Some properties of C-fusion frames

Mohammad Hasan Faroughi and Reza Ahmadi

Abstract

In [10], we generalized the concept of fusion frames, namely, c-fusion frames, which is a continuous version of the fusion frames. In this article we give some important properties about the generalization, namely erasures of subspaces, the bound of c-erasure reconstruction error for Parseval c-fusion frames, perturbation of c-fusion frames and the frame operator for fusion pair.

Key Words: Operator, Hilbert space, Bessel, Frame, Fusion frame, c-fusion frame

1. Introduction and preliminaries

Throughout this paper H will be a Hilbert space and \mathbb{H} will be the collection of all closed subspace of H. Also, (X, μ) will be a measure space, and $v: X \rightarrow[0,+\infty)$ a measurable mapping such that $v \neq 0$ almost everywhere (a.e.). We shall denote the unit closed ball of H by H_{1}.

Frames was first introduced in the context of non-harmonic Fourier series [9]. Outside of signal processing, frames did not seem to generate much interest until the ground breaking work in [8]. Since then the theory of frames began to be more widely studied. During the last 20 years the theory of frames has grown up rapidly, with the development of several new applications. For example, besides traditional application as signal processing, image processing, data compression, and sampling theory, frames are now used to mitigate the effect of losses in pocket-based communication systems and hence to improve the robustness of data transmission on [6], and to design high-rate constellation with full diversity in multiple-antenna code design [12]. In [2, 1, 3] some applications have been developed.

The fusion frames were considered by Casazza, Kutyniok and Li in connection with distributed processing and are related to the construction of global frames [4, 5]. The fusion frame theory is in fact more delicate due to complicated relations between the structure of the sequence of weighted subspaces and the local frames in the subspaces and due to the extreme sensitivity with respect to changes of the weights.

In [10] we extended fusion frames to their continuous versions in measure spaces and in this paper we shall investigate some properties about it.

[^0]
FAROUGHI, AHMADI

Definition 1.1 Let $\left\{f_{i}\right\}_{i \in I}$ be a sequence of members of H. We say that $\left\{f_{i}\right\}_{i \in I}$ is a frame for H if there exist $0<A \leq B<\infty$ such that for all $h \in H$

$$
\begin{equation*}
A\|h\|^{2} \leq \sum_{i \in I}\left|<f_{i}, h>\right|^{2} \leq B\|h\|^{2} \tag{1.1}
\end{equation*}
$$

The constants A and B are called the frame bounds. If A, B can be chosen so that $A=B$, we call this frame an A-tight frame and if $A=B=1$, it is called a Parseval frame. If we only have the upper bound, we call $\left\{f_{i}\right\}_{i \in I}$ a Bessel sequence. If $\left\{f_{i}\right\}_{i \in I}$ is a Bessel sequence then the following operators are bounded:

$$
\begin{gather*}
T: l^{2}(I) \rightarrow H, \quad T\left(c_{i}\right)=\sum_{i \in I} c_{i} f_{i} \tag{1.2}\\
T^{*}: H \rightarrow l^{2}(I), \quad T^{*}(f)=\left\{<f, f_{i}>\right\}_{i \in I} \tag{1.3}\\
S f=T T^{*} f=\sum_{i \in I}<f, f_{i}>f_{i} . \tag{1.4}
\end{gather*}
$$

These operators are called synthesis operator; analysis operator and frame operator, respectively.
Definition 1.2 For a countable index set I, let $\left\{W_{i}\right\}_{i \in I}$ be a family of closed subspace in H, and let $\left\{v_{i}\right\}_{i \in I}$ be a family of real numbers, called weights, i.e., $v_{i}>0$ for all $i \in I$. Then $\left\{\left(W_{i}, v_{i}\right)\right\}_{i \in I}$ is a fusion frame for H if there exist $0<C \leq D<\infty$ such that for all $h \in H$

$$
\begin{equation*}
C\|h\|^{2} \leq \sum_{i \in I} v_{i}^{2}\left\|\pi_{W_{i}}(f)\right\|^{2} \leq D\|h\|^{2} \tag{1.5}
\end{equation*}
$$

where $\pi_{W_{i}}$ is the orthogonal projection onto the subspace W_{i}.
We call C and D the fusion frame bounds. The family $\left\{\left(W_{i}, v_{i}\right)\right\}_{i \in I}$ is called a c-tight fusion frame, if in 1.5 the constants C and D can be chosen so that $C=D$, a Parseval fusion frame provided $C=D=1$ and an orthonormal fusion basis if $H=\bigoplus_{i \in I} W_{i}$. If $\left\{\left(W_{i}, v_{i}\right)\right\}_{i \in I}$ possesses an upper fusion frame bound, but not necessarily a lower bound, we call it is a Bessel fusion sequence with Bessel fusion bound D. The representation space employed in this setting is

$$
\left(\sum_{i \in I} \oplus W_{i}\right)_{l_{2}}=\left\{\left\{f_{i}\right\}_{i \in I} \mid f_{i} \in W_{i} \quad \text { and } \quad\left\{\left\|f_{i}\right\|\right\}_{i \in I} \in l^{2}(I)\right\}
$$

Let $\left\{\left(W_{i}, v_{i}\right)\right\}_{i \in I}$ be a fusion frame for H. The synthesis operator, analysis operator and frame operator are defined, respectively, by

$$
\begin{gathered}
T_{W}:\left(\sum_{i \in I} \oplus W_{i}\right)_{l_{2}} \rightarrow H \quad \text { with } \quad T_{W}(f)=\sum_{i \in I} v_{i} f_{i}, \\
T_{W}^{*}: H \rightarrow\left(\sum_{i \in I} \oplus W_{i}\right)_{l_{2}} \quad \text { with } \quad T_{W}^{*}(f)=\left\{v_{i} \pi_{W_{i}}(f)\right\}_{i \in I},
\end{gathered}
$$

FAROUGHI, AHMADI

$$
S_{W}(f)=T_{W} T_{W}^{*}=\sum_{i \in I} v_{i}^{2} \pi_{W_{i}}(f)
$$

By proposition 3.7 in [5], if $\left\{\left(W_{i}, v_{i}\right)\right\}_{i \in I}$ is a fusion frame for H with fusion frame bounds C and D then S_{W} is a positive and invertible operator on H with $C I d \leq S_{W} \leq D I d$. The theory of frames has a continuous version as follows.

Definition 1.3 Let (X, μ) be a measure space. Let $f: X \rightarrow H$ be weakly measurable (i.e., for all $h \in H$, the mapping $x \rightarrow<f(x), h>$ is measurable). Then f is called a continuous frame or c-frame for H if there exist $0<A \leq B<\infty$ such that for all $h \in H$

$$
\begin{equation*}
A\|h\|^{2} \leq \int_{X}|<f(x), h>|^{2} d \mu \leq B\|h\|^{2} \tag{1.6}
\end{equation*}
$$

The representation space employed in this setting is

$$
L^{2}(X, \mu)=\left\{\varphi: X \rightarrow H \mid \quad \varphi \quad \text { is measurable and } \quad\|\varphi\|_{2}<\infty\right\}
$$

in which $\|\varphi\|_{2}=\left(\int_{X}\|\varphi(x)\|^{2} d \mu\right)^{\frac{1}{2}}$. The synthesis operator, analysis operator and frame operator are defined, respectively, by

$$
\begin{gather*}
T_{f}: L^{2}(X, \mu) \rightarrow H \\
<T_{f} \varphi, h>=\int_{X} \varphi(x)<f(x), h>d \mu(x) \tag{1.7}\\
T_{f}^{*}: H \rightarrow L^{2}(X, \mu) \\
\left(T_{f}^{*} h\right)(x)=<h, f(x)>, \quad x \in X \tag{1.8}\\
S_{f}=T_{f} T_{f}^{*} \tag{1.9}
\end{gather*}
$$

Also by Theorem 2.5. in [14], S_{f} is positive, self-adjoint and invertible.
We need the following theorems and the proofs can be found in [14].
Theorem 1.4 Let f be a continuous frame for H with the frame operator S_{f} and let $V: H \rightarrow K$ be a bounded and invertible operator. Then $V \circ f$ is a continuous frame for K with the frame operator $V S_{f} V^{*}$.

Theorem 1.5 Let K be a closed subspace of H and let $P: H \rightarrow K$ be an orthogonal projection. Then the following holds:
(i) If f is a continuous frame for H with bounds A and B, then $P f$ is a continuous frame for K with the bounds A and B.
(ii) If f is a continuous frame for K with the frame operator S_{f}, then for each $h, k \in H$

$$
<P h, k>=\int_{X}<h, S_{f}^{-1} f(x)><f(x), k>d \mu(x)
$$

FAROUGHI, AHMADI

The following lemmas and theorems can be found in operator theory text books $[13,16,17,18]$ which we shall use this work.

Lemma 1.6 Let $u: H \rightarrow K$ be a bounded operator. Then
(i) $\|u\|=\left\|u^{*}\right\|$ and $\left\|u u^{*}\right\|=\|u\|^{2}$.
(ii) R_{u} is closed, if and only if, $R_{u^{*}}$ is closed.
(iii) u is surjective, if and only if, there exists $c>0$ such that for each $h \in H$

$$
c\|h\| \leq\left\|u^{*}(h)\right\| .
$$

Lemma 1.7 Let u be a self-adjoint bounded operator on H. Let

$$
m_{u}=\inf _{h \in H}<u h, h>, \quad M_{u}=\sup _{h \in H}<u h, h>.
$$

Then, $m_{u}, M_{u} \in \sigma(u)$.

Theorem 1.8 Let $u: K \rightarrow H$ be a bounded operator with closed range R_{u}. Then there exists a bounded operator $u^{\dagger}: H \rightarrow K$ for which $u u^{\dagger} f=f, f \in R_{u}$.
Also, $u^{*}: H \rightarrow K$ has closed range and $\left(u^{*}\right)^{\dagger}=\left(u^{\dagger}\right)^{*}$. The operator u^{\dagger} is called the pseudo-inverse of u.

Theorem 1.9 Let $u: K \rightarrow H$ be a bounded surjective operator. Given $y \in H$, the equation $u x=y$ has a unique solution of minimal norm, namely, $x=u^{\dagger} y$.

2. C-fusion frame

In this section we shall introduce the continuous version of fusion frames and we shall obtain some useful properties of it.

Definition 2.1 Let $F: X \rightarrow \mathbb{H}$ be such that for each $h \in H$, the mapping $x \mapsto \pi_{F(x)}(h)$ is measurable (i.e. is weakly measurable), and let $v: X \rightarrow[0,+\infty)$ be a measurable mapping such that $v \neq 0$ a.e. We say that (F, v) is a c-fusion frame for H if there exist $0<A \leq B<\infty$ such that for all $h \in H$

$$
\begin{equation*}
A\|h\|^{2} \leq \int_{X} v^{2}(x)\left\|\pi_{F(x)}\right\|^{2} d \mu \leq B\|h\|^{2} \tag{2.1}
\end{equation*}
$$

(F, v) is called a tight c-fusion frame for H if A, B can be chosen so that $A=B$, and Parseval if $A=B=1$. If we only have the upper bound, say call (F, v) is a Bessel c-fusion mapping for H.

Definition 2.2 Let $F: X \rightarrow \mathbb{H}$. Let $L^{2}(X, H, F)$ be the class of all measurable mapping $f: X \rightarrow H$ such that for each $x \in X, f(x) \in F(x)$ and

$$
\int_{X}\|f(x)\|^{2} d \mu<\infty
$$

FAROUGHI, AHMADI

It can be verified that $L^{2}(X, H, F)$ is a Hilbert space with inner product defined by

$$
<f, g>=\int_{X}<f(x), g(x)>d \mu
$$

for $f, g \in L^{2}(X, H, F)$.

Remark 2.3 For brevity, we shall denote $L^{2}(X, H, F)$ by $L^{2}(X, F)$. Let (F, v) be a Bessel c-fusion mapping, $f \in L^{2}(X, F)$ and $h \in H$. Then:

$$
\begin{gathered}
\left|\int_{X} v(x)<f(x), h>d \mu\right|=\left|\int_{X} v(x)<\pi_{F(x)}(f(x)), h>d \mu\right| \\
=\left|\int_{X} v(x)<f(x), \pi_{F(x)}(h)>d \mu\right| \leq \int_{X} v(x)\|f(x)\| \cdot\left\|\pi_{F(x)}(h)\right\| d \mu \\
\leq\left(\int_{X}\|f(x)\|^{2} d \mu\right)^{1 / 2}\left(\int_{X} v^{2}(x)\left\|\pi_{F(x)}(h)\right\|^{2} d \mu\right)^{1 / 2} \\
\leq B^{1 / 2}\|h\|\left(\int_{X}\|f(x)\|^{2} d \mu\right)^{1 / 2}
\end{gathered}
$$

So we may define put forth the following definition.
Definition 2.4 Let (F, v) be a Bessel c-fusion mapping for H. We define the c-fusion pre-frame operator (synthesis operator) $T_{F}: L^{2}(X, F) \rightarrow H$ by

$$
\begin{equation*}
<T_{F}(f), h>=\int_{X} v(x)<f(x), h>d \mu \tag{2.2}
\end{equation*}
$$

where $f \in L^{2}(X, F)$ and $h \in H$.
By the Remark 2.3, $T_{F}: L^{2}(X, F) \rightarrow H$ is a bounded linear mapping. Its adjoint

$$
T_{F}^{*}: H \rightarrow L^{2}(X, F)
$$

will be called a c-fusion analysis operator, and $S_{F}=T_{F} \circ T_{F}^{*}$ will be called a c-fusion frame operator. The representation space in this setting is $L^{2}(X, F)$.

Remark 2.5 Let (F, v) be a Bessel c-fusion mapping for H. Then $T_{F}: L^{2}(X, F) \rightarrow H$ is indeed a vectorvalued integral, which for $f \in L^{2}(X, F)$ we shall put

$$
\begin{equation*}
T_{F}(f)=\int_{X} v f d \mu \tag{2.3}
\end{equation*}
$$

where

$$
<\int_{X} v f d \mu, h>=<\int_{X} v(x)<f(x), h>d \mu, h \in H
$$

FAROUGHI, AHMADI

For each $h \in H$ and $f \in L^{2}(X, F)$, we have

$$
\begin{aligned}
& <T_{F}^{*}(h), f>=<h, T_{F}(f)>=\int_{X} v(x)<h, f(x)>d \mu \\
& =\int_{X} v(x)<\pi_{F(x)}(h), f(x)>d \mu=<v \pi_{F}(h), f>
\end{aligned}
$$

Hence for all $h \in H$

$$
\begin{equation*}
T_{F}^{*}(h)=v \pi_{F}(h) \tag{2.4}
\end{equation*}
$$

So $T_{F}^{*}=v \pi_{F}$.
Remark 2.6 A c-fusion frame is indeed a generalization of fusion frame. In definition 2.1, if we put $X=I$ and μ be the counting measure, then F is a fusion frame according to the definition 1.2. Also with this hypothesis, $L^{2}(X, F)$ changes to $\left(\sum_{i \in I} \oplus W_{i}\right)_{l_{2}}$ the representation space of fusion frame.

Definition 2.7 Let (F, v) and (G, v) be Bessel c-fusion mappings for H. We say (F, v) and (G, v) are weakly equal if $T_{F}^{*}=T_{G}^{*}$, which is equivalent to $v \pi_{F}(h)=v \pi_{G}(h)$, i.e. for all $h \in H$. Since, $v \neq 0$ i.e., (F, v) and (G, v) are weakly equal if $\pi_{F}(h)=\pi_{G}(h)$, i.e. for all $h \in H$.

Remark 2.8 Let $T_{F}=0$. Now, let $O: X \rightarrow \mathbb{H}$ be defined by $O(x)=\{0\}$, for almost all $x \in X$. Then (O, v) is a Bessel c-fusion mapping and $T_{O}=0$. Let $h \in H$. Since $v \pi_{F}(h) \in L^{2}(X, F)$, so

$$
\begin{gathered}
\int_{X} v^{2}(x)<\pi_{F(x)}(h), \pi_{F(x)}(h)>d \mu \\
=\int_{X} v(x)<v(x) \pi_{F(x)}(h), h>d \mu=<T_{F}\left(v \pi_{F}(h)\right), h>=0 .
\end{gathered}
$$

Thus $\pi_{F(x)}(h)=0$, i.e. Therefore, $\pi_{F}(h)=\pi_{O}(h)$, a.e. Hence (F, v) and (O, v) are weakly equal.
Definition 2.9 For any Bessel c-fusion mapping (F, v) for H, we shall denote

$$
\begin{gather*}
A_{F, v}=\inf _{h \in H_{1}}\left\|v \pi_{F}(h)\right\|^{2}, \tag{2.5}\\
B_{F, v}=\sup _{h \in H_{1}}\left\|v \pi_{F}(h)\right\|^{2}=\left\|v \pi_{F}\right\|^{2} . \tag{2.6}
\end{gather*}
$$

Remark 2.10 Let (F, v) be a Bessel c-fusion mapping for H. Since, for each $h \in H$

$$
<T_{F} T_{F}^{*}(h), h>=\left\|v \pi_{F}(h)\right\|^{2}=\int_{X} v^{2}(x)\left\|\pi_{F(x)}\right\|^{2} d \mu
$$

$A_{F, v}$ and $B_{F, v}$ are optimal scalars which satisfy

$$
A_{F, v} \leq T_{F} T_{F}^{*} \leq B_{F, v}
$$

In other words $A_{F, v}$ is the spermum of all positive numbers A, and $B_{F, v}$ is the infimum of all positive numbers B which satisfies in 2.1. $S o(F, v)$ is a c-fusion frame for H if and only if $A_{F, v}>0$.

Lemma 2.11 Let (F, v) be a Parseval c-fusion frame for H. Then $T_{F}^{*} T_{F}$ is the orthogonal projection of $L^{2}(X, F)$ onto $T_{F}^{*}(H)$.

Proof. By remark 2.5 we have $T_{F}^{*}(h)=v \pi_{F}(h)$. Thus

$$
\begin{gathered}
\left\|T_{F}^{*}(h)\right\|^{2}=\left\|v \pi_{F}(h)\right\|^{2}=\int_{X}\left\|v(x) \pi_{F(x)}(h)\right\|^{2} d \mu \\
=\int_{X} v^{2}(x)\left\|\pi_{F(x)}(h)\right\|^{2} d \mu=\|h\|^{2}
\end{gathered}
$$

Thus T_{F}^{*} is an isometry. So we can embed H into $L^{2}(X, F)$ by identifying H with $T_{F}^{*}(H)$. Let $P: L^{2}(X, F) \rightarrow$ $T_{F}^{*}(H)$ be the orthogonal projection. For each $f \in L^{2}(X, F)$ and $h \in H$ we have:

$$
\begin{gathered}
<P f, T_{F}^{*}(h)>=<f, P T_{F}^{*}(h)>=<f, T_{F}^{*}(h)> \\
=<T_{F}(f), h>=<T_{F}^{*} T_{F}(f), T_{F}^{*}(h)>
\end{gathered}
$$

Thus

$$
P f-T_{F}^{*} T_{F}(f) \perp T_{F}^{*}(H)
$$

But $\operatorname{ran}(P)=T_{F}^{*}(H)$, hence $P=T_{F}^{*} T_{F}$.

Example 2.12 Let $X=[-1,1]$ with the Lebesgue measure μ and let H_{n} be a n-dimensional Hilbert space with orthonormal basis $\left\{e_{i}\right\}_{i=1}^{n}$. For each $x \in X$, let

$$
F(x)=\left\{\lambda \sum_{i=0}^{n-1} x^{i} e_{i+1}: \lambda \in \mathbb{C}\right\} \quad \text { and } \quad v(x)=\sqrt{\sum_{i=1}^{n} x^{2 i-2}}
$$

Then $F: X \rightarrow \mathbb{H}$ and (F, v) is a c-fusion frame for H. For the proof of the example we refer the reader to [15].

3. Erasures of subspaces and perturbation of C-fusion frames

Theorem 3.1 Let (F, v) be a c-fusion frame for H with bounds C and D, and let $Y \subseteq X$ be measurable. Then the following assertions are satisfied:
(i) If $\int_{Y} v^{2}(x) d \mu>D$ then $\cap_{x \in Y} F(x)=\{0\}$.
(ii) If $\int_{Y} v^{2}(x) d \mu=D$ then $\cap_{x \in Y} F(x) \perp \operatorname{span}\{F(x)\}_{x \in X-Y}$ a.e.
(iii) If $c=\int_{Y} v^{2}(x) d \mu<C$, then $F: X-Y \rightarrow \mathbb{H}$ is a c-fusion frame with bounds $C-c$ and D.

Proof. (i) Suppose $h \in \cap_{x \in Y} F(x)$, then $\pi_{F(x)}(h)=h$ for all $x \in Y$. We have

$$
D\|h\|^{2}<\|h\|^{2}\left(\int_{Y} v^{2}(x) d \mu\right)=\int_{Y}\|h\|^{2} v^{2}(x) d \mu
$$

$$
\begin{gathered}
=\int_{Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu \\
\leq \int_{Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu+\int_{X-Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu \\
=\int_{X}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu \leq D\|h\|^{2}
\end{gathered}
$$

hence $h=0$.
(ii) If $\int_{Y} v^{2}(x) d \mu=D$ and $h \in \cap_{x \in Y} F(x)$ then

$$
\begin{gathered}
D\|h\|^{2}=\int_{Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu \\
\leq \int_{Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu+\int_{X-Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu \\
\leq D\|h\|^{2}
\end{gathered}
$$

thus

$$
D\|h\|^{2}+\int_{X-Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu \leq D\|h\|^{2}
$$

Hence

$$
\int_{X-Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu \leq 0
$$

therefore we have $\pi_{F(x)}(h)=0$, for all $x \in X-Y$ (a.e.) and we conclude that $h \perp F(x)$ for all $x \in X-Y$ (a.e.). Thus $h \perp \operatorname{span}\{F(x)\}_{x \in X-Y}$ (a.e.) and we get

$$
\cap_{x \in Y} F(x) \perp \operatorname{span}\{F(x)\}_{x \in X-Y}
$$

(iii) For all $h \in H$ we have

$$
\begin{gathered}
\int_{X-Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu \\
=\int_{X}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu-\int_{Y}\left\|\pi_{F(x)}(h)\right\|^{2} v^{2}(x) d \mu \\
\geq C\|h\|^{2}-\|h\|^{2} \int_{Y} v^{2}(x) d \mu=(C-c)\|h\|^{2}
\end{gathered}
$$

The upper bound is obvious.
The following corollary immediately follows from the Theorem 3.1
Corollary 3.2 Let (F, v) be a c-fusion frame for H with bounds C and D, and let $Y \subseteq X$ be measurable. Then the following statements are equivalent:
(i) $c=\int_{Y} v^{2}(x) d \mu<C$.
(ii) $F:(X-Y) \rightarrow \mathbb{H}$ is a c-fusion frame with bounds $C-c$ and D.

Definition 3.3 For any $X_{\circ} \subseteq X$ measurable, we define

$$
\begin{gathered}
D_{X_{\circ}}: L^{2}(X, F) \rightarrow L^{2}(X, F) \\
D_{X_{\circ}}(f)(x)= \begin{cases}f(x) & \text { if } x \in X_{\circ} \\
0 & \text { if } x \in X-X_{\circ}\end{cases}
\end{gathered}
$$

for all $f \in L^{2}(X, F)$.

Definition 3.4 Let (F, v) be a c-fusion frame with the pre-frame operator T_{F}. We define the c-erasure reconstruction error $\xi_{1}(F)$ to be

$$
\begin{equation*}
\xi_{1}(F)=\sup \left\{\left\|T_{F} D_{X} T_{F}^{*}\right\|: X_{\circ} \subseteq X\right\} \tag{3.1}
\end{equation*}
$$

where X_{\circ} is measurable.

Theorem 3.5 Let $v \in L^{2}(X)$ and let (F, v) be a Parseval c-fusion frame with c-erasure reconstruction error $\xi_{1}(F)$. Then $D_{X \circ}(f) \in L^{2}(X, F)$ and

$$
\begin{equation*}
\xi_{1}(F) \leq\|v\|_{2} \tag{3.2}
\end{equation*}
$$

Proof. Since

$$
\begin{aligned}
& \left\|D_{X_{\circ}}\right\|=\sup \left\{\left\|D_{X_{\circ}}(f)\right\|:\|f\|=1 \quad \text { and } \quad f \in L^{2}(X, F)\right\} \\
& \left\|D_{X_{\circ}}(f)\right\|^{2}=\int_{X}\left|D_{X_{\circ}}(f)(x)\right|^{2} d \mu=\int_{X_{\circ}}|f(x)|^{2} d \mu \leq\|f\|^{2}
\end{aligned}
$$

so $\left\|D_{X_{\circ}}\right\| \leq 1$.
Choose $X_{\circ} \subseteq X$ measurable, and fix it. By the Remark 2.5 we have

$$
\begin{gathered}
\left\|T_{F} D_{X_{\circ}} T_{F}^{*}\right\|=\sup _{h \in H_{1}}\left\|T_{F} D_{X_{\circ}} T_{F}^{*}(h)\right\| \\
=\sup _{h \in H_{1}}\left\|T_{F} D_{X_{\circ}}\left(v \pi_{F}(h)\right)\right\|=\sup _{h \in H_{1}} \sup _{k \in H_{1}}\left|<T_{F} D_{X_{\circ}}\left(v \pi_{F}(h)\right), k>\right| \\
\left.=\sup _{h \in H_{1}} \sup _{k \in H_{1}} \mid \int_{X_{\circ}}<v^{2}(x) \pi_{F(x)}(h)\right), k>d \mu \mid \\
\leq \sup _{h \in H_{1}}\left(\int_{X} v^{2}(x)\left\|\pi_{F(x)}(h)\right\|^{2} d \mu\right)^{1 / 2}\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2} \\
=\sup _{h \in H_{1}}\|h\|\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}=\|v\|_{2} .
\end{gathered}
$$

Since $X_{\circ} \subseteq X$ is arbitrary

$$
\xi_{1}(F) \leq\|v\|_{2}
$$

FAROUGHI, AHMADI

Example 3.6 Let $X=[0,1]$ and μ be the Lebesgue measure. Suppose that $v(x)=\sqrt{2}$ For all $x \in X$, then v is positive and measurable. For the Hilbert space $H=\mathbb{C}$, we put $\mathbb{H}=\left\{W_{1}, W_{2}\right\}$ which $W_{1}=\operatorname{span}\{(1,0)\}$ and $W_{2}=\operatorname{span}\{(0,1)\}$. If we define

$$
\begin{gathered}
F:[0,1] \rightarrow \mathbb{H} \\
F(x)=\left\{\begin{array}{lll}
W_{1} & \text { if } & 0 \leq x<\frac{1}{2} \\
W_{2} & \text { if } & \frac{1}{2} \leq x \leq 1
\end{array}\right.
\end{gathered}
$$

then F is weakly measurable and we have

$$
\begin{gathered}
\int_{0}^{1} v^{2}(x)\left\|\pi_{F(x)}(h)\right\|^{2} d \mu \\
=\int_{0}^{1 / 2} 2 a^{2} d x+\int_{1 / 2}^{1} 2 b^{2} d x=a^{2}+b^{2}=\|h\|^{2}
\end{gathered}
$$

Hence (F, v) is a Parseval c-fusion frame for H. Now by Theorem 3.5, we have $\xi_{1}(F) \leq 2$.
According to the construction of fusion frame systems in [5], we introduce $\xi_{1}(F)$ for such c-fusion frame systems.

Definition 3.7 Let (X, μ) and (Y, λ) be two measure spaces. Let $f: X \times Y \rightarrow H$ and $F: X \rightarrow \mathbb{H}$. Let for all $x \in X, f(x,):. Y \rightarrow F(x)$ be a c-frame for $F(x)$. Then (F, f, v) is called a system of local c-frames. Also, (F, f, v) is called a c-fusion frame system if (F, v) is a c-fusion frame.

Example 3.8 Let $X=Y=[0,1]$ and $\mu=\lambda$ be the Lebesgue measure. Suppose that $v(x)=e^{\frac{x}{2}}$ For all $x \in X$, then v is positive and measurable. For Hilbert space $H=\mathbb{C}$, we put $\mathbb{H}=\left\{W_{1}, W_{2}\right\}$ which $W_{1}=$ span $\{(1,1)\}$ and $W_{2}=\operatorname{span}\{(1,-1)\}$. If we define

$$
\begin{gathered}
F:[0,1] \rightarrow \mathbb{H} \\
F(x)=\left\{\begin{array}{lll}
W_{1} & \text { if } & 0 \leq x<\frac{1}{2} \\
W_{2} & \text { if } & \frac{1}{2} \leq x \leq 1
\end{array}\right.
\end{gathered}
$$

then F is weakly measurable and (F, v) is a c-fusion frame for H with upper bound $e-1$ and lower bound $e^{\frac{1}{2}}-1$. If we define

$$
\begin{gathered}
f:[0,1] \times[0,1] \rightarrow H \\
f(x, y)=x(1,1)+y(1,-1)
\end{gathered}
$$

It is easy to show that f is a c-frame for H with lower bound $1 / 6$ and upper bound $\frac{7}{6}$. to get a c-fusion frame system, for $0 \leq x<\frac{1}{2}$ we define

$$
\begin{gathered}
f(x, .): Y=[0,1] \rightarrow F(x)=\operatorname{span}\{(1,1)\} \\
f(x, .)(y)=y(1,1),
\end{gathered}
$$

FAROUGHI, AHMADI

and for $\frac{1}{2} \leq x \leq 1$ we define

$$
\begin{gathered}
f(x, .): Y=[0,1] \rightarrow F(x)=\operatorname{span}\{(1,-1)\} \\
f(x, .)(y)=y(1,-1) .
\end{gathered}
$$

Then for all $x \in[0,1], f(x,$.$) is a tight c$-frame for $F(x)$ with $A=B=\frac{2}{3}$. Thus (F, f, v) is a c-fusion frame system for $H=\mathbb{C}$.

Theorem 3.9 Let (X, μ) and (Y, λ) be two σ-finite measure spaces. Let $f: X \times Y \rightarrow H, F: X \rightarrow \mathbb{H}$ be weakly measurable mappings. Let for all $x \in X, f(x,):. Y \rightarrow F(x)$ be weakly measurable and for every $x \in X$, $f(x,$.$) be a continuous frame for F(x)$. Let

$$
\begin{gathered}
0<A(x)=\inf _{h \in F(x)_{1}} \int_{Y}|<f(x, y), h>|^{2} d \lambda \\
\leq \sup _{h \in F(x)_{1}} \int_{Y}|<f(x, y), h>|^{2} d \lambda=B(x)<\infty
\end{gathered}
$$

and let

$$
0<A=\inf _{x} A(x) \leq \sup _{x} B(x)=B<\infty
$$

Then, (F, v) is a c-fusion frame for H if and only if

$$
\begin{gathered}
v . f: X \times Y \rightarrow H \\
(x, y) \mapsto v(x) f(x, y)
\end{gathered}
$$

is a continuous frame for H.
Proof. See [10].

We denote the synthesis and analysis operator for $f(x,$.$) by T_{x}$ and T_{x}^{*}, respectively.
Definition 3.10 Let (F, f, v) be a system of local c-frames. Let mappings $x \mapsto T_{x}$, of X into $B\left(L^{2}(Y, \lambda), H\right)$ and $x \mapsto T_{x}^{*}$, of X into $B\left(H, L^{2}(Y, \lambda)\right)$, be measurable. We define the c-erasure reconstruction error $\xi_{1}(F)$ for the system of local c-frames (F, f, v) as follows:

$$
\begin{gather*}
\xi_{1}(F) \tag{3.3}\\
=\sup \left\{\int_{X} v^{2}(x)\left\|T_{x} D_{Y_{\circ}} T_{x}^{*}\right\| d \mu: Y_{\circ} \subseteq Y, \quad \text { measurable }\right\}
\end{gather*}
$$

Theorem 3.11 With the hypothesis of the Theorem 3.9, let v.f: $X \times Y \rightarrow H$, be a c-frame for H with upper bound B. Let the mappings, $x \mapsto T_{x}$, of X into $B\left(L^{2}(Y, \lambda), H\right)$ and, $x \mapsto T_{x}^{*}$, of X into $B\left(H, L^{2}(Y, \lambda)\right)$ be measurable. Then

$$
\xi_{1}(F) \leq B
$$

Proof. Choose $Y_{\circ} \subseteq Y$ and fix it. By the definition of synthesis and analysis operator for continuous frames, we have

$$
\begin{gathered}
\left\|T_{x} D_{Y_{o}} T_{x}^{*}\right\| \leq\left\|T_{x}\right\|\left\|T_{x}^{*}\right\|=\left\|T_{x}^{*}\right\|^{2} \\
=\sup _{h \in F(x)_{1}}\left\|T_{x}^{*}(h)\right\|^{2}=\sup _{h \in F(x)_{1}} \int_{Y}|<h, f(x, y)>|^{2} d \lambda \\
\leq \sup _{h \in H_{1}} \int_{Y}|<h, f(x, y)>|^{2} d \lambda .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\int_{X} v^{2}(x)\left\|T_{x} D_{Y_{o}} T_{x}^{*}\right\| d \mu(x) \\
\leq \sup _{h \in H_{1}} \int_{X} \int_{Y} v^{2}(x)|<f(x, y), h>|^{2} d \lambda(y) d \mu(x) \\
\leq \sup _{h \in H_{1}} \int_{X} \int_{Y}|<v(x) f(x, y), h>|^{2} d \lambda(y) d \mu(x) \\
=\sup _{h \in H_{1}} \int_{X \times Y}|<v(x) f(x, y), h>|^{2} d(\mu \times \lambda) \\
\leq \sup _{h \in H_{1}} B\|h\|^{2}=B
\end{gathered}
$$

Since $Y_{\circ} \subseteq Y$ is arbitrary, thus

$$
\xi_{1}(F) \leq B
$$

Example 3.12 Let $X=Y=[0,1]$ and $\mu=\lambda$ be the Lebesgue measure. Let (F, v) be the c-fusion frame for $H=\mathbb{C}$ defined in the example 3.6 and we define

$$
\begin{gathered}
v . f:[0,1] \times[0,1] \rightarrow H \\
v . f(x, y)=\sqrt{2}(x(1,0)+y(0,1)) .
\end{gathered}
$$

Then v.f is a c-frame for H with lower bound $\frac{1}{6}$ and upper bound $\frac{7}{6}$. For $0 \leq x<\frac{1}{2}$ we define

$$
\begin{gathered}
f(x, .): Y=[0,1] \rightarrow F(x)=\operatorname{span}\{(1,0)\} \\
f(x, .)(y)=y(1,0),
\end{gathered}
$$

and for $\frac{1}{2} \leq x \leq 1$ we define

$$
\begin{gathered}
f(x, .): Y=[0,1] \rightarrow F(x)=\operatorname{span}\{(0,1)\} \\
f(x, .)(y)=y(0,1) .
\end{gathered}
$$

Then $f(x,$.$) for any x \in[0,1]$, is a tight c-frame for $F(x)$ with $A=B=\frac{1}{3}$. So by the Theorem 3.11 we have

$$
\xi_{1}(F) \leq \frac{7}{6}
$$

FAROUGHI, AHMADI

Definition 3.13 Let $F: X \rightarrow \mathbb{H}, \tilde{F}: X \rightarrow \mathbb{H}$. Let $0 \leq \lambda_{1}, \lambda_{2}<1$ and $\varepsilon>0$. We say that (\tilde{F}, v) is a $\left(\lambda_{1}, \lambda_{2}, \varepsilon\right)$-perturbation of (F, v) if for all $h \in H$ and $x \in X$

$$
\left\|\left(\pi_{F(x)}-\pi_{\tilde{F}(x)}\right)(h)\right\| \leq \lambda_{1}\left\|\left(\pi_{F(x)}(h)\left\|+\lambda_{2}\right\| \pi_{\tilde{F}(x)}\right)(h)\right\|+\varepsilon\|h\| .
$$

Theorem 3.14 Let (F, v) be a c-fusion frame for H with bounds C and D, and let $v \in L^{2}(X)$. Choose $0 \leq \lambda_{1}<1$ and $\varepsilon>0$ such that

$$
\left(1-\lambda_{1}\right) \sqrt{C}-\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}>0 .
$$

Let $\tilde{F}: X \rightarrow \mathbb{H}$ be weakly measurable. Further, let (\tilde{F}, v) be a $\left(\lambda_{1}, \lambda_{2}, \varepsilon\right)$-perturbation of (F, v) for some $0 \leq \lambda_{2}<1$. Then (\tilde{F}, v) is c-fusion frame for H with bounds

$$
\left[\frac{\left(1-\lambda_{1}\right) \sqrt{C}-\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}}{1+\lambda_{2}}\right]^{2}
$$

and

$$
\left[\frac{\left(1+\lambda_{2}\right) \sqrt{D}-\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}}{1-\lambda_{2}}\right]^{2} .
$$

Proof. We first prove the upper bound. For any $h \in H$, we get,

$$
\begin{gathered}
{\left[\int_{X} v^{2}(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|^{2} d \mu\right]^{1 / 2}} \\
\leq\left[\int_{X} v^{2}(x)\left(\left\|\pi_{F(x)}(h)-\pi_{\tilde{F}(x)}(h)\right\|+\left\|\pi_{F(x)}(h)\right\|\right)^{2} d \mu\right]^{1 / 2} \\
\leq\left[\int_{X} v^{2}(x)\left(\left\|\pi_{F(x)}(h)\right\|+\lambda_{1}\left\|\pi_{F(x)}(h)\right\|+\lambda_{2}\left\|\pi_{\tilde{F}(x)}(h)\right\|+\varepsilon\|h\|\right)^{2} d \mu\right]^{1 / 2} \\
=\left[\int_{X}\left(\left(1+\lambda_{1}\right) v(x)\left\|\pi_{F(x)}(h)\right\|+\lambda_{2} v(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|+\varepsilon v(x)\|h\|\right)^{2} d \mu\right]^{1 / 2} \\
\leq\left[\left(1+\lambda_{1}\right)^{2} \int_{X}\left(v^{2}(x)\left\|\pi_{F(x)}(h)\right\|^{2} d \mu\right]^{1 / 2}\right. \\
+\left[\lambda_{2}^{2} \int_{X} v^{2}(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|^{2} d \mu\right]^{1 / 2}+\left[\varepsilon^{2} \int_{X} v^{2}(x)\|h\|^{2} d \mu\right]^{1 / 2} .
\end{gathered}
$$

Thus

$$
\begin{gathered}
\left(1-\lambda_{2}\right)\left[\int_{X} v^{2}(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|^{2} d \mu\right]^{1 / 2} \\
\leq\left(1+\lambda_{1}\right)\left[\int_{X}\left(v^{2}(x)\left\|\pi_{F(x)}(h)\right\|^{2} d \mu\right]^{1 / 2}+\varepsilon\|h\|\left[\int_{X} v^{2}(x) d \mu\right]^{1 / 2}\right. \\
\leq\left[\left(1+\lambda_{1}\right) \sqrt{D}+\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}\right]\|h\|
\end{gathered}
$$

Hence

$$
\int_{X} v^{2}(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|^{2} d \mu \leq\left[\frac{\left(1+\lambda_{1}\right) \sqrt{D}+\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}}{1-\lambda_{2}}\right]^{2}\|h\|^{2}
$$

To prove the lower bound, for all $h \in H$ we have

$$
\begin{gathered}
{\left[\int_{X} v^{2}(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|^{2} d \mu\right]^{2}} \\
\geq\left[\int_{X} v^{2}(x)\left(\left\|\pi_{F(x)}(h)\right\|-\left\|\pi_{F(x)}(h)-\pi_{\tilde{F}(x)}(h)\right\|\right)^{2} d \mu\right]^{1 / 2} \\
\geq\left[\int_{X} v^{2}(x)\left(\left\|\pi_{F(x)}(h)\right\|-\lambda_{1}\left\|\pi_{F(x)}(h)\right\|-\lambda_{2}\left\|\pi_{\tilde{F}(x)}(h)\right\|-\varepsilon\|h\|\right)^{2} d \mu\right]^{1 / 2} \\
=\left[\int_{X}\left(\left(1-\lambda_{1}\right) v(x)\left\|\pi_{F(x)}(h)\right\|-\lambda_{2} v(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|-\varepsilon v(x)\|h\|\right)^{2} d \mu\right]^{1 / 2} \\
\geq\left[\int_{X}\left(1-\lambda_{1}\right)^{2} v^{2}(x)\left\|\pi_{F(x)}(h)\right\|^{2} d \mu\right]^{1 / 2} \\
-\left[\int_{X} \lambda_{2}^{2} v^{2}(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|^{2} d \mu\right]^{1 / 2}-\left[\int_{X} \varepsilon^{2} v^{2}(x)\|h\|^{2} d \mu\right]^{1 / 2} .
\end{gathered}
$$

Thus

$$
\begin{gathered}
\left(1+\lambda_{2}\right)\left[\int_{X} v^{2}(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|^{2} d \mu\right]^{1 / 2} \\
\geq\left(1-\lambda_{1}\right)\left[\int_{X} v^{2}(x)\left\|\pi_{F(x)}(h)\right\|^{2} d \mu\right]^{1 / 2}-\varepsilon\left[\int_{X} v^{2}(x) d \mu\right]^{1 / 2}\|h\| \\
=\left[\left(1-\lambda_{1}\right) \sqrt{C}-\varepsilon\left[\int_{X} v^{2}(x) d \mu\right]^{1 / 2}\right]\|h\| .
\end{gathered}
$$

Hence

$$
\int_{X} v^{2}(x)\left\|\pi_{\tilde{F}(x)}(h)\right\|^{2} d \mu \geq\left[\frac{\left(1-\lambda_{1}\right) \sqrt{C}+\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}}{1+\lambda_{2}}\right]^{2}\|h\|^{2}
$$

This completes the proof.

Example 3.15 Let $X=[0,1]$ and μ be the Lebesgue measure. Suppose that $v(x)=\frac{1}{10}$ For all $x \in X$, then v is positive and measurable. For Hilbert space $H=\mathbb{C}$, Let $\mathbb{H}=\left\{W_{1}, W_{2}, \widetilde{W_{1}}, \widetilde{W}_{2}\right\}$ which $W_{1}=\operatorname{span}\{(1,0)\}$, $W_{2}=\operatorname{span}\{(0,1)\}, \widetilde{W_{1}}=\operatorname{span}\{(1,0.1)\}$ and $\widetilde{W_{2}}=\operatorname{span}\{(0.1,1)\}$. If we define

$$
\begin{gathered}
F:[0,1] \rightarrow \mathbb{H} \\
F(x)=\left\{\begin{array}{lll}
W_{1} & \text { if } & 0 \leq x<\frac{1}{2} \\
W_{2} & \text { if } & \frac{1}{2} \leq x \leq 1
\end{array}\right.
\end{gathered}
$$

FAROUGHI, AHMADI

then by Example 3.6, (F, v) is a tight c-fusion frame for $H=\mathbb{C}$ with $C=D=\frac{1}{200}$. Now we define

$$
\begin{gathered}
\widetilde{F}:[0,1] \rightarrow \mathbb{H} \\
\widetilde{F}(x)=\left\{\begin{array}{lll}
\widetilde{W_{1}} & \text { if } & 0 \leq x<\frac{1}{2} \\
\widetilde{W_{2}} & \text { if } & \frac{1}{2} \leq x \leq 1
\end{array}\right.
\end{gathered}
$$

It is clear that \widetilde{F} is weakly measurable. For $h=(a, b) \in H$ we have

$$
h=\frac{a-0.1 b}{0.99}(1,0.1)+\frac{b-0.1 a}{0.99}(0.1,1)
$$

Hence for $0 \leq x<\frac{1}{2}$,

$$
\begin{gathered}
\left\|\left(\pi_{F(x)}-\pi_{\tilde{F}(x)}\right)(h)\right\|=\left\|\left(\frac{-0.01 a+0.1 b}{0.99}, \frac{0.01 b-0.1 a}{0.99}\right)\right\| \\
\quad \leq \frac{1}{99}|a|+\frac{1}{\sqrt{101}}|a-0.1 b| \sqrt{1.01}+\frac{1}{9.9} \sqrt{a^{2}+b^{2}}
\end{gathered}
$$

thus

$$
\begin{gather*}
\left\|\left(\pi_{F(x)}-\pi_{\tilde{F}(x)}\right)(h)\right\| \tag{3.4}\\
\leq \frac{1}{99}\left\|\left(\pi_{F(x)}(h)\left\|+\frac{1}{\sqrt{101}}\right\| \pi_{\tilde{F}(x)}\right)(h)\right\|+\frac{1}{9.9}\|h\| .
\end{gather*}
$$

Similarly, 3.4 hold for $\frac{1}{2} \leq x \leq 1$. It is easy to show that

$$
\left(1-\lambda_{1}\right) \sqrt{C}-\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{\frac{1}{2}}>0
$$

Thus by Theorem 3.14, (\widetilde{F}, v) is a c-fusion frame for H with respectively, lower and upper bounds

$$
\frac{\left(1-\frac{1}{99}\right) \cdot \frac{1}{\sqrt{200}}-\frac{1}{99}}{1+\frac{1}{\sqrt{101}}}, \quad \frac{\left(1+\frac{1}{\sqrt{101}}\right) \cdot \frac{1}{\sqrt{200}}-\frac{1}{99}}{1-\frac{1}{\sqrt{101}}}
$$

Definition 3.16 Let f be a continuous frame for H, where μ is σ-finite. Let $\tilde{f}: X \rightarrow H$ be a weaklymeasurable vector-valued function and assume that there exist constants $\lambda_{1}, \lambda_{2}, \gamma \geq 0$ such that $\max \left(\lambda_{1}+\right.$ $\left.\frac{\gamma}{\sqrt{A}}, \lambda_{2}\right)<1$ and

$$
\begin{align*}
\mid \int_{X} \varphi(x)< & f(x)-\tilde{f}(x), h>d \mu(x)\left|\leq \lambda_{1}\right| \int_{X} \varphi(x)<f(x), h>d \mu(x) \mid \\
& +\lambda_{2}\left|\int_{X} \varphi(x)<\tilde{f}(x), h>d \mu(x)\right|+\gamma\|\varphi\|_{2} \tag{3.5}
\end{align*}
$$

for all $\varphi \in L^{2}(X, \mu)$ and for all $h \in H_{1}$. Then \tilde{f} is called the $\left(\lambda_{1}, \lambda_{2}, \gamma\right)$ perturbation of f.

Theorem 3.17 Let \tilde{f} be $a\left(\lambda_{1}, \lambda_{2}, \gamma\right)$ perturbation of f. Then $\tilde{f}: X \rightarrow H$ is a continuous frame for H with the bounds

$$
A\left[\frac{1-\left(\lambda_{1}+\frac{\gamma}{\sqrt{A}}\right)}{1+\lambda_{2}}\right]^{2} \quad \text { and } \quad B\left[\frac{1+\lambda_{1}+\frac{\gamma}{\sqrt{B}}}{1-\lambda_{2}}\right]^{2}
$$

where A, B are frame bounds for f.
Proof. See [14].

Proposition 3.18 Let $f: X \rightarrow H$ and let $\tilde{f}: X \rightarrow H$ be two weakly-measurable mappings. Let f be a continuous frame for $\overline{\operatorname{span}}\{f(x)\}_{x \in X}$ and let \tilde{f} be a $\left(\lambda_{1}, \lambda_{2}, \gamma\right)$ perturbation of f.
(i) \tilde{f} is a continuous frame for $\overline{\operatorname{span}}\{\tilde{f}(x)\}_{x \in X}$ and for all $\varphi \in L^{2}(X, \mu)$ and for all h in the unit sphere in H we have

$$
\begin{gather*}
\left|\int_{X} \varphi(x)<f(x), h>d \mu(x)\right| \\
\leq \frac{1+\lambda_{2}}{1-\lambda_{1}}\left|\int_{X} \varphi(x)<\tilde{f}(x), h>d \mu(x)\right|+\frac{\gamma}{1-\lambda_{1}}\|\varphi\|_{2} \tag{3.6}\\
\left|\int_{X} \varphi(x)<f(x), h>d \mu(x)\right| \\
\geq \frac{1-\lambda_{1}}{1+\lambda_{2}}\left|\int_{X} \varphi(x)<\tilde{f}(x), h>d \mu(x)\right|-\frac{\gamma}{1+\lambda_{2}}\|\varphi\|_{2} \tag{3.7}
\end{gather*}
$$

(ii) Let π_{f} be the orthogonal projection of H onto $\overline{\operatorname{span}}\{f(x)\}_{x \in X}$ and $\pi_{\tilde{f}}$ be the orthogonal projection of H onto $\overline{\operatorname{span}}\{\tilde{f}(x)\}_{x \in X}$. For all k in H we have

$$
\left\|\pi_{f}\left(\pi_{\tilde{f}}(k)\right)\right\|^{2} \geq \frac{1-\lambda_{1}}{N\left(1+\lambda_{2}\right)}\left\|\pi_{\tilde{f}}(k)\right\|^{2}-\frac{M}{N}\left\|\varphi_{k \tilde{f}}\right\|_{2}
$$

which $M=\gamma\left(1+\frac{1}{1-\lambda_{1}}+\frac{1}{1+\lambda_{2}}\right), \quad N=1+\lambda_{1} \frac{1+\lambda_{2}}{1-\lambda_{1}}+\lambda_{2}$ and $\varphi_{k \tilde{f}}=T_{S_{\tilde{f}}^{-1} \circ \tilde{f}}^{*}(k)$.
Proof. (i) By Theorem 3.17, \tilde{f} is a continuous frame for $\overline{\operatorname{span}}\{\tilde{f}(x)\}_{x \in X}$. For all $\varphi \in L^{2}(X, \mu)$ and for all $h \in H_{1}$ we have

$$
\begin{aligned}
& \left|\int_{X} \varphi(x)<f(x), h>d \mu(x)\right|=\left|\int_{X} \varphi(x)<f(x)-\tilde{f}(x)+\tilde{f}(x), h>d \mu(x)\right| \\
& \quad \leq\left|\int_{X} \varphi(x)<f(x)-\tilde{f}(x), h>d \mu(x)\right|+\left|\int_{X} \varphi(x)<\tilde{f}(x), h>d \mu(x)\right| \\
& \quad \leq\left|\int_{X} \varphi(x)<\tilde{f}(x), h>d \mu(x)\right|
\end{aligned}
$$

FAROUGHI, AHMADI

$$
+\lambda_{1}\left|\int_{X} \varphi(x)<f(x), h>d \mu(x)\right|+\lambda_{2}\left|\int_{X} \varphi(x)<\tilde{f}(x), h>d \mu(x)\right|+\gamma\|\varphi\|_{2}
$$

Hence

$$
\begin{gathered}
\left|\int_{X} \varphi(x)<f(x), h>d \mu(x)\right| \\
\leq \frac{1+\lambda_{2}}{1-\lambda_{1}}\left|\int_{X} \varphi(x)<\tilde{f}(x), h>d \mu(x)\right|+\frac{\gamma}{1-\lambda_{1}}\|\varphi\|_{2}
\end{gathered}
$$

By replacing f with \tilde{f} in the above argument we have

$$
\begin{gathered}
\left|\int_{X} \varphi(x)<f(x), h>d \mu(x)\right| \\
\geq \frac{1-\lambda_{1}}{1+\lambda_{2}}\left|\int_{X} \varphi(x)<\tilde{f}(x), h>d \mu(x)\right|-\frac{\gamma}{1+\lambda_{2}}\|\varphi\|_{2}
\end{gathered}
$$

(ii) Since \tilde{f} is a c-frame for $\overline{\operatorname{span}}\{\tilde{f}(x)\}_{x \in X}$, thus $S_{\tilde{f}}$ is bounded and invertible. Hence by Theorem 1.4, $S_{\tilde{f}}^{-1} \circ \tilde{f}$ is a c-frame for $S_{\tilde{f}}^{-1}\left(\overline{\operatorname{span}}\{\tilde{f}(x)\}_{x \in X}\right)$ and for all $k \in S_{\tilde{f}}^{-1}\left(\overline{\operatorname{span}}\{\tilde{f}(x)\}_{x \in X}\right), T_{S_{\tilde{f}}^{-1} \circ \tilde{f}}^{*}(k) \in L^{2}(X, \mu)$. Fix $k \in S_{\tilde{f}}^{-1}\left(\overline{\operatorname{span}}\{\tilde{f}(x)\}_{x \in X}\right)$ and let

$$
\varphi_{k \tilde{f}}(x)=\left(T_{S_{\tilde{f}}^{-1} \circ \tilde{f}}^{*}(k)\right)(x)=<k, S_{\tilde{f}}^{-1}(\tilde{f}(x))>
$$

By the Theorem 1.5, for all $h \in H$ we have

$$
\begin{gathered}
\left|\int_{X}<k, S_{\tilde{f}}^{-1}(\tilde{f}(x))><f(x)-\tilde{f}(x), h>d \mu\right| \\
=\left|\int_{X} \varphi_{k \tilde{f}}(x)<f(x)-\tilde{f}(x), h>d \mu\right| \\
\leq \lambda_{1}\left|\int_{X} \varphi_{k \tilde{f}}(x)<f(x), h>d \mu\right|+\lambda_{2}\left|\int_{X} \varphi_{k \tilde{f}}(x)<\tilde{f}(x), h>d \mu\right|+\gamma\left\|\varphi_{k \tilde{f}}\right\|_{2} \\
\leq \lambda_{1} \frac{1+\lambda_{2}}{1-\lambda_{1}}\left|\int_{X} \varphi_{k \tilde{f}}(x)<\tilde{f}(x), h>d \mu\right| \\
+\lambda_{2}\left|\int_{X} \varphi_{k \tilde{f}}(x)<\tilde{f}(x), h>d \mu\right|+\frac{\gamma}{1-\lambda_{1}}\left\|\varphi_{k \tilde{f}}\right\|_{2}+\gamma\left\|\varphi_{k \tilde{f}}\right\|_{2} \\
=\left(\lambda_{1} \frac{1+\lambda_{2}}{1-\lambda_{1}}+\lambda_{2}\right)\left|\int_{X} \varphi_{k \tilde{f}}(x)<\tilde{f}(x), h>d \mu\right|+\left(\frac{\gamma}{1-\lambda_{1}}+\gamma\right)\left\|\varphi_{k \tilde{f}}\right\|_{2} \\
=\left(\lambda_{1} \frac{1+\lambda_{2}}{1-\lambda_{1}}+\lambda_{2}\right)\left|\int_{X}<k, S_{\tilde{f}}^{-1}(\tilde{f}(x))><\tilde{f}(x), h>d \mu\right|+\left(\frac{\gamma}{1-\lambda_{1}}+\gamma\right)\left\|\varphi_{k \tilde{f}}\right\|_{2} \\
=\left(\lambda_{1} \frac{1+\lambda_{2}}{1-\lambda_{1}}+\lambda_{2}\right)\left|<\pi_{\tilde{f}} k, h>\right|+\left(\frac{\gamma}{1-\lambda_{1}}+\gamma\right)\left\|\varphi_{k \tilde{f}}\right\|_{2} .
\end{gathered}
$$

Using the above inequality, for all $h \in H$ we obtain

$$
\begin{gathered}
\left|<\pi_{f} \pi_{\tilde{f}} k, h>\left|=\left|<\pi_{\tilde{f}} k, \pi_{f} h>\right|\right.\right. \\
=\left|\int_{X}<k, S_{\tilde{f}}^{-1}(\tilde{f}(x))><\tilde{f}(x), \pi_{f} h>d \mu\right| \\
\geq\left|\int_{X}<k, S_{\tilde{f}}^{-1}(\tilde{f}(x))><f(x), \pi_{f} h>d \mu\right| \\
-\left|\int_{X}<k, S_{\tilde{f}}^{-1}(\tilde{f}(x))><f(x)-\tilde{f}(x), \pi_{f} h>d \mu\right| \\
\geq\left|\int_{X}<k, S_{\tilde{f}}^{-1}(\tilde{f}(x))><f(x), h>d \mu\right| \\
-\left|\int_{X}<k, S_{\tilde{f}}^{-1}(\tilde{f}(x))><f(x)-\tilde{f}(x), \pi_{f} h>d \mu\right| \\
\geq \frac{1-\lambda_{1}}{1+\lambda_{2}}\left|<\pi_{\tilde{f}} k, h>\left|-\left(\lambda_{1} \frac{1+\lambda_{2}}{1-\lambda_{1}}+\lambda_{2}\right)\right|<\pi_{\tilde{f}} k, \pi_{f} h>\right|-M\left\|\varphi_{k \tilde{f}}\right\|_{2}
\end{gathered}
$$

Thus

$$
\left|<\pi_{f} \pi_{\tilde{f}} k, h>\left|\geq \frac{1-\lambda_{1}}{N\left(1+\lambda_{2}\right)}\right|<\pi_{\tilde{f}} k, h>\right|-\frac{M}{N}\left\|\varphi_{k \tilde{f}}\right\|_{2}
$$

Since $h \in H$ was arbitrary we get

$$
\left\|\pi_{f}\left(\pi_{\tilde{f}} k\right)\right\|^{2} \geq \frac{1-\lambda_{1}}{N\left(1+\lambda_{2}\right)}\left\|\pi_{\tilde{f}} k\right\|^{2}-\frac{M}{N}\left\|\varphi_{k \tilde{f}}\right\|_{2}
$$

Remark 3.19 Our argument in Proposition 3.18 is symmetric in π_{f} and $\pi_{\tilde{f}}$. Thus we have

$$
\left\|\pi_{\tilde{f}}\left(\pi_{f} k\right)\right\|^{2} \geq \frac{1-\lambda_{1}}{N\left(1+\lambda_{2}\right)}\left\|\pi_{f} k\right\|^{2}-\frac{M}{N}\left\|\varphi_{k f}\right\|_{2}
$$

Theorem 3.20 Let (F, f, v) be a c-fusion frame system for H with with bounds C and D and $v \in L^{2}(X)$. Choose $0 \leq \lambda_{1}, \lambda_{2}<1$ and $\varepsilon>0$ such that

$$
1-\frac{\varepsilon^{2}}{2}=\frac{1-\lambda_{1}}{N\left(1+\lambda_{2}\right)} \quad \text { and } \quad \sqrt{C}-\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}>0
$$

Let $\tilde{F}: X \rightarrow H$. For every $x \in X$, let $\tilde{f}_{x}=\tilde{f}(x,):. Y \rightarrow \tilde{F}(x)$ be a $\left(\lambda_{1}, \lambda_{2}, \gamma\right)$ perturbation of $f_{x}=f(x,$.$) .$ Let $R=\sup _{x \in X}\left\|S_{f_{x}}^{-1}\right\|<\infty$ and $\tilde{R}=\sup _{x \in X}\left\|S_{\tilde{f}_{x}}^{-1}\right\|<\infty$. Then $(\tilde{F}, \tilde{f}, v)$ is a c-fusion frame system for H with fusion frame bounds

$$
\left[\sqrt{C}-\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}\right]^{2} \quad \text { and } \quad\left[\sqrt{D}+\varepsilon\left(\int_{X} v^{2}(x) d \mu\right)^{1 / 2}\right]^{2}
$$

Proof. Fix $x \in X$ and choose $k \in H$. Recalling Proposition 3.18 we have

$$
\begin{aligned}
& \left\|\pi_{F(x)}(k)\right\|^{2}=\left\|\pi_{\tilde{F}(x)}\left(\pi_{F(x)}\right)(k)\right\|^{2}+\left\|\left(I-\pi_{\tilde{F}(x)}\right) \pi_{F(x)}(k)\right\|^{2} \\
\geq & \left(1-\frac{\varepsilon^{2}}{2}\right)\left\|\pi_{F(x)}(k)\right\|^{2}+\left\|\left(I-\pi_{\tilde{F}(x)}\right) \pi_{F(x)}(k)\right\|^{2}-\frac{M}{N}\left\|\varphi_{k f_{x}}\right\|_{2}
\end{aligned}
$$

Hence

$$
\left\|\left(I-\pi_{\tilde{F}(x)}\right) \pi_{F(x)}(k)\right\|^{2} \leq \frac{\varepsilon^{2}}{2}\left\|\pi_{F(x)}(k)\right\|^{2}+\frac{M}{N}\left\|\varphi_{k f_{x}}\right\|_{2}
$$

By a similar argument we have

$$
\left\|\left(I-\pi_{F(x)}\right) \pi_{\tilde{F}(x)}(k)\right\|^{2} \leq \frac{\varepsilon^{2}}{2}\left\|\pi_{\tilde{F}(x)}(k)\right\|^{2}+\frac{M}{N}\left\|\varphi_{k \tilde{f}_{x}}\right\|_{2}
$$

Thus

$$
\begin{gather*}
\left\|\left(\pi_{F(x)}-\pi_{\tilde{F}(x)}\right)(k)\right\|^{2}=\left|<\left(\pi_{F(x)}-\pi_{\tilde{F}(x)}\right)(k),\left(\pi_{F(x)}-\pi_{\tilde{F}(x)}\right)(k)>\right| \\
=\left|<\left(\pi_{F(x)}-\pi_{\tilde{F}(x)}\right)^{2}(k), k>\right| \\
=\left|<\left(\pi_{F(x)}-\pi_{\tilde{F}(x)} \pi_{F(x)}+\pi_{\tilde{F}(x)}-\pi_{F(x)} \pi_{\tilde{F}(x)}\right)(k), k>\right| \\
\leq\left\|\left(I-\pi_{\tilde{F}(x)}\right)\left(\pi_{F(x)}(k)\right)+\left(I-\pi_{F(x)}\right)\left(\pi_{\tilde{F}(x)}\right)(k)\right\|\|k\| \\
\leq\left[\left\|\left(I-\pi_{\tilde{F}(x)}\right)\left(\pi_{F(x)}(k)\right)\right\|+\left\|\left(I-\pi_{F(x)}\right)\left(\pi_{\tilde{F}(x)}\right)(k)\right\|\right]\|k\| \\
\leq\left[\left(\frac{\varepsilon^{2}}{2}\left\|\pi_{F(x)}(k)\right\|^{2}+\frac{M}{N}\left\|\varphi_{k f_{x}}\right\|_{2}\right)^{1 / 2}+\left(\frac{\varepsilon^{2}}{2}\left\|\pi_{\tilde{F}(x)}(k)\right\|^{2}\right.\right. \\
\left.\left.+\frac{M}{N}\left\|\varphi_{k \tilde{f}_{x}}\right\|_{2}\right)^{1 / 2}\right]\|k\| . \tag{3.8}
\end{gather*}
$$

Now by the Proposition $3.18(i i), \varphi_{k \tilde{f}_{x}}, \varphi_{k f_{x}} \in L^{2}(Y, \lambda)$ and by the Theorem 3.9 we have

$$
\begin{gathered}
\left\|\varphi_{k f_{x}}\right\|_{2}=\int_{X}\left|<k, S_{f_{x}}^{-1}(f(x, y))>\right|^{2} d \lambda \leq B(x)\left\|S_{f_{x}}^{-1}(k)\right\|^{2} \\
\leq B\left\|S_{f_{x}}^{-1}\right\|\|k\|^{2} \leq B R\|k\|^{2}
\end{gathered}
$$

Since for all $x \in X, \tilde{f}_{x}$ is c-frame thus, $\left\|\varphi_{k \tilde{f}_{x}}\right\|_{2} \leq \tilde{B} \tilde{R}\|k\|^{2}$. Hence by inequality 3.8 we have

$$
\begin{gathered}
\left\|\left(\pi_{F(x)}-\pi_{\tilde{F}(x)}\right)(k)\right\|^{2} \\
\leq\left[\left(\frac{\varepsilon^{2}}{2}\|k\|^{2}+\frac{M B R}{N}\|k\|^{2}\right)^{1 / 2}+\left(\frac{\varepsilon^{2}}{2}\|k\|^{2}+\frac{M \tilde{B} \tilde{R}}{N}\|k\|^{2}\right)^{1 / 2}\right]\|k\|=t\|k\|^{2},
\end{gathered}
$$

with $t>0$. By Theorem 3.14 this complete the proof.

Now we consider the duality topics in continuous version of fusion frame. The next result shows when two Bessel c-fusion mappings are a fusion pair.

Theorem 3.21 Let (F, v) and (G, v) be two Bessel c-fusion mapping for H, Then the following assertions are equivalent:
(i) For all $h \in H, h=\int_{X} v^{2} \pi_{G} \pi_{F}(h) d \mu$.
(ii) For all $h \in H, h=\int_{X} v^{2} \pi_{F} \pi_{G}(h) d \mu$.
(iii) For all $h, k \in H,<h, k>=\int_{X} v^{2}<\pi_{G}(h), \pi_{F}(k)>d \mu$.
(iv) For all $h \in H,\|h\|^{2}=\int_{X} v^{2}<\pi_{G}(h), \pi_{F}(h)>d \mu$.

Proof. (i) $\rightarrow(i i)$ Let $h, k \in H$. We have

$$
\begin{gathered}
\left.<h, k>=<T_{F}\left(v \pi_{F} \pi_{G}(h)\right), k>=\int_{X} v<v \pi_{F} \pi_{G}(h)\right), k>d \mu \\
=\int_{X} v<h, v \pi_{G} \pi_{F}(k)>d \mu=<h, T_{G}\left(v \pi_{F} \pi_{G}(k)\right)>
\end{gathered}
$$

Hence $k=T_{G}\left(v \pi_{F} \pi_{G}(k)\right)$.
(ii) \rightarrow (iii) It is evident by the proof of $(i) \rightarrow(i i)$.
$($ iii $) \rightarrow(i)$ For all $h, k \in H$, we have

$$
\left.<h, k>=\int_{X} v^{2}<\pi_{G}(h)\right), \pi_{F}(k)>d \mu=<T_{F}\left(v \pi_{F} \pi_{G}(h)\right), k>
$$

Thus $h=T_{F}\left(v \pi_{F} \pi_{G}(h)\right)$.
$(i v) \rightarrow(i)$ Let $L: H \rightarrow H$ be defined by

$$
L(h)=T_{F}\left(v \pi_{F} \pi_{G}(h)\right)
$$

It is clear that L is linear. Since

$$
\begin{gathered}
\|L(h)\|=\sup _{k \in H_{1}}\left|<L(h), k>\left|=\sup _{k \in H_{1}}\right| \int_{X} v^{2}<\pi_{F} \pi_{G}(h)\right), k>d \mu \mid \\
\leq\left(\int_{X} v^{2}\left\|\pi_{G}(h)\right\|^{2} d \mu\right)^{1 / 2} \times\left(\sup _{k \in H_{1}}\left(\int_{X} v^{2}\left\|\pi_{F}(k)\right\|^{2} d \mu\right)^{1 / 2}\right) \\
\leq B_{F, v}^{1 / 2} B_{G, v}^{1 / 2}\|h\| .
\end{gathered}
$$

Hence $L \in B(H)$. For all $g \in H$, we have

$$
\begin{gathered}
\left.<h, h>=\|h\|^{2}=\int_{X} v^{2}<\pi_{G}(h)\right), \pi_{F}(h)>d \mu \\
=<T_{F}\left(v \pi_{F} \pi_{G}(h)\right), h>
\end{gathered}
$$

Hence for all $h \in H$

$$
h=T_{F}\left(v \pi_{F} \pi_{G}(h)\right)
$$

$(i i i) \rightarrow(i v)$ is evident.

Definition 3.22 Let (F, v) and (G, v) be Bessel c-fusion mapping for H. We say that F, G is a fusion pair if one of the assertions of the Theorem 3.21 satisfies.

Lemma 3.23 Let F, G be a fusion pair. Then $A_{F, v}>0$.
Proof. By Theorem 3.21 (iv), for all $h \in H$, we have

$$
\|h\|^{2}=\int_{X} v^{2}<\pi_{G}(h), \pi_{F}(h)>d \mu \leq B_{G, v}^{1 / 2}\left(\left\|v \pi_{F}(h)\right\|\right)\|h\|
$$

Since, (G, v) is a Bessel c-fusion mapping, we have:

$$
A_{F, v}=\inf _{h \in H_{1}}\left\|v \pi_{F}(h)\right\|^{2} \geq B_{G, v}^{-1}>0
$$

Definition 3.24 Let F, G be two Bessel c-fusion mappings for H. We define frame operator for fusion pair by

$$
\begin{aligned}
& S_{F, G}: H \rightarrow H \\
& S_{F, G}(h)=T_{F} T_{G}^{*} \pi_{F}(h)=\int_{X} v^{2} \pi_{G} \pi_{F}(h) d \mu \\
&<S_{F, G}(h), k>=\int_{X} v^{2}(x)<\pi_{G(x)} \pi_{F(x)}, k>d \mu
\end{aligned}
$$

Theorem 3.25 We assume (F, v) and (G, v) be two Bessel c-fusion mappings for H.
(i) $S_{F, G}$ is bounded and $S_{F, G}^{*}=S_{G, F}$.
(ii) Let there exists $\lambda_{1}<1, \lambda_{2}>-1$ such that

$$
\left\|h-S_{F, G}(h)\right\|=\left\|h-\int_{X} v^{2} \pi_{G} \pi_{F}(h) d \mu\right\| \leq \lambda_{1}\|h\|+\lambda_{2}\left\|\int_{X} v^{2} \pi_{G} \pi_{F}(h) d \mu\right\|
$$

for all $h \in H$. Then (G, v) is a c-fusion frame for H and for all $h \in H$ we have

$$
\left(\frac{1-\lambda_{1}}{1+\lambda_{2}}\right)^{2} \frac{1}{B_{F, v}}\|h\|^{2} \leq \int_{X} v^{2}\left\|\pi_{G}(h)\right\|^{2} d \mu
$$

Proof. (i) We have

$$
\begin{aligned}
<S_{F, G}(h), g>=< & \int_{X} v^{2} \pi_{G} \pi_{F}(h) d \mu, g>=\int_{X} v^{2}<\pi_{G} \pi_{F}(h), g>d \mu \\
& =\int_{X} v^{2}<\pi_{F}(h), \pi_{G}(g)>d \mu
\end{aligned}
$$

Thus

$$
\begin{equation*}
\left|<S_{F, G}(h), g>\right|^{2} \tag{3.9}
\end{equation*}
$$

$$
\begin{gathered}
\leq\left(\int_{X} v^{2}\left\|\pi_{F}(h)\right\|^{2} d \mu\right)\left(\int_{X} v^{2}\left\|\pi_{G}(g)\right\|^{2} d \mu\right) \\
\leq B_{F, v} B_{G, v}\|h\|^{2}\|g\|^{2}
\end{gathered}
$$

Hence $S_{F, G}$ is bounded a operator with

$$
\left\|S_{F, G}\right\| \leq B_{F, v}^{1 / 2} B_{G, v}^{1 / 2}
$$

Also $S_{F, G}^{*}$ is bounded and we have:

$$
\begin{gathered}
<h, S_{F, G}^{*}(g)>=<S_{F, G}(h), g>=\int_{X} v^{2}<\pi_{G} \pi_{F}(h), g>d \mu \\
=\int_{X} v^{2}<h, \pi_{F} \pi_{G}(g)>d \mu=<h, S_{G, F}(g)>
\end{gathered}
$$

Thus $S_{F, G}^{*}=S_{G, F}$.
(ii) Since

$$
\begin{gathered}
S_{F, G}(h)=\int_{X} v^{2} \pi_{G} \pi_{F}(h) d \mu, \\
\left\|h-S_{F, G}(h)\right\| \leq \lambda_{1}\|h\|+\lambda_{2}\left\|S_{F, G}(h)\right\| .
\end{gathered}
$$

Thus

$$
\lambda_{1}\|h\|+\lambda_{2}\left\|S_{F, G}\right\| \geq\|h\|-\left\|S_{F, G}(h)\right\|
$$

hence

$$
\left\|S_{F, G}(h)\right\| \geq \frac{1-\lambda_{1}}{1+\lambda_{2}}\|h\| .
$$

By inequality 3.9 for all $h \in H$ we have

$$
\left|<S_{F, G}(h), h>\right|^{2} \leq\left(B_{F, v}\|h\|^{2}\right)\left(\int_{X} v^{2}\left\|\pi_{G}(h)\right\|^{2} d \mu\right) .
$$

Thus

$$
\int_{X} v^{2}\left\|\pi_{G}(h)\right\|^{2} d \mu \geq \frac{1}{B_{F, v}}\left\|S_{F, G}(h)\right\|^{2} \geq \frac{1}{B_{F, v}}\left(\frac{1-\lambda_{1}}{1+\lambda_{2}}\right)^{2}\|h\|^{2} .
$$

Acknowledgements

The authors would like to thank the referee for a number of valuable suggestions regarding a previous version of this paper.

FAROUGHI, AHMADI

References

[1] Benedetto, J., Powell A. and Yilmaz, O.: Sigma-Delta quantization and finite frames, IEEE Trans. Inform. Th. 52, 1990-2005 (2006).
[2] Bolcskel, H., Hlawatsch F. and Feichyinger H. G.: Frame-Theoretic analysis of oversampled filter bank, IEEE Trans. Signal Processing. 46, 12, 3256- 3268 (1998).
[3] Candes, E. J. and Donoho, D. L.: New tight frames of curvelets and optimal representation of objects with piecwise C^{2} singularities, Comm. Pure and App. Math. 56, 216-266 (2004).
[4] Casazza, P. G. and Kutyniok, G.: Frame of subspaces, Wavelets, Frames and Operator Theory (College Park, MD, 2003), 87-113, Contemp. Math. 345, Amer. Math. Soc., Providence, RI, (2004).
[5] Casazza, P. G., Kutyniok, G. and Li, S.: Fusion frames and Distributed Processing, Appl. Comput. Harmon. Anal. 25, 114-132 (2008).
[6] Casazza, P.G. and KOvaĉević, J.: Equal-norm tight frames with erasures, Adv. Comput. Math. 18, 387-430 (2003).
[7] Christensen, O.: Introduction to frames and Riesz bases, Boston, Birkhauser 2003.
[8] Daubechies, I., Grossmann, A. and Meyer, Y.: painless nonorthogonal Expansions, J. Math. Phys. 27, 1271-1283 (1986).
[9] Duffin, R.J. and Schaeffer, A.C.: A class of nonharmonik Fourier series, Trans. Amer. Math. Soc. 72, 341-366 (1952).
[10] Faroughi, M. H. and Ahmadi, R.: Fusion integral, J. Mathematische Nachrichten. to appear.
[11] Gabardo, J. P. and Han, D.: frames associated with measurable space, Adv. comp. Math. 18, 127-147 (2003).
[12] Hassibi, B., Hochwald, B., Shokrollahi, A. and Sweldens, W.: Representation theory for high-rate multiple-antenna code design, IEEE Trans. Inform. Theory. 47, 2335-2367 (2001).
[13] Pedersen, and Gert, K.: Analysis Now, New York, Springer-Verlag 1995.
[14] Rahimi, A., Najati, A. and Dehgan, Y. N.: Continuous frame in Hilbert space, Methods of Functional Analysis and Topology. 12, 170-182 (2006).
[15] Rahimi, A., Najati, A. and Faroughi, M. H.: Continuous and discrete frames of subspaces in Hilbert spaces, Southeast Asian Bulletinof Mathematics. 32, 305-324 (2008).
[16] Rudin, W.: Functional Analysis, New York, Tata Mc Graw-Hill Editions 1973.
[17] Rudin, W.: Real and Complex Analysis, New York, Tata Mc Graw-Hill Editions 1987.
[18] Sakai, S.: C^{*}-Algebras and W^{*}-Algebras, New York, Springer-Verlag 1998.
Mohammad Hasan FAROUGHI
Faculty of Mathematical Science
University of Tabriz, IRAN
e-mail: m.h.faroughi@tabrizu.ac.ir
Reza AHMADI
Faculty of Mathematical Science
University of Tabriz-IRAN
e-mail: rahmadi@tabrizu.ac.ir

[^0]: 1991 AMS Mathematics Subject Classification: Primary 46B25, 47A05, 94A12, 68M10.
 This article derives from the Ph.D thesis of which author, completed at the university of Tabriz.

