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Some properties of C -fusion frames

Mohammad Hasan Faroughi and Reza Ahmadi

Abstract

In [10], we generalized the concept of fusion frames, namely, c -fusion frames, which is a continuous

version of the fusion frames. In this article we give some important properties about the generalization,

namely erasures of subspaces, the bound of c -erasure reconstruction error for Parseval c -fusion frames,

perturbation of c -fusion frames and the frame operator for fusion pair.
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1. Introduction and preliminaries

Throughout this paper H will be a Hilbert space and H will be the collection of all closed subspace of
H . Also, (X, μ) will be a measure space, and v : X → [0, +∞) a measurable mapping such that v �= 0 almost

everywhere (a.e.). We shall denote the unit closed ball of H by H1 .

Frames was first introduced in the context of non-harmonic Fourier series [9]. Outside of signal processing,

frames did not seem to generate much interest until the ground breaking work in [8]. Since then the theory of
frames began to be more widely studied. During the last 20 years the theory of frames has grown up rapidly, with
the development of several new applications. For example, besides traditional application as signal processing,
image processing, data compression, and sampling theory, frames are now used to mitigate the effect of losses
in pocket-based communication systems and hence to improve the robustness of data transmission on [6], and

to design high-rate constellation with full diversity in multiple-antenna code design [12]. In [2, 1, 3] some
applications have been developed.

The fusion frames were considered by Casazza, Kutyniok and Li in connection with distributed processing
and are related to the construction of global frames [4, 5]. The fusion frame theory is in fact more delicate due
to complicated relations between the structure of the sequence of weighted subspaces and the local frames in
the subspaces and due to the extreme sensitivity with respect to changes of the weights.

In [10] we extended fusion frames to their continuous versions in measure spaces and in this paper we
shall investigate some properties about it.
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Definition 1.1 Let {fi}i∈I be a sequence of members of H . We say that {fi}i∈I is a frame for H if there
exist 0 < A ≤ B < ∞ such that for all h ∈ H

A‖h‖2 ≤
∑
i∈I

| < fi, h > |2 ≤ B‖h‖2. (1.1)

The constants A and B are called the frame bounds. If A, B can be chosen so that A = B , we call this frame
an A-tight frame and if A = B = 1, it is called a Parseval frame. If we only have the upper bound, we call
{fi}i∈I a Bessel sequence. If {fi}i∈I is a Bessel sequence then the following operators are bounded:

T : l2(I) → H, T (ci) =
∑
i∈I

cifi (1.2)

T ∗ : H → l2(I), T ∗(f) = {< f, fi >}i∈I (1.3)

Sf = TT ∗f =
∑
i∈I

< f, fi > fi. (1.4)

These operators are called synthesis operator; analysis operator and frame operator, respectively.

Definition 1.2 For a countable index set I , let {Wi}i∈I be a family of closed subspace in H , and let {vi}i∈I

be a family of real numbers, called weights, i.e., vi > 0 for all i ∈ I . Then {(Wi, vi)}i∈I is a fusion frame for
H if there exist 0 < C ≤ D < ∞ such that for all h ∈ H

C‖h‖2 ≤
∑
i∈I

vi
2‖πWi(f)‖2 ≤ D‖h‖2, (1.5)

where πWi is the orthogonal projection onto the subspace Wi .

We call C and D the fusion frame bounds. The family {(Wi, vi)}i∈I is called a c-tight fusion frame, if in 1.5
the constants C and D can be chosen so that C = D , a Parseval fusion frame provided C = D = 1 and an
orthonormal fusion basis if H =

⊕
i∈I Wi. If {(Wi, vi)}i∈I possesses an upper fusion frame bound, but not

necessarily a lower bound, we call it is a Bessel fusion sequence with Bessel fusion bound D . The representation
space employed in this setting is

(
∑
i∈I

⊕Wi)l2 = {{fi}i∈I |fi ∈ Wi and {||fi||}i∈I ∈ l2(I)}.

Let {(Wi, vi)}i∈I be a fusion frame for H . The synthesis operator, analysis operator and frame operator
are defined, respectively, by

TW : (
∑
i∈I

⊕Wi)l2 → H with TW (f) =
∑
i∈I

vifi,

T ∗
W : H → (

∑
i∈I

⊕Wi)l2 with T ∗
W (f) = {viπWi(f)}i∈I ,
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SW (f) = TW T ∗
W =

∑
i∈I

v2
i πWi(f).

By proposition 3.7 in [5], if {(Wi, vi)}i∈I is a fusion frame for H with fusion frame bounds C and D then
SW is a positive and invertible operator on H with CId ≤ SW ≤ DId. The theory of frames has a continuous
version as follows.

Definition 1.3 Let (X, μ) be a measure space. Let f : X → H be weakly measurable (i.e., for all h ∈ H , the

mapping x →< f(x), h > is measurable). Then f is called a continuous frame or c-frame for H if there exist
0 < A ≤ B < ∞ such that for all h ∈ H

A‖h‖2 ≤
∫

X

| < f(x), h > |2dμ ≤ B‖h‖2. (1.6)

The representation space employed in this setting is

L2(X, μ) = {ϕ : X → H | ϕ is measurable and ‖ϕ‖2 < ∞},

in which ‖ϕ‖2 = (
∫

X
||ϕ(x)||2dμ)

1
2 . The synthesis operator, analysis operator and frame operator are defined,

respectively, by

Tf : L2(X, μ) → H

< Tfϕ, h >=
∫

X

ϕ(x) < f(x), h > dμ(x), (1.7)

T ∗
f : H → L2(X, μ)

(T ∗
f h)(x) =< h, f(x) >, x ∈ X, (1.8)

Sf = TfT ∗
f . (1.9)

Also by Theorem 2.5. in [14], Sf is positive, self-adjoint and invertible.

We need the following theorems and the proofs can be found in [14].

Theorem 1.4 Let f be a continuous frame for H with the frame operator Sf and let V : H → K be a bounded

and invertible operator. Then V ◦ f is a continuous frame for K with the frame operator V SfV ∗ .

Theorem 1.5 Let K be a closed subspace of H and let P : H → K be an orthogonal projection. Then the
following holds:
(i) If f is a continuous frame for H with bounds A and B , then Pf is a continuous frame for K with the
bounds A and B .
(ii) If f is a continuous frame for K with the frame operator Sf , then for each h, k ∈ H

< Ph, k >=
∫

X

< h, S−1
f f(x) >< f(x), k > dμ(x).
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The following lemmas and theorems can be found in operator theory text books [13, 16, 17, 18] which we
shall use this work.

Lemma 1.6 Let u : H → K be a bounded operator. Then

(i) ‖u‖ = ‖u∗‖ and ‖uu∗‖ = ‖u‖2 .

(ii) Ru is closed, if and only if, Ru∗ is closed.

(iii) u is surjective, if and only if, there exists c > 0 such that for each h ∈ H

c‖h‖ ≤ ‖u∗(h)‖.

Lemma 1.7 Let u be a self-adjoint bounded operator on H . Let

mu = inf
h∈H

< uh, h >, Mu = sup
h∈H

< uh, h > .

Then, mu, Mu ∈ σ(u).

Theorem 1.8 Let u : K → H be a bounded operator with closed range Ru . Then there exists a bounded

operator u† : H → K for which uu†f = f , f ∈ Ru .

Also, u∗ : H → K has closed range and (u∗)† = (u†)∗ . The operator u† is called the pseudo-inverse of u .

Theorem 1.9 Let u : K → H be a bounded surjective operator. Given y ∈ H , the equation ux = y has a

unique solution of minimal norm, namely, x = u†y .

2. C -fusion frame

In this section we shall introduce the continuous version of fusion frames and we shall obtain some useful
properties of it.

Definition 2.1 Let F : X → H be such that for each h ∈ H , the mapping x 
→ πF (x)(h) is measurable (i.e.

is weakly measurable ), and let v : X → [0, +∞) be a measurable mapping such that v �= 0 a.e. We say that

(F, v) is a c-fusion frame for H if there exist 0 < A ≤ B < ∞ such that for all h ∈ H

A‖h‖2 ≤
∫

X

v2(x)‖πF (x)‖2dμ ≤ B‖h‖2. (2.1)

(F, v) is called a tight c-fusion frame for H if A, B can be chosen so that A = B , and Parseval if A = B = 1.

If we only have the upper bound, say call (F, v) is a Bessel c-fusion mapping for H .

Definition 2.2 Let F : X → H. Let L2(X, H, F ) be the class of all measurable mapping f : X → H such that

for each x ∈ X , f(x) ∈ F (x) and ∫
X

‖f(x)‖2dμ < ∞.
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It can be verified that L2(X, H, F ) is a Hilbert space with inner product defined by

< f, g >=
∫

X

< f(x), g(x) > dμ

for f, g ∈ L2(X, H, F ).

Remark 2.3 For brevity, we shall denote L2(X, H, F ) by L2(X, F ) . Let (F, v) be a Bessel c-fusion mapping,

f ∈ L2(X, F ) and h ∈ H . Then:

|
∫

X

v(x) < f(x), h > dμ| = |
∫

X

v(x) < πF (x)(f(x)), h > dμ|

= |
∫

X

v(x) < f(x), πF (x)(h) > dμ| ≤
∫

X

v(x)‖f(x)‖.‖πF (x)(h)‖dμ

≤ (
∫

X

‖f(x)‖2dμ)1/2(
∫

X

v2(x)‖πF (x)(h)‖2dμ)1/2

≤ B1/2‖h‖(
∫

X

‖f(x)‖2dμ)1/2.

So we may define put forth the following definition.

Definition 2.4 Let (F, v) be a Bessel c-fusion mapping for H . We define the c-fusion pre-frame operator

(synthesis operator) TF : L2(X, F ) → H by

< TF (f), h >=
∫

X

v(x) < f(x), h > dμ, (2.2)

where f ∈ L2(X, F ) and h ∈ H .

By the Remark 2.3, TF : L2(X, F ) → H is a bounded linear mapping. Its adjoint

T ∗
F : H → L2(X, F )

will be called a c-fusion analysis operator, and SF = TF ◦ T ∗
F will be called a c-fusion frame operator. The

representation space in this setting is L2(X, F ).

Remark 2.5 Let (F, v) be a Bessel c-fusion mapping for H . Then TF : L2(X, F ) → H is indeed a vector-

valued integral, which for f ∈ L2(X, F ) we shall put

TF (f) =
∫

X

vfdμ (2.3)

where

<

∫
X

vfdμ, h >=<

∫
X

v(x) < f(x), h > dμ, h ∈ H.
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For each h ∈ H and f ∈ L2(X, F ) , we have

< T ∗
F (h), f >=< h, TF (f) >=

∫
X

v(x) < h, f(x) > dμ

=
∫

X

v(x) < πF (x)(h), f(x) > dμ =< vπF (h), f > .

Hence for all h ∈ H

T ∗
F (h) = vπF (h). (2.4)

So T ∗
F = vπF .

Remark 2.6 A c-fusion frame is indeed a generalization of fusion frame. In definition 2.1, if we put X = I and
μ be the counting measure, then F is a fusion frame according to the definition 1.2. Also with this hypothesis,

L2(X, F ) changes to (
∑

i∈I ⊕Wi)l2 the representation space of fusion frame.

Definition 2.7 Let (F, v) and (G, v) be Bessel c-fusion mappings for H . We say (F, v) and (G, v) are weakly

equal if T ∗
F = T ∗

G , which is equivalent to vπF (h) = vπG(h) , i.e. for all h ∈ H . Since, v �= 0 i.e. , (F, v) and

(G, v) are weakly equal if πF (h) = πG(h) , i.e. for all h ∈ H .

Remark 2.8 Let TF = 0 . Now, let O : X → H be defined by O(x) = {0} , for almost all x ∈ X . Then (O, v)

is a Bessel c-fusion mapping and TO = 0 . Let h ∈ H . Since vπF (h) ∈ L2(X, F ) , so∫
X

v2(x) < πF (x)(h), πF (x)(h) > dμ

=
∫

X

v(x) < v(x)πF (x)(h), h > dμ =< TF (vπF (h)), h >= 0.

Thus πF (x)(h) = 0 , i.e. Therefore, πF (h) = πO(h) , a.e. Hence (F, v) and (O, v) are weakly equal.

Definition 2.9 For any Bessel c-fusion mapping (F, v) for H , we shall denote

AF,v = inf
h∈H1

‖vπF (h)‖2, (2.5)

BF,v = sup
h∈H1

‖vπF (h)‖2 = ‖vπF‖2. (2.6)

Remark 2.10 Let (F, v) be a Bessel c-fusion mapping for H . Since, for each h ∈ H

< TF T ∗
F (h), h >= ‖vπF (h)‖2 =

∫
X

v2(x)‖πF (x)‖2dμ,

AF,v and BF,v are optimal scalars which satisfy

AF,v ≤ TF T ∗
F ≤ BF,v.

In other words AF,v is the spermum of all positive numbers A , and BF,v is the infimum of all positive numbers

B which satisfies in 2.1. So (F, v) is a c-fusion frame for H if and only if AF,v > 0 .
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Lemma 2.11 Let (F, v) be a Parseval c-fusion frame for H . Then T ∗
F TF is the orthogonal projection of

L2(X, F ) onto T ∗
F (H) .

Proof. By remark 2.5 we have T ∗
F (h) = vπF (h). Thus

||T ∗
F (h)||2 = ||vπF (h)||2 =

∫
X

||v(x)πF (x)(h)||2dμ

=
∫

X

v2(x)||πF (x)(h)||2dμ = ||h||2.

Thus T ∗
F is an isometry. So we can embed H into L2(X, F ) by identifying H with T ∗

F (H). Let P : L2(X, F ) →
T ∗

F (H) be the orthogonal projection. For each f ∈ L2(X, F ) and h ∈ H we have:

< Pf, T ∗
F (h) >=< f, PT ∗

F (h) >=< f, T ∗
F (h) >

=< TF (f), h >=< T ∗
F TF (f), T ∗

F (h) > .

Thus
Pf − T ∗

F TF (f) ⊥ T ∗
F (H).

But ran(P ) = T ∗
F (H), hence P = T ∗

F TF . �

Example 2.12 Let X = [−1, 1] with the Lebesgue measure μ and let Hn be a n-dimensional Hilbert space

with orthonormal basis {ei}n
i=1 . For each x ∈ X, let

F (x) =
{

λ

n−1∑
i=0

xiei+1 : λ ∈ C

}
and υ(x) =

√√√√ n∑
i=1

x2i−2.

Then F : X → H and (F, v) is a c-fusion frame for H . For the proof of the example we refer the reader to

[15].

3. Erasures of subspaces and perturbation of C -fusion frames

Theorem 3.1 Let (F, v) be a c-fusion frame for H with bounds C and D , and let Y ⊆ X be measurable.
Then the following assertions are satisfied:

(i) If
∫

Y
v2(x)dμ > D then ∩x∈Y F (x) = {0} .

(ii) If
∫
Y v2(x)dμ = D then ∩x∈Y F (x) ⊥ span{F (x)}x∈X−Y a.e.

(iii) If c =
∫

Y
v2(x)dμ < C, then F : X − Y → H is a c-fusion frame with bounds C − c and D .

Proof. (i) Suppose h ∈ ∩x∈Y F (x), then πF (x)(h) = h for all x ∈ Y . We have

D‖h‖2 < ‖h‖2(
∫

Y

v2(x)dμ) =
∫

Y

‖h‖2v2(x)dμ
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=
∫

Y

‖πF (x)(h)‖2v2(x)dμ

≤
∫

Y

‖πF (x)(h)‖2v2(x)dμ +
∫

X−Y

‖πF (x)(h)‖2v2(x)dμ

=
∫

X

‖πF (x)(h)‖2v2(x)dμ ≤ D‖h‖2,

hence h = 0.
(ii) If

∫
Y

v2(x)dμ = D and h ∈ ∩x∈Y F (x) then

D‖h‖2 =
∫

Y

‖πF (x)(h)‖2v2(x)dμ

≤
∫

Y

‖πF (x)(h)‖2v2(x)dμ +
∫

X−Y

‖πF (x)(h)‖2v2(x)dμ

≤ D‖h‖2,

thus

D‖h‖2 +
∫

X−Y

‖πF (x)(h)‖2v2(x)dμ ≤ D‖h‖2.

Hence ∫
X−Y

‖πF (x)(h)‖2v2(x)dμ ≤ 0,

therefore we have πF (x)(h) = 0, for all x ∈ X − Y (a.e.) and we conclude that h ⊥ F (x) for all x ∈ X − Y

(a.e.). Thus h ⊥ span{F (x)}x∈X−Y (a.e.) and we get

∩x∈Y F (x) ⊥ span{F (x)}x∈X−Y .

(iii) For all h ∈ H we have ∫
X−Y

‖πF (x)(h)‖2v2(x)dμ

=
∫

X

‖πF (x)(h)‖2v2(x)dμ −
∫

Y

‖πF (x)(h)‖2v2(x)dμ

≥ C‖h‖2 − ‖h‖2

∫
Y

v2(x)dμ = (C − c)‖h‖2.

The upper bound is obvious. �

The following corollary immediately follows from the Theorem 3.1

Corollary 3.2 Let (F, v) be a c-fusion frame for H with bounds C and D , and let Y ⊆ X be measurable.
Then the following statements are equivalent:

(i) c =
∫

Y
v2(x)dμ < C.

(ii) F : (X − Y ) → H is a c-fusion frame with bounds C − c and D .
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Definition 3.3 For any X◦ ⊆ X measurable, we define

DX◦ : L2(X, F ) → L2(X, F )

DX◦(f)(x) =
{

f(x) if x ∈ X◦
0 if x ∈ X − X◦

for all f ∈ L2(X, F ).

Definition 3.4 Let (F, v) be a c-fusion frame with the pre-frame operator TF . We define the c-erasure

reconstruction error ξ1(F ) to be

ξ1(F ) = sup{‖TF DX◦T ∗
F ‖ : X◦ ⊆ X}, (3.1)

where X◦ is measurable.

Theorem 3.5 Let v ∈ L2(X) and let (F, v) be a Parseval c-fusion frame with c-erasure reconstruction error

ξ1(F ) . Then DX◦(f) ∈ L2(X, F ) and

ξ1(F ) ≤ ‖v‖2. (3.2)

Proof. Since
‖DX◦‖ = sup{‖DX◦(f)‖ : ‖f‖ = 1 and f ∈ L2(X, F )},

‖DX◦(f)‖2 =
∫

X

|DX◦(f)(x)|2dμ =
∫

X◦

|f(x)|2dμ ≤ ‖f‖2,

so ‖DX◦‖ ≤ 1.

Choose X◦ ⊆ X measurable, and fix it. By the Remark 2.5 we have

‖TF DX◦T ∗
F ‖ = sup

h∈H1

‖TF DX◦T ∗
F (h)‖

= sup
h∈H1

‖TF DX◦(vπF (h))‖ = sup
h∈H1

sup
k∈H1

| < TF DX◦(vπF (h)), k > |

= sup
h∈H1

sup
k∈H1

|
∫

X◦

< v2(x)πF (x)(h)), k > dμ|

≤ sup
h∈H1

(
∫

X

v2(x)‖πF (x)(h)‖2dμ)1/2(
∫

X

v2(x)dμ)1/2

= sup
h∈H1

‖h‖(
∫

X

v2(x)dμ)1/2 = ‖v‖2.

Since X◦ ⊆ X is arbitrary
ξ1(F ) ≤ ‖v‖2.

�
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Example 3.6 Let X = [0, 1] and μ be the Lebesgue measure. Suppose that v(x) =
√

2 For all x ∈ X , then v

is positive and measurable. For the Hilbert space H = C , we put H = {W1, W2} which W1 = span{(1, 0)} and

W2 = span{(0, 1)} . If we define

F : [0, 1] → H

F (x) =
{

W1 if 0 ≤ x < 1
2
,

W2 if 1
2
≤ x ≤ 1,

then F is weakly measurable and we have

∫ 1

0

v2(x)‖πF (x)(h)‖2dμ

=
∫ 1/2

0

2a2dx +
∫ 1

1/2

2b2dx = a2 + b2 = ‖h‖2.

Hence (F, v) is a Parseval c-fusion frame for H . Now by Theorem 3.5, we have ξ1(F ) ≤ 2.

According to the construction of fusion frame systems in [5], we introduce ξ1(F ) for such c-fusion frame
systems.

Definition 3.7 Let (X, μ) and (Y, λ) be two measure spaces. Let f : X ×Y → H and F : X → H. Let for all

x ∈ X , f(x, .) : Y → F (x) be a c-frame for F (x) . Then (F, f, v) is called a system of local c-frames. Also,

(F, f, v) is called a c-fusion frame system if (F, v) is a c-fusion frame.

Example 3.8 Let X = Y = [0, 1] and μ = λ be the Lebesgue measure. Suppose that v(x) = e
x
2 For all x ∈ X ,

then v is positive and measurable. For Hilbert space H = C , we put H = {W1, W2} which W1 = span{(1, 1)}
and W2 = span{(1,−1)} . If we define

F : [0, 1] → H

F (x) =
{

W1 if 0 ≤ x < 1
2 ,

W2 if 1
2 ≤ x ≤ 1,

then F is weakly measurable and (F, v) is a c-fusion frame for H with upper bound e − 1 and lower bound

e
1
2 − 1 . If we define

f : [0, 1]× [0, 1] → H

f(x, y) = x(1, 1) + y(1,−1).

It is easy to show that f is a c-frame for H with lower bound 1/6 and upper bound 7
6 . to get a c-fusion frame

system, for 0 ≤ x < 1
2 we define

f(x, .) : Y = [0, 1] → F (x) = span{(1, 1)}

f(x, .)(y) = y(1, 1),
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and for 1
2 ≤ x ≤ 1 we define

f(x, .) : Y = [0, 1] → F (x) = span{(1,−1)}

f(x, .)(y) = y(1,−1).

Then for all x ∈ [0, 1] , f(x, .) is a tight c-frame for F (x) with A = B = 2
3 . Thus (F, f, v) is a c-fusion frame

system for H = C.

Theorem 3.9 Let (X, μ) and (Y, λ) be two σ -finite measure spaces. Let f : X × Y → H , F : X → H be

weakly measurable mappings. Let for all x ∈ X , f(x, .) : Y → F (x) be weakly measurable and for every x ∈ X ,

f(x, .) be a continuous frame for F (x) . Let

0 < A(x) = inf
h∈F (x)1

∫
Y

| < f(x, y), h > |2dλ

≤ sup
h∈F (x)1

∫
Y

| < f(x, y), h > |2dλ = B(x) < ∞,

and let
0 < A = inf

x
A(x) ≤ sup

x
B(x) = B < ∞.

Then, (F, v) is a c-fusion frame for H if and only if

v.f : X × Y → H,

(x, y) 
→ v(x)f(x, y)

is a continuous frame for H .

Proof. See [10]. �

We denote the synthesis and analysis operator for f(x, .) by Tx and T ∗
x , respectively.

Definition 3.10 Let (F, f, v) be a system of local c-frames. Let mappings x 
→ Tx , of X into B(L2(Y, λ), H)

and x 
→ T ∗
x , of X into B(H, L2(Y, λ)) , be measurable. We define the c-erasure reconstruction error ξ1(F )

for the system of local c-frames (F, f, v) as follows:

ξ1(F ) (3.3)

= sup{
∫

X

v2(x)‖TxDY◦T
∗
x‖dμ : Y◦ ⊆ Y, measurable}

Theorem 3.11 With the hypothesis of the Theorem 3.9, let v.f : X × Y → H, be a c-frame for H with upper

bound B . Let the mappings, x 
→ Tx , of X into B(L2(Y, λ), H) and, x 
→ T ∗
x , of X into B(H, L2(Y, λ)) be

measurable. Then
ξ1(F ) ≤ B.
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Proof. Choose Y◦ ⊆ Y and fix it. By the definition of synthesis and analysis operator for continuous frames,
we have

‖TxDY◦T
∗
x‖ ≤ ‖Tx‖‖T ∗

x‖ = ‖T ∗
x‖2

= sup
h∈F (x)1

‖T ∗
x (h)‖2 = sup

h∈F (x)1

∫
Y

| < h, f(x, y) > |2dλ

≤ sup
h∈H1

∫
Y

| < h, f(x, y) > |2dλ.

Hence ∫
X

v2(x)‖TxDY◦T
∗
x‖dμ(x)

≤ sup
h∈H1

∫
X

∫
Y

v2(x)| < f(x, y), h > |2dλ(y)dμ(x)

≤ sup
h∈H1

∫
X

∫
Y

| < v(x)f(x, y), h > |2dλ(y)dμ(x)

= sup
h∈H1

∫
X×Y

| < v(x)f(x, y), h > |2d(μ × λ)

≤ sup
h∈H1

B‖h‖2 = B.

Since Y◦ ⊆ Y is arbitrary, thus
ξ1(F ) ≤ B.

�

Example 3.12 Let X = Y = [0, 1] and μ = λ be the Lebesgue measure. Let (F, v) be the c-fusion frame for
H = C defined in the example 3.6 and we define

v.f : [0, 1]× [0, 1] → H

v.f(x, y) =
√

2(x(1, 0) + y(0, 1)).

Then v.f is a c-frame for H with lower bound 1
6 and upper bound 7

6 . For 0 ≤ x < 1
2 we define

f(x, .) : Y = [0, 1] → F (x) = span{(1, 0)}

f(x, .)(y) = y(1, 0),

and for 1
2 ≤ x ≤ 1 we define

f(x, .) : Y = [0, 1] → F (x) = span{(0, 1)}
f(x, .)(y) = y(0, 1).

Then f(x, .) for any x ∈ [0, 1] , is a tight c-frame for F (x) with A = B = 1
3 . So by the Theorem 3.11 we have

ξ1(F ) ≤ 7
6
.
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Definition 3.13 Let F : X → H, F̃ : X → H . Let 0 ≤ λ1, λ2 < 1 and ε > 0 . We say that (F̃ , v) is a

(λ1, λ2, ε)-perturbation of (F, v) if for all h ∈ H and x ∈ X

‖(πF (x) − πF̃ (x))(h)‖ ≤ λ1‖(πF (x)(h)‖ + λ2‖πF̃ (x))(h)‖ + ε‖h‖.

Theorem 3.14 Let (F, v) be a c-fusion frame for H with bounds C and D , and let v ∈ L2(X) . Choose
0 ≤ λ1 < 1 and ε > 0 such that

(1 − λ1)
√

C − ε(
∫

X

v2(x)dμ)1/2 > 0.

Let F̃ : X → H be weakly measurable. Further, let (F̃ , v) be a (λ1, λ2, ε)-perturbation of (F, v) for some

0 ≤ λ2 < 1 . Then (F̃ , v) is c-fusion frame for H with bounds

[
(1 − λ1)

√
C − ε(

∫
X

v2(x)dμ)1/2

1 + λ2
]2

and

[
(1 + λ2)

√
D − ε(

∫
X

v2(x)dμ)1/2

1 − λ2
]2.

Proof. We first prove the upper bound. For any h ∈ H , we get,

[
∫

X

v2(x)‖πF̃ (x)(h)‖2dμ]1/2

≤ [
∫

X

v2(x)(‖πF (x)(h) − πF̃ (x)(h)‖ + ‖πF (x)(h)‖)2dμ]1/2

≤ [
∫

X

v2(x)(‖πF (x)(h)‖ + λ1‖πF (x)(h)‖ + λ2‖πF̃ (x)(h)‖ + ε‖h‖)2dμ]1/2

= [
∫

X

((1 + λ1)v(x)‖πF (x)(h)‖ + λ2v(x)‖πF̃ (x)(h)‖ + εv(x)‖h‖)2dμ]1/2

≤ [(1 + λ1)2
∫

X

(v2(x)‖πF (x)(h)‖2dμ]1/2

+[λ2
2

∫
X

v2(x)‖πF̃ (x)(h)‖2dμ]1/2 + [ε2

∫
X

v2(x)‖h‖2dμ]1/2.

Thus

(1 − λ2)[
∫

X

v2(x)‖πF̃(x)(h)‖2dμ]1/2

≤ (1 + λ1)[
∫

X

(v2(x)‖πF (x)(h)‖2dμ]1/2 + ε‖h‖[
∫

X

v2(x)dμ]1/2

≤ [(1 + λ1)
√

D + ε(
∫

X

v2(x)dμ)1/2]‖h‖.
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Hence ∫
X

v2(x)‖πF̃ (x)(h)‖2dμ ≤ [
(1 + λ1)

√
D + ε(

∫
X

v2(x)dμ)1/2

1 − λ2
]2‖h‖2.

To prove the lower bound, for all h ∈ H we have

[
∫

X

v2(x)‖πF̃ (x)(h)‖2dμ]2

≥ [
∫

X

v2(x)(‖πF (x)(h)‖ − ‖πF (x)(h) − πF̃ (x)(h)‖)2dμ]1/2

≥ [
∫

X

v2(x)(‖πF (x)(h)‖ − λ1‖πF (x)(h)‖ − λ2‖πF̃ (x)(h)‖ − ε‖h‖)2dμ]1/2

= [
∫

X

((1 − λ1)v(x)‖πF (x)(h)‖ − λ2v(x)‖πF̃ (x)(h)‖ − εv(x)‖h‖)2dμ]1/2

≥ [
∫

X

(1 − λ1)2v2(x)‖πF (x)(h)‖2dμ]1/2

−[
∫

X

λ2
2v

2(x)‖πF̃ (x)(h)‖2dμ]1/2 − [
∫

X

ε2v2(x)‖h‖2dμ]1/2.

Thus

(1 + λ2)[
∫

X

v2(x)‖πF̃(x)(h)‖2dμ]1/2

≥ (1 − λ1)[
∫

X

v2(x)‖πF (x)(h)‖2dμ]1/2 − ε[
∫

X

v2(x)dμ]1/2‖h‖

= [(1 − λ1)
√

C − ε[
∫

X

v2(x)dμ]1/2]‖h‖.

Hence ∫
X

v2(x)‖πF̃ (x)(h)‖2dμ ≥ [
(1− λ1)

√
C + ε(

∫
X v2(x)dμ)1/2

1 + λ2
]2‖h‖2.

This completes the proof. �

Example 3.15 Let X = [0, 1] and μ be the Lebesgue measure. Suppose that v(x) = 1
10

For all x ∈ X , then

v is positive and measurable. For Hilbert space H = C , Let H = {W1, W2, W̃1, W̃2} which W1 = span{(1, 0)} ,

W2 = span{(0, 1)} , W̃1 = span{(1, 0.1)} and W̃2 = span{(0.1, 1)} . If we define

F : [0, 1] → H

F (x) =
{

W1 if 0 ≤ x < 1
2 ,

W2 if 1
2
≤ x ≤ 1,
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then by Example 3.6, (F, v) is a tight c-fusion frame for H = C with C = D = 1
200 . Now we define

F̃ : [0, 1] → H

F̃ (x) =

{
W̃1 if 0 ≤ x < 1

2 ,

W̃2 if 1
2 ≤ x ≤ 1.

It is clear that F̃ is weakly measurable. For h = (a, b) ∈ H we have

h =
a − 0.1b

0.99
(1, 0.1) +

b − 0.1a

0.99
(0.1, 1).

Hence for 0 ≤ x < 1
2 ,

‖(πF (x) − πF̃ (x))(h)‖ = ‖(−0.01a + 0.1b

0.99
,
0.01b− 0.1a

0.99
)‖

≤ 1
99

|a|+ 1√
101

|a − 0.1b|
√

1.01 +
1

9.9

√
a2 + b2,

thus

‖(πF (x) − πF̃ (x))(h)‖ (3.4)

≤ 1
99

‖(πF (x)(h)‖ +
1√
101

‖πF̃ (x))(h)‖ +
1

9.9
‖h‖.

Similarly, 3.4 hold for 1
2 ≤ x ≤ 1 . It is easy to show that

(1 − λ1)
√

C − ε(
∫

X

v2(x)dμ)
1
2 > 0.

Thus by Theorem 3.14, (F̃ , v) is a c-fusion frame for H with respectively, lower and upper bounds

(1 − 1
99). 1√

200
− 1

99

1 + 1√
101

,
(1 + 1√

101
). 1√

200
− 1

99

1 − 1√
101

.

Definition 3.16 Let f be a continuous frame for H , where μ is σ − finite. Let f̃ : X → H be a weakly-
measurable vector-valued function and assume that there exist constants λ1, λ2, γ ≥ 0 such that max(λ1 +

γ√
A

, λ2) < 1 and

|
∫

X

ϕ(x) < f(x) − f̃(x), h > dμ(x)| ≤ λ1|
∫

X

ϕ(x) < f(x), h > dμ(x)|

+λ2|
∫

X

ϕ(x) < f̃(x), h > dμ(x)|+ γ‖ϕ‖2 (3.5)

for all ϕ ∈ L2(X, μ) and for all h ∈ H1 . Then f̃ is called the (λ1, λ2, γ) perturbation of f .
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Theorem 3.17 Let f̃ be a (λ1, λ2, γ) perturbation of f . Then f̃ : X → H is a continuous frame for H with
the bounds

A[
1 − (λ1 + γ√

A
)

1 + λ2
]2 and B[

1 + λ1 + γ√
B

1 − λ2
]2,

where A, B are frame bounds for f .

Proof. See [14]. �

Proposition 3.18 Let f : X → H and let f̃ : X → H be two weakly-measurable mappings. Let f be a

continuous frame for span{f(x)}x∈X and let f̃ be a (λ1, λ2, γ) perturbation of f .

(i) f̃ is a continuous frame for span{f̃(x)}x∈X and for all ϕ ∈ L2(X, μ) and for all h in the unit sphere in
H we have

|
∫

X

ϕ(x) < f(x), h > dμ(x)|

≤ 1 + λ2

1 − λ1
|
∫

X

ϕ(x) < f̃(x), h > dμ(x)|+ γ

1 − λ1
‖ϕ‖2, (3.6)

|
∫

X

ϕ(x) < f(x), h > dμ(x)|

≥ 1 − λ1

1 + λ2
|
∫

X

ϕ(x) < f̃(x), h > dμ(x)| − γ

1 + λ2
‖ϕ‖2. (3.7)

(ii) Let πf be the orthogonal projection of H onto span{f(x)}x∈X and πf̃ be the orthogonal projection of H

onto span{f̃(x)}x∈X . For all k in H we have

‖πf(πf̃(k))‖2 ≥ 1 − λ1

N(1 + λ2)
‖πf̃(k)‖2 − M

N
‖ϕkf̃‖2,

which M = γ(1 + 1
1−λ1

+ 1
1+λ2

) , N = 1 + λ1
1+λ2
1−λ1

+ λ2 and ϕkf̃ = T ∗
S−1

f̃
◦f̃

(k).

Proof. (i) By Theorem 3.17, f̃ is a continuous frame for span{f̃(x)}x∈X . For all ϕ ∈ L2(X, μ) and for all
h ∈ H1 we have

|
∫

X

ϕ(x) < f(x), h > dμ(x)| = |
∫

X

ϕ(x) < f(x) − f̃(x) + f̃(x), h > dμ(x)|

≤ |
∫

X

ϕ(x) < f(x) − f̃(x), h > dμ(x)|+ |
∫

X

ϕ(x) < f̃(x), h > dμ(x)|

≤ |
∫

X

ϕ(x) < f̃(x), h > dμ(x)|
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+λ1|
∫

X

ϕ(x) < f(x), h > dμ(x)|+ λ2|
∫

X

ϕ(x) < f̃(x), h > dμ(x)|+ γ‖ϕ‖2.

Hence

|
∫

X

ϕ(x) < f(x), h > dμ(x)|

≤ 1 + λ2

1 − λ1
|
∫

X

ϕ(x) < f̃(x), h > dμ(x)| + γ

1 − λ1
‖ϕ‖2.

By replacing f with f̃ in the above argument we have

|
∫

X

ϕ(x) < f(x), h > dμ(x)|

≥ 1 − λ1

1 + λ2
|
∫

X

ϕ(x) < f̃(x), h > dμ(x)| − γ

1 + λ2
‖ϕ‖2.

(ii) Since f̃ is a c-frame for span{f̃(x)}x∈X , thus Sf̃ is bounded and invertible. Hence by Theorem 1.4,

S−1

f̃
◦ f̃ is a c-frame for S−1

f̃
(span{f̃(x)}x∈X) and for all k ∈ S−1

f̃
(span{f̃(x)}x∈X), T ∗

S−1
f̃

◦f̃
(k) ∈ L2(X, μ).

Fix k ∈ S−1

f̃
(span{f̃(x)}x∈X) and let

ϕkf̃(x) = (T ∗
S−1

f̃
◦f̃

(k))(x) =< k, S−1

f̃
(f̃(x)) > .

By the Theorem 1.5, for all h ∈ H we have

|
∫

X

< k, S−1

f̃
(f̃(x)) >< f(x) − f̃(x), h > dμ|

= |
∫

X

ϕkf̃(x) < f(x) − f̃(x), h > dμ|

≤ λ1|
∫

X

ϕkf̃(x) < f(x), h > dμ| + λ2|
∫

X

ϕkf̃(x) < f̃(x), h > dμ|+ γ‖ϕkf̃‖2

≤ λ1
1 + λ2

1 − λ1
|
∫

X

ϕkf̃(x) < f̃(x), h > dμ|

+λ2|
∫

X

ϕkf̃(x) < f̃(x), h > dμ|+ γ

1 − λ1
‖ϕkf̃‖2 + γ‖ϕkf̃‖2

= (λ1
1 + λ2

1 − λ1
+ λ2)|

∫
X

ϕkf̃(x) < f̃(x), h > dμ| + (
γ

1 − λ1
+ γ)‖ϕkf̃‖2

= (λ1
1 + λ2

1 − λ1
+ λ2)|

∫
X

< k, S−1

f̃
(f̃(x)) >< f̃(x), h > dμ| + (

γ

1 − λ1
+ γ)‖ϕkf̃‖2

= (λ1
1 + λ2

1 − λ1
+ λ2)| < πf̃k, h > |+ (

γ

1 − λ1
+ γ)‖ϕkf̃‖2.

409



FAROUGHI, AHMADI

Using the above inequality, for all h ∈ H we obtain

| < πfπf̃k, h > | = | < πf̃k, πfh > |

= |
∫

X

< k, S−1

f̃
(f̃(x)) >< f̃(x), πfh > dμ|

≥ |
∫

X

< k, S−1

f̃
(f̃(x)) >< f(x), πfh > dμ|

−|
∫

X

< k, S−1

f̃
(f̃(x)) >< f(x) − f̃(x), πfh > dμ|

≥ |
∫

X

< k, S−1

f̃
(f̃(x)) >< f(x), h > dμ|

−|
∫

X

< k, S−1

f̃
(f̃(x)) >< f(x) − f̃(x), πfh > dμ|

≥ 1 − λ1

1 + λ2
| < πf̃k, h > | − (λ1

1 + λ2

1 − λ1
+ λ2)| < πf̃k, πfh > | − M‖ϕkf̃‖2.

Thus

| < πfπf̃k, h > | ≥ 1 − λ1

N(1 + λ2)
| < πf̃k, h > | − M

N
‖ϕkf̃‖2.

Since h ∈ H was arbitrary we get

‖πf(πf̃k)‖2 ≥ 1 − λ1

N(1 + λ2)
‖πf̃k‖2 − M

N
‖ϕkf̃‖2.

�

Remark 3.19 Our argument in Proposition 3.18 is symmetric in πf and πf̃ . Thus we have

‖πf̃(πfk)‖2 ≥ 1 − λ1

N(1 + λ2)
‖πfk‖2 − M

N
‖ϕkf‖2.

Theorem 3.20 Let (F, f, v) be a c-fusion frame system for H with with bounds C and D and v ∈ L2(X) .
Choose 0 ≤ λ1, λ2 < 1 and ε > 0 such that

1 − ε2

2
=

1 − λ1

N(1 + λ2)
and

√
C − ε(

∫
X

v2(x)dμ)1/2 > 0.

Let F̃ : X → H . For every x ∈ X , let f̃x = f̃(x, .) : Y → F̃ (x) be a (λ1, λ2, γ) perturbation of fx = f(x, .) .

Let R = supx∈X ‖S−1
fx

‖ < ∞ and R̃ = supx∈X ‖S−1

f̃x
‖ < ∞ . Then (F̃ , f̃ , v) is a c-fusion frame system for

H with fusion frame bounds

[
√

C − ε(
∫

X

v2(x)dμ)1/2]2 and [
√

D + ε(
∫

X

v2(x)dμ)1/2]2.
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Proof. Fix x ∈ X and choose k ∈ H . Recalling Proposition 3.18 we have

‖πF (x)(k)‖2 = ‖πF̃ (x)(πF (x))(k)‖2 + ‖(I − πF̃ (x))πF (x)(k)‖2

≥ (1 − ε2

2
)‖πF (x)(k)‖2 + ‖(I − πF̃ (x))πF (x)(k)‖2 − M

N
‖ϕkfx‖2.

Hence

‖(I − πF̃ (x))πF (x)(k)‖2 ≤ ε2

2
‖πF (x)(k)‖2 +

M

N
‖ϕkfx‖2.

By a similar argument we have

‖(I − πF (x))πF̃ (x)(k)‖2 ≤ ε2

2
‖πF̃ (x)(k)‖2 +

M

N
‖ϕkf̃x

‖2.

Thus
‖(πF (x) − πF̃ (x))(k)‖2 = | < (πF (x) − πF̃ (x))(k), (πF (x) − πF̃ (x))(k) > |

= | < (πF (x) − πF̃ (x))
2(k), k > |

= | < (πF (x) − πF̃ (x)πF (x) + πF̃ (x) − πF (x)πF̃ (x))(k), k > |

≤ ‖(I − πF̃ (x))(πF (x)(k)) + (I − πF (x))(πF̃ (x))(k)‖‖k‖

≤ [‖(I − πF̃ (x))(πF (x)(k))‖ + ‖(I − πF (x))(πF̃ (x))(k)‖]‖k‖

≤ [(
ε2

2
‖πF (x)(k)‖2 +

M

N
‖ϕkfx‖2)1/2 + (

ε2

2
‖πF̃ (x)(k)‖2

+
M

N
‖ϕkf̃x

‖2)1/2]‖k‖. (3.8)

Now by the Proposition 3.18 (ii), ϕkf̃x
, ϕkfx ∈ L2(Y, λ) and by the Theorem 3.9 we have

‖ϕkfx‖2 =
∫

X

| < k, S−1
fx

(f(x, y)) > |2dλ ≤ B(x)‖S−1
fx

(k)‖2

≤ B‖S−1
fx

‖‖k‖2 ≤ BR‖k‖2.

Since for all x ∈ X , f̃x is c-frame thus, ‖ϕkf̃x
‖2 ≤ B̃R̃‖k‖2 . Hence by inequality 3.8 we have

‖(πF (x) − πF̃ (x))(k)‖2

≤ [(
ε2

2
‖k‖2 +

MBR

N
‖k‖2)1/2 + (

ε2

2
‖k‖2 +

MB̃R̃

N
‖k‖2)1/2]‖k‖ = t‖k‖2,

with t > 0. By Theorem 3.14 this complete the proof. �

Now we consider the duality topics in continuous version of fusion frame. The next result shows when
two Bessel c-fusion mappings are a fusion pair.
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Theorem 3.21 Let (F, v) and (G, v) be two Bessel c-fusion mapping for H , Then the following assertions
are equivalent:

(i) For all h ∈ H , h =
∫

X
v2πGπF (h)dμ .

(ii) For all h ∈ H , h =
∫

X
v2πF πG(h)dμ .

(iii) For all h, k ∈ H , < h, k >=
∫
X v2 < πG(h), πF (k) > dμ .

(iv) For all h ∈ H , ||h||2 =
∫

X
v2 < πG(h), πF (h) > dμ .

Proof. (i) → (ii) Let h, k ∈ H . We have

< h, k >=< TF (vπF πG(h)), k >=
∫

X

v < vπF πG(h)), k > dμ

=
∫

X

v < h, vπGπF (k) > dμ =< h, TG(vπF πG(k)) > .

Hence k = TG(vπF πG(k)).

(ii) → (iii) It is evident by the proof of (i) → (ii).

(iii) → (i) For all h, k ∈ H , we have

< h, k >=
∫

X

v2 < πG(h)), πF (k) > dμ =< TF (vπF πG(h)), k > .

Thus h = TF (vπF πG(h)).

(iv) → (i) Let L : H → H be defined by

L(h) = TF (vπF πG(h)).

It is clear that L is linear. Since

‖L(h)‖ = sup
k∈H1

| < L(h), k > | = sup
k∈H1

|
∫

X

v2 < πF πG(h)), k > dμ|

≤ (
∫

X

v2‖πG(h)‖2dμ)1/2 × ( sup
k∈H1

(
∫

X

v2‖πF (k)‖2dμ)1/2)

≤ B
1/2
F,v B

1/2
G,v‖h‖.

Hence L ∈ B(H). For all g ∈ H , we have

< h, h >= ‖h‖2 =
∫

X

v2 < πG(h)), πF (h) > dμ

=< TF (vπF πG(h)), h > .

Hence for all h ∈ H

h = TF (vπF πG(h)).

(iii) → (iv) is evident. �
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Definition 3.22 Let (F, v) and (G, v) be Bessel c-fusion mapping for H . We say that F, G is a fusion pair
if one of the assertions of the Theorem 3.21 satisfies.

Lemma 3.23 Let F, G be a fusion pair. Then AF,v > 0 .

Proof. By Theorem 3.21 (iv), for all h ∈ H , we have

||h||2 =
∫

X

v2 < πG(h), πF (h) > dμ ≤ B
1/2
G,v(||vπF (h)||)||h||.

Since, (G, v) is a Bessel c-fusion mapping, we have:

AF,v = inf
h∈H1

||vπF (h)||2 ≥ B−1
G,v > 0.

�

Definition 3.24 Let F, G be two Bessel c-fusion mappings for H . We define frame operator for fusion pair
by

SF,G : H → H

SF,G(h) = TF T ∗
GπF (h) =

∫
X

v2πGπF (h)dμ,

< SF,G(h), k >=
∫

X

v2(x) < πG(x)πF (x), k > dμ.

Theorem 3.25 We assume (F, v) and (G, v) be two Bessel c-fusion mappings for H .

(i) SF,G is bounded and S∗
F,G = SG,F .

(ii) Let there exists λ1 < 1 , λ2 > −1 such that

‖h − SF,G(h)‖ = ||h −
∫

X

v2πGπF (h)dμ|| ≤ λ1||h||+ λ2||
∫

X

v2πGπF (h)dμ||,

for all h ∈ H . Then (G, v) is a c-fusion frame for H and for all h ∈ H we have

(
1 − λ1

1 + λ2
)2

1
BF,v

‖h‖2 ≤
∫

X

v2||πG(h)||2dμ.

Proof. (i) We have

< SF,G(h), g >=<

∫
X

v2πGπF (h)dμ, g >=
∫

X

v2 < πGπF (h), g > dμ

=
∫

X

v2 < πF (h), πG(g) > dμ.

Thus

| < SF,G(h), g > |2 (3.9)
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≤ (
∫

X

v2||πF (h)||2dμ)(
∫

X

v2||πG(g)||2dμ)

≤ BF,vBG,v||h||2||g||2.

Hence SF,G is bounded a operator with

||SF,G|| ≤ B
1/2
F,v B

1/2
G,v.

Also S∗
F,G is bounded and we have:

< h, S∗
F,G(g) >=< SF,G(h), g >=

∫
X

v2 < πGπF (h), g > dμ

=
∫

X

v2 < h, πF πG(g) > dμ =< h, SG,F (g) > .

Thus S∗
F,G = SG,F .

(ii) Since

SF,G(h) =
∫

X

v2πGπF (h)dμ,

||h − SF,G(h)|| ≤ λ1||h||+ λ2||SF,G(h)||.

Thus
λ1||h||+ λ2||SF,G|| ≥ ||h|| − ||SF,G(h)||,

hence

||SF,G(h)|| ≥ 1 − λ1

1 + λ2
||h||.

By inequality 3.9 for all h ∈ H we have

| < SF,G(h), h > |2 ≤ (BF,v‖h‖2)(
∫

X

v2||πG(h)||2dμ).

Thus ∫
X

v2||πG(h)||2dμ ≥ 1
BF,v

||SF,G(h)||2 ≥ 1
BF,v

(
1 − λ1

1 + λ2
)2||h||2.

�
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