧ d̂zl ∧ . . .∧ dzN ) + (−1)k+1
∂

(
f ij

k f ij
l

)
∂zl

(dz1 ∧ . . .∧ d̂zk ∧ . . .∧ dzN )∧

∧ (dz1 ∧ . . .∧ dzl ∧ . . .∧ dzN)

}
.

310



PAREDES, PINZÓN

Finally, we apply the star operator to the last form to calculate

∗ d ∗ (ωij ∧ ωij).

In order to better understand the procedure we calculate separately the following expressions:

22−N
�
k,l

(−1)3N−l ∗

�	
∂
�
f ij

k f ij
l

�
∂zk

(dz1 ∧ . . . ∧ dzk ∧ . . . ∧ dzN ) ∧ (dz1 ∧ . . . ∧ �dzl ∧ . . . ∧ dzN )

��

and

22−N
�
k,l

(−1)k+1 ∗

�	
∂
�
f ij

k f ij
l

�
∂zl

(dz1 ∧ . . . ∧�dzk ∧ . . . ∧ dzN ) ∧ (dz1 ∧ . . . ∧ dzl ∧ . . . ∧ dzN )

��
 .

To the first, by using the formula (12), we have

22−N
�
k,l

(−1)3N−l ∗

���
��

∂
�
f ij

k f ij
l

�
∂zk

(dz1 ∧ . . . ∧ dzk ∧ . . . ∧ dzN ) ∧ (dz1 ∧ . . . ∧ �dzl ∧ . . . ∧ dzN )

	�

�� =

= 22−N
�
k,l

(−1)3N−l23N−1εIJ

∂
�
f ij

k f ij
l

�
∂zk

dzl ,

where I = {1, . . . , N} and J = {1, . . . , l̂, . . . , N} . εIJ is the sign of the permutation

(1, . . . , N, 1, . . . , N) → (1, . . . , N, 1, . . . , l̂, . . . , N, l),

to which it is easy to see that εIJ = (−1)N−l . Then,

22−N
�
k,l

(−1)3N−l ∗

���
��

∂
�
f ij

k f ij
l

�
∂zk

(dz1 ∧ . . . ∧ dzk ∧ . . . ∧ dzN ) ∧ (dz1 ∧ . . . ∧ �dzl ∧ . . . ∧ dzN )

	�

�� =

= 21+2N
�
k,l

(−1)4N−2l
∂
�
f ij

k f ij
l

�
∂zk

dzl = 21+2N
�
k,l

∂
�
f ij

k f ij
l

�
∂zk

dzl .

Similarly, we can prove

22−N
�
k,l

(−1)k+1 ∗

���
��

∂
�
f ij

k f ij
l

�
∂zl

(dz1 ∧ . . . ∧�dzk ∧ . . . ∧ dzN ) ∧ (dz1 ∧ . . . ∧ dzl ∧ . . . ∧ dzN )

	�

�� =

= −21+2N
∑
k,l

∂
(
f ij

k f ij
l

)
∂zl

dzk .

So, we obtain

∗ d ∗ (ωij ∧ ωij) = 21+2N
∑
k,l

∂
(
f ij

k f ij
l

)
∂zk

dzl −
∂

(
f ij

k f ij
l

)
∂zl

dzk ,
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and it implies that

δ(ωij ∧ ωij) = 21+2N
∑
k,l

∂
(
f ij

k f ij
l

)
∂zl

dzk −
∂

(
f ij

k f ij
l

)
∂zk

dzl .

Therefore, we arrive to the desired formula:

δΩ = −22+2N
√
−1

∑
i<j

μij

⎧⎨⎩∑
k,l

∂
(
f ij

k f ij
l

)
∂zl

dzk −
∂

(
f ij

k f ij
l

)
∂zk

dzl

⎫⎬⎭ .

�

4. Cosymplectic metrics

San Martin and Negreiros [14], proved that the metrics ds2
Λ in (3) are cosymplectic. The condition for

ds2
Λ to be cosymplectic is the codifferential of the Kähler form δΩ be zero, however, they did not calculate this

codifferential because they used another equivalent condition due to Gray and Hervella [7].

By Theorem 3.1 we can write the following proposition.

Proposition 4.1 A metric on (F(n), J) is cosymplectic if and only if the functions f ij
k in the Kähler form

satisfy the partial differential equation

∑
i<j

μij

⎧⎨⎩∑
k,l

∂
(
f ij

k f ij
l

)
∂zl

dzk −
∂

(
f ij

k f ij
l

)
∂zk

dzl

⎫⎬⎭ = 0. (15)

Expanding the sums over k and l in (15) and reordering, we obtain the following system of partial
differential equations:

∑
i<j

μij

⎛⎝∂
(
f ij

k f ij
1

)
∂z1

+ · · ·+
∂

(
f ij

k f ij
N

)
∂zN

⎞⎠ = 0, k = 1, . . . , N, (16)

∑
i<j

μij

⎛⎝∂
(
f ij
1 f ij

1

)
∂z1

+ · · ·+
∂

(
f ij
1 f ij

N

)
∂zN

⎞⎠ = 0, k = 1, . . . , N. (17)

Actually, equation (17) is the conjugate of equation (16); then we have the following result.

Proposition 4.2 A metric on (F(n), J) is cosymplectic if and only if the functions f ij
k in the Kähler form

satisfy the system of partial differential equations

∑
i<j

μij

⎛⎝∂
(
f ij

k f ij
1

)
∂z1

+ · · ·+
∂

(
f ij

k f ij
N

)
∂zN

⎞⎠ = 0, k = 1, . . . , N. (18)
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On the other hand, we can write equation (14) as

δΩ = −22+2N
√
−1

∑
i<j

μij

⎧⎨⎩
N∑

k=1

⎛⎝∂
(
f ij

k f ij
1

)
∂z1

+ · · ·+
∂

(
f ij

k f ij
N

)
∂zN

⎞⎠ dzk+

−
N∑

k=1

⎛⎝∂
(
f ij
1 f ij

1

)
∂z1

+ · · ·+
∂

(
f ij
1 f ij

N

)
∂zN

⎞⎠ dzk

⎫⎬⎭ ,

= −22+2N
√
−1

∑
i<j

μij

N∑
k=1

{(
N∑

l=1

∂

∂zl

(
f ij

k f ij
l

))
dzk −

(
N∑

l=1

∂

∂zl

(
f ij

k f ij
l

)
dzk

)}
.

Like z − z = 2
√−1 Imz , for every complex number z , then

δΩ = −22+2N
√
−1

∑
i<j

μij

N∑
k=1

{
2
√
−1 Im

(
N∑

l=1

∂

∂zl

(
f ij

k f ij
l

)
dzk

)}
,

= 23+2N
∑
i<j

μij

⎧⎨⎩
N∑

k,l=1

Im
(

∂

∂zl

(
f ij

k f ij
l

)
dzk

)⎫⎬⎭ ,

= 23+2N Im

⎧⎨⎩∑
i<j

μij

⎛⎝ N∑
k,l=1

(
∂

∂zl

(
f ij

k f ij
l

)
dzk

)⎞⎠⎫⎬⎭ .

Then, we have the following proposition, equivalent to propositions (4.1) and (4.2).

Proposition 4.3 A metric on (F(n), J) is cosymplectic if and only if the functions f ij
k in the Kähler form

satisfy the equation

Im

⎧⎨⎩∑
i<j

μij

⎛⎝ N∑
k,l=1

(
∂

∂zl

(
f ij

k f ij
l

)
dzk

)⎞⎠⎫⎬⎭ = 0. (19)

We can write this relation in real coordinates using the complex operators

∂

∂zi
=

1
2

(
∂

∂xi
−

√
−1

∂

∂yi

)
,

∂

∂zi
=

1
2

(
∂

∂xi
+
√
−1

∂

∂yi

)
,

and the complex differential forms

dzi = dxi +
√
−1dyi, dzi = dxi −

√
−1dyi.

So, we obtain that a metric on (F(n), J) is cosymplectic if and only if the functions f ij
k in the Kähler

form satisfy the following equations:
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�
i<j

μij

���
��
�
k,l



��∂
�
f ij

k f ij
l

�
∂xl

dxk −
∂
�
f ij

k f ij
l

�
∂xk

dxl

�
��+



��∂
�
f ij

k f ij
l

�
∂yl

dyk −
∂
�
f ij

k f ij
l

�
∂yk

dyl

�
��
	�

�� = 0 (20)

�
i<j

μij

���
��
�
k,l



��∂
�
f ij

k f ij
l

�
∂xl

dyk −
∂
�
f ij

k f ij
l

�
∂yk

dxl

�
��+



��∂
�
f ij

k f ij
l

�
∂xk

dyl −
∂
�
f ij

k f ij
l

�
∂yl

dxk

�
��
	�

�� = 0. (21)

Here, the sums are calculated over all k and l , therefore the left side of the equation (20) is null. Then,
we have the result.

Proposition 4.4 A metric on (F(n), J) is cosymplectic if and only if the functions f ij
k in the Kähler form

satisfy the following equation

�
i<j

μij

�	
�
k,l

��∂
�
f ij

k f ij
l

�
∂xl

dyk −
∂
�
f ij

k f ij
l

�
∂yk

dxl

��+

��∂
�
f ij

k f ij
l

�
∂xk

dyl −
∂
�
f ij

k f ij
l

�
∂yl

dxk

����
 = 0.
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