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Notes on null curves in Minkowski spaces

Makoto Sakaki

Abstract

We show a correspondence between the evolute of a null curve and the involute of a certain spacelike

curve in the 4-dimensional Minkowski space. Also we characterize pseudo-spherical null curves in the n-

dimensional Minkowski space in terms of the curvature functions.
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1. Introduction

In a semi-Riemannian manifold, there exist three families of curves, that is, spacelike, timelike, and null or
lightlike curves, according to their causal characters. In the case of null curves, many different situations appear
compared with the cases of spacelike and timelike curves. The theory of Frenet frames for a null curve has been
studied and developed by several researchers in this field (cf. [2], [4], [1] and [3]). In [4] Ferrandez, Gimenez
and Lucas introduced a Frenet frame with curvature functions for a null curve in a Lorentzian manifold, and
studied null helices in Lorentzian space forms. In [1] Cöken and Ciftci studied null curves in the 4-dimensional

Minkowski space R4
1 , and characterized pseudo-spherical null curves and Bertrand null curves.

In this paper we discuss null curves in the n-dimensional Minkowski space Rn
1 . We define the evolute of

a null curve in R4
1 and the involute of a spacelike curve in R4

1 , and show a correspondence between them which
is similar to that between the plane evolute and involute. Also, we characterize pseudo-spherical null curves in

Rn
1 in terms of the curvature functions, which is a generalization of [1, Theorem 3.2] for R4

1 .

2. Preliminaries

In this section, following [4] and [1], we recall the Frenet frame and curvature functions for a null curve
in Rn

1 .

Let 〈 , 〉 denote the metric on Rn
1 . A curve γ(t) in Rn

1 is called a null curve if 〈γ′(t), γ′(t)〉 = 0 and

γ′(t) �= 0 for all t . We note that a null curve γ(t) in Rn
1 satisfies 〈γ′′(t), γ′′(t)〉 ≥ 0 (cf. [2, Chap. 3]). We say

that a null curve γ(t) in Rn
1 is parametrized by the pseudo-arc if 〈γ′′(t), γ′′(t)〉 = 1. If a null curve γ(t) in Rn

1

2000 AMS Mathematics Subject Classification: 53B30, 53A04..

417



SAKAKI

satisfies 〈γ′′(t), γ′′(t)〉 �= 0, then 〈γ′′(t), γ′′(t)〉 > 0, and

u(t) =
∫ t

t0

〈γ′′(t), γ′′(t)〉1/4dt

becomes the pseudo-arc parameter.

Let us say that a null curve γ(t) in Rn
1 with 〈γ′′(t), γ′′(t)〉 �= 0 is a Cartan curve if {γ′(t), γ′′(t), · · · , γ(n−1)(t)}

is linearly independent for any t .

For a Cartan curve γ(t) in Rn
1 , n = m + 2 with pseudo-arc parameter t , there exists a unique Frenet

frame {L, N, W1, · · · , Wm} such that

γ′ = L, L′ = W1, N ′ = k1W1 + k2W2,

W ′
1 = −k1L − N, W ′

2 = −k2L + k3W3,

W ′
i = −kiWi−1 + ki+1Wi+1, 3 ≤ i ≤ m − 1,

W ′
m = −kmWm−1 ,

where N is null, 〈L, N〉 = 1, {L, N} and {W1, · · · , Wm} are orthogonal, {W1, · · · , Wm} is orthonormal,

{γ′, γ′′, · · · , γ(i+2)} and {L, N, W1, · · · , Wi} have the same orientation for 2 ≤ i ≤ m−1, and {L, N, W1, · · · , Wm}
is positively oriented. The functions {k1, k2, · · · , km} are called the Cartan curvatures of γ , which satisfy ki �= 0
for 2 ≤ i ≤ m − 1.

Remark. In [4] it is assumed that {γ′(t), γ′′(t), · · · , γ(n)(t)} is linearly independent. But, for the existence

of the Frenet frame, the linear independence of {γ′(t), γ′′(t), · · · , γ(n−1)(t)} is sufficient.

3. Evolutes and involutes in R4
1

Let γ(t) be a Cartan curve in R4
1 parametrized by the pseudo-arc. Then the Frenet equations are given

as
γ′ = L, L′ = W1, N ′ = k1W1 + k2W2,

W ′
1 = −k1L − N, W ′

2 = −k2L.

When k2(t) �= 0, we shall define the evolute of γ(t) by

E(t) = γ(t) +
1

k2(t)
W2(t),

which is the center of the osculating pseudo-sphere at γ(t) (cf. [1]).

On the other hand, for a spacelike curve c(t) in R4
1 , we define the involute of c(t) from a point c(t0) by

I(t) = c(t) − s(t)T (t),

where s(t) is the arc length of c(t) from c(t0) and T (t) = c′(t)/|c′(t)| is the unit tangent vector to c(t).
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In this section, we show a correspondence between the evolute of a null curve in R4
1 and the involute of

a certain spacelike curve in R4
1 , which is similar to that between the plane evolute and involute (cf. [6]).

Theorem 1. (i) Let γ(t) be a Cartan curve in R4
1 with pseudo-arc parameter t such that k2(t) �= 0 and

(1/k2(t))′ �= 0 . Then the evolute E(t) of γ(t) is a spacelike curve in R4
1 , and the involute IE(t) of E(t) from

some point coincides with γ(t) .

(ii) Let c(s) be a spacelike curve in R4
1 with arc parameter s such that c′′(s) is null, 〈c(3)(s), c(3)(s)〉 �= 0 ,

and {c′′(s), c(3)(s), c(4)(s)} is linearly independent. Then, for s > 0 , the involute I(s) of c(s) is a Cartan curve

in R4
1 , and the evolute EI(s) of I(s) coincides with c(s) .

Proof. (i) By the Frenet equation for the Cartan curve γ , the evolute E(t) of γ(t) satisfies

E′(t) = L +
(

1
k2(t)

)′
W2 +

1
k2(t)

(−k2(t)L) =
(

1
k2(t)

)′
W2.

So

〈E′, E′〉 =

((
1

k2(t)

)′ )2

> 0,

and E(t) is a spacelike curve.

We only consider the case where (1/k2(t))′ > 0, because the case where (1/k2(t))′ < 0 is similar. Then

E(t) has unit tangent vector TE = W2 , and the arc length sE(t) of E(t) from E(t0) is given by

sE(t) =
∫ t

t0

|E′|dt =
∫ t

t0

(
1

k2(t)

)′
dt =

1
k2(t)

− 1
k2(t0)

.

So we have
1

k2(t)
= sE(t) +

1
k2(t0)

,

which is the arc length of E(t) from another point E(t1).

The involute IE(t) of E(t) from E(t1) satisfies

IE(t) = E(t) −
(

sE(t) +
1

k2(t0)

)
TE

= γ(t) +
1

k2(t)
W2 −

1
k2(t)

W2 = γ(t).

Thus we get the conclusion of (i).

(ii) As T ′ = c′′ is null, we may view T (s) as a null curve in R4
1 , and we have 〈T ′′, T ′′〉 ≥ 0 (cf. [2, Chap.

3]). So the assumption 〈T ′′, T ′′〉 = 〈c(3), c(3)〉 �= 0 implies that 〈T ′′, T ′′〉 > 0.

The involute I(s) = c(s) − sT (s) of the spacelike curve c(s) satisfies

I′(s) = T − T − sT ′ = −sT ′, I′′(s) = −T ′ − sT ′′,
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I(3)(s) = −2T ′′ − sT (3).

For s > 0, I(s) is a null curve, and

〈I′′, I′′〉 = s2〈T ′′, T ′′〉 > 0.

Set b = 〈T ′′, T ′′〉1/2 . The pseudo-arc length u(s) of I(s) is given by

u(s) =
∫ s

s0

〈I′′, I′′〉1/4ds =
∫ s

s0

s1/2b1/2ds,

and
du

ds
= s1/2b1/2.

Since {T ′, T ′′, T (3)} = {c′′, c(3), c(4)} is linearly independent, {I′, I′′, I(3)} is also linearly independent,

and the null curve I(s) is a Cartan curve with pseudo-arc length u(s). Let {L, N, W1, W2} be the Frenet frame

for the Cartan curve I(s) with Cartan curvatures {k1, k2} . Then we have

L =
dI

du
=

dI

ds

ds

du
= s−1/2b−1/2(−sT ′) = −s1/2b−1/2T ′,

W1 =
dL

du
=

1
2
(b−2b′ − s−1b−1)T ′ − b−1T ′′,

and

N = −k1L − dW1

du
.

Noting that

span{L, N, W1} = span{T ′, T ′′, T (3)},
and

〈T, T ′〉 = 〈T, T ′′〉 = 〈T, T (3)〉 = 0,

we can find that W2 = ±T . We consider the case where W2 = T , because the case where W2 = −T is similar.
Then

k2 = −
〈

dW2

du
, N

〉
= −

〈
dT

du
, N

〉
= −〈s−1/2b−1/2T ′, N〉

= s−1〈L, N〉 = s−1.

Thus the evolute EI(s) of I(s) satisfies

EI(s) = I(s) +
1
k2

W2 = c(s) − sT + sT = c(s),

which is the conclusion of (ii). �

Remark. In (ii), by the conditions, T (s) = c′(s) may be viewed as a Cartan curve in the pseudo-sphere S3
1(1),

where
S3

1(1) = {x ∈ R4
1|〈x, x〉 = 1}.
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4. Pseudo-spherical null curves in Rm+2
1

The pseudo-sphere of radius r and center p0 in Rm+2
1 is given by

Sm+1
1 (r) = {x ∈ Rm+2

1 |〈x − p0, x − p0〉 = r2}

(cf. [5]). A curve γ(t) in Rm+2
1 is called pseudo-spherical if it lies on a pseudo-sphere. In this section, we

characterize pseudo-spherical null curves in Rm+2
1 in terms of the curvature functions, which is a generalization

of [1, Th.3.2] for R4
1 .

For a Cartan curve γ(t) in Rm+2
1 parametrized by the pseudo-arc with Cartan curvatures {k1, k2, · · · , km}

and km �= 0, let us define a sequence of functions {a1, a2, · · · , am} inductively by

a1 = 0, a2 = − 1
k2

, ai+1 =
1

ki+1
(a′

i + kiai−1), 2 ≤ i ≤ m − 1.

Theorem 2. Let γ(t) be a Cartan curve in Rm+2
1 parametrized by the pseudo-arc such that km �= 0 .

(i) If γ(t) lies on a pseudo-sphere of radius r , then

m∑
i=2

a2
i = r2.

(ii) If am �= 0 and
m∑

i=2

a2
i = r2

for some positive constant r , then γ(t) lies on a pseudo-sphere of radius r .

Proof. We will use the Frenet equations for γ(t) given in Section 2.

(i) Suppose that γ(t) lies on a pseudo-sphere of radius r . That is, there exists a fixed point p0 ∈ Rm+2
1

such that

〈γ(t) − p0, γ(t) − p0〉 = r2. (1)

Set
γ(t) − p0 = b1L + b2N + c1W1 + c2W2 + · · ·+ cmWm.

Differentiating (1), we have

〈γ(t) − p0, L〉 = 0, (2)

and b2 = 0. Differentiating (2), we have

〈L, L〉 + 〈γ(t) − p0, W1〉 = 0,

〈γ(t) − p0, W1〉 = 0, (3)
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and c1 = 0 = a1 . Differentiating (3), we have

〈L, W1〉 + 〈γ(t) − p0, −k1L − N〉 = 0,

〈γ(t) − p0, N〉 = 0, (4)

and b1 = 0. Differentiating (4), we have

〈L, N〉 + 〈γ(t) − p0, k1W1 + k2W2〉 = 0,

〈γ(t) − p0, W2〉 = − 1
k2

, (5)

and c2 = −1/k2 = a2 . Differentiating (5), we have

〈L, W2〉 + 〈γ(t) − p0, −k2L + k3W3〉 = −
(

1
k2

)′
,

and

c3 = − 1
k3

(
1
k2

)′
= a3.

For 3 ≤ i ≤ m− 1, differentiating

〈γ(t) − p0, Wi〉 = ci,

we have
〈L, Wi〉 + 〈γ(t) − p0, −kiWi−1 + ki+1Wi+1〉 = c′i,

and
−kici−1 + ki+1ci+1 = c′i.

So we get

ci+1 =
1

ki+1
(c′i + kici−1).

By c2 = a2, c3 = a3 and the definition of {ai} , we can see that ci = ai for 1 ≤ i ≤ m . Hence we have

γ(t) − p0 = a2W2 + a3W3 + · · ·+ amWm,

and by (1),
m∑

i=2

a2
i = r2.

(ii) Suppose that am �= 0 and

m∑
i=2

a2
i = r2 (6)
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for some positive constant r . Set

A(t) = γ(t) − a2W2 − a3W3 − · · · − amWm.

Then, using the Frenet equations and the definition of {ai} , we may obtain

A′(t) = (1 + k2a2)L + (k3a3 − a′
2)W2 + (k4a4 − a′

3 − k3a2)W3 + (k5a5 − a′
4 − k4a3)W4

+ · · ·+ (kmam − a′
m−1 − km−1am−2)Wm−1 − (a′

m + kmam−1)Wm

= −(a′
m + kmam−1)Wm.

Differentiating (6) we have

a2a
′
2 + a3a

′
3 + · · ·+ am−1a

′
m−1 + ama′

m = 0.

Using it together with the definition of {ai} , we can get

am(a′
m + kmam−1) = kmam−1am − am−1a

′
m−1 − am−2a

′
m−2 − · · · − a2a

′
2

= km−1am−2am−1 − am−2a
′
m−2 − am−3a

′
m−3 − · · · − a2a

′
2

= km−2am−3am−2 − am−3a
′
m−3 − · · · − a2a

′
2

= · · · = k3a2a3 − a2a
′
2 = 0.

So A′(t) = 0, and A(t) = p0 for some fixed point p0 ∈ Rm+2
1 . Thus we have

γ(t) − p0 =
m∑

i=2

aiWi,

and by (6),

〈γ(t) − p0, γ(t) − p0〉 = r2.

Hence γ(t) lies on a pseudo-sphere of radius r . �

5. A remark

In [1, Theorem 3.2], it is shown that a Cartan curve in R4
1 is pseudo-spherical if and only if k2 is a

nonzero constant. This seems similar to the classical fact that a plane curve is a part of a circle if and only if
the curvature is a nonzero constant.

In the case of R5
1 , Theorem 2 says the following:

(i) If a Cartan curve γ(t) in R5
1 parametrized by the pseudo-arc with k3 �= 0 lies on a pseudo-sphere of

radius r , then (
1
k2

)2

+

(
1
k3

(
1
k2

)′)2

= r2.
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(ii) If a Cartan curve γ(t) in R5
1 parametrized by the pseudo-arc satisfies k3 �= 0, (1/k2)′ �= 0 and

(
1
k2

)2

+

(
1
k3

(
1
k2

)′)2

= r2

for some positive constant r , then γ(t) lies on a pseudo-sphere of radius r .

This is similar to the condition for a curve in the 3-dimensional Euclidean space R3 to lie on a sphere (cf.

[6]). Also the correspondence in Theorem 1 for R4
1 is similar to that between the plane evolute and involute.

So, the results in [1] and this paper suggest that null curves in Rm+2
1 may have various properties similar

to those of curves in the m-dimensional Euclidean space Rm .
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