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Warped product semi-slant submanifolds in Kenmotsu manifolds
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Abstract

In this paper, we research the existence or non-existence of warped product semi-slant submanifolds in

Kenmotsu manifolds. Consequently, we see that there are no proper warped product semi-slant submanifolds

in Kenmotsu manifolds such that totally geodesic and totally umbilical submanifolds of warped product are

proper semi-slant and invariant (or anti-invariant), respectively.
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1. Introduction

In [2], the notion of warped product manifolds was introduced by Bishop and O’Neill in 1969 and it was
studied by many mathematicians and physicists. These manifolds are generalization of Riemannian product
manifolds.

Also, the notion of slant submanifolds in a complex manifold was defined and studied by B-Y. Chen as
a natural generalization of both invariant and anti-invariant submanifolds. Examples of slant submanifolds of

complex Euclidean space C2 and C4 were given by B-Y. Chen[7]. Moreover, A. Lotta has defined and studied of
slant immersions of a Riemannian manifold into an almost contact metric manifold and proved some properties
of such immersions [12].

In [3, 4], Authors studied slant immersions in K-contact and Sasakian manifolds. They introduced many
interesting examples of slant submanifolds in almost contact metric manifolds and Sasakian manifolds. They
characterized slant submanifolds by means of the covariant derivative of the square of the tangent projection T

over the submanifold of almost contact structure of a K-contact manifold.
In [9], Authors studied slant submanifolds of a Kenmotsu manifold and gave a necessary and sufficient

condition for a 3-dimensional submanifold of a 5-dimensional Kenmotsu manifold to be minimal proper slant
submanifold.

Recently, we have studied warped product semi-slant submanifolds in Locally Riemannian manifolds and
characterized warped product semi-slant submanifolds in locally Riemannian product manifolds [1].

The geometry of warped product semi-slant submanifolds are very important subject in geometry because
every structure on a manifold may not admit warped product semi-slant submanifolds [see Theorem 4.1 and

Theorem 4.2].
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2. Preliminaries

In this section we review basic formulas and definitions for almost contact metric manifolds and their
submanifolds, which we shall use later.

Let M be a 2m+ 1-dimensional almost contact metric manifold with structure tensor (ϕ, ξ, η, g), where

ϕ is a (1, 1)-type tensor, ξ is a vector field and η is a 1-form on M such that

ϕ2X = −X + η(X)ξ, ϕ(ξ) = 1, η(ϕX) = 0

g(ϕX, ϕY ) = g(X, Y ) − η(X)η(Y ), η(X) = g(X, ξ) (1)

for any vector fields X and Y on M . An almost contact metric manifold is called Kenmotsu manifold if

(∇̄Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX, ∇̄Xξ = X − η(X)ξ, (2)

where ∇̄ denotes the Levi-Civita connection on M [9].

Now, let N be an immersed submanifold in M . We denote the induced metric on N by g . TN⊥ is the
set of all vector fields normal to N in M . Also, we denote by ∇ the Levi-Civita connection on N . The Gauss
and Weingarten formulas are, respectively, given by

∇̄XY = ∇XY + h(X, Y ) (3)

and

∇̄XV = −AV X + ∇⊥
XV (4)

for any vector fields X and Y tangent to N and V normal to N , where ∇⊥ is the connection in the normal
bundle, h is the second fundamental form of N and AV is the Weingarten endomorphism associated with V .
The second fundamental form h and the shape operator A are related by

g(h(X, Y ), V ) = g(AV X, Y ) (5)

for any X, Y ∈ Γ(TN) and V ∈ Γ(TN⊥) [13].

3. Warped product manifolds

B.Y. Chen studied warped product CR-submanifolds in Kaehler manifolds and introduced the notion of
CR-warped product [5, 6]. After that I. Hasegawa and I. Mihai studied contact CR-warped product submanifolds

in Sasakian manifolds [10]. In this paper we studied warped product semi-slant submanifolds of Kenmotsu
manifolds which is more general.

The study of warped product manifolds was initiated by R.L. Bishop and B. O’Neill [2]. They defined
these as follows.

Definition 3.1 Let (N1, g1) and (N2, g2) be two Riemannian manifolds with Riemannian metrics g1 and g2 ,
respectively, and f be a positive definite differentiable function on N1 . The warped product of N1 and N2 is
the Riemannian manifold N1 ×f N2 = (N1 × N2, g) , where

g = g1 + f2g2.
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More explicitly, if vector fields X and Y tangent to N1 ×f N2 at (x, y) , then

g(X, Y ) = g1(π1∗X, π1∗Y ) + f2(x)g2(π2∗X, π2∗Y ),

where πi(i = 1, 2) are the canonical projections of N1 × N2 onto N1 and N2 , respectively, and ∗ stands for
derivative map

Let N = N1 ×f N2 be warped product manifold. This means that N1 and N2 are totally geodesic and

totally umbilical submanifolds of N , respectively.

For warped product manifolds, we have the following proposition [2].

Proposition 3.1 Let N = N1 ×f N2 be a warped product manifold. Then

1) ∇XY ∈ Γ(TN1) is the lift of ∇XY on N1

2) ∇UX = ∇XU = X(ln f)U

3) ∇UV = ∇′
UV − g(U, V )∇ lnf

for any X, Y ∈ Γ(TN1) and U, V ∈ Γ(TN2) , where ∇ and ∇′
denote the Levi-Civita connections on N and

N2 , respectively.

Throughout this paper, let us suppose that M be a Kenmotsu manifold and N1 ×f N2 be a warped

product semi-slant submanifolds of a Kenmotsu manifold M . Such submanifolds are always tangent to the
structure vector field ξ . If the manifolds Nθ and NT (resp. N⊥ ) are slant and invariant(resp. anti-invariant)
submanifolds of a Kenmotsu manifold M , then their warped product semi-slant submanifolds may be given by
one of the following forms:
1) Nθ ×f NT

2) Nθ ×f N⊥

3) NT ×f Nθ

4) N⊥ ×f Nθ .

In this paper we are concerned with cases 1) and 2) and are left with the last two cases. cases 3) and 4)
are out of the scope of this paper because they contain other search fields under some conditions.

Now let N be an immersed submanifold of Kenmotsu manifold M and we denote the orthogonal
complementary of ϕ(TN) in TN by ν . Then we have the direct sum

TN⊥ = ϕ(TN) ⊕ ν. (6)

We can easily see that ν is an invariant subbundle with respect to ϕ . Furthermore, for any nonzero vector Z

tangent to N , we put

ϕZ = tZ + nZ, (7)

where tZ and nZ denote the tangential and normal components of ϕZ , respectively.

The submanifold N is said to be invariant (resp. anti invariant) if n (resp. t) is identically zero.

Furthermore, for submanifolds tangent to the structure vector field ξ , there is another class of sub-
manifolds which is called slant submanifold. For each nonzero vector Z tangent to N at x , the angle θ(x),
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ATÇEKEN

0 ≤ θ(x) ≤ π/2, between ϕZ and TxN is called the slant angle. If the slant angle is constant, then the
submanifold is also called the slant submanifold. Invariant and anti-invariant submanifolds are particular slant
submanifolds with slant angle θ = 0 and θ = π/2, respectively. A slant submanifold is said to be proper slant

if it is neither invariant nor anti-invariant submanifold [8].

In the same way, for any vector V normal to N , we put

ϕV = BV + CV, (8)

where BV and CV denote the tangential and normal components of ϕV , respectively. If t and n are the
endomorphism defined by (7), then

g(tZ, W ) + g(Z, tW ) = 0 (9)

g(nZ, W ) + g(Z, nW ) = 0, (10)

for any Z, W ∈ Γ(TN). On the other hand, making use of Gauss and Weingarten formulas with (2), (7) and

(8), we have

(∇Zn)W = Ch(Z, W )− h(Z, tW ) − η(W )nZ (11)

(∇Zt)W = AnWZ + Bh(Z, W ) + g(ϕZ, W )ξ − η(W )tZ (12)

for any Z, W ∈ Γ(TN), where the covariant derivatives of n and t are, respectively, defined by

(∇Zn)W = ∇⊥
ZnW − n(∇ZW ) and (∇Zt)W = ∇ZtW − t(∇ZW ). (13)

We recall the following results from [9] for later use.

Theorem 3.1 Let N be submanifold of a Kenmotsu manifold M such that ξ is tangent to N . Then N is
slant submanifold if and only if there exists a constant λ ∈ [0, 1] such that

t2 = λ(−I + η ⊗ ξ). (14)

Furthermore, if θ is the slant angle of N , then λ = cos2 θ .

Corollary 3.2 Let N be a slant submanifold with slant angle θ of a Kenmotsu manifold M such that ξ is
tangent to N . Then we have

g(tZ, tW ) = cos2 θ{g(Z, W ) − η(Z)η(W )} (15)

g(nZ, nW ) = sin2 θ{g(Z, W ) − η(Z)η(W )} (16)

for any Z, W ∈ Γ(TN) .

In the following section, we shall investigate warped product semi-slant submanifolds in Kenmotsu
manifolds.
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4. Warped product semi-slant submanifolds of a Kenmotsu manifold

Theorem 4.1 There do not exist proper warped product semi-slant submanifolds N = Nθ×f NT in a Kenmotsu

manifold M such that Nθ is a proper slant submanifold, NT is an invariant submanifold of M and ξ is tangent
to N .
Proof. Let N = Nθ ×f NT be a proper warped product semi-slant submanifold of a Kenmotsu manifold M .

For any X, Y ∈ Γ(TNθ) and U, V ∈ Γ(TNT ),

(∇̄Xϕ)U = ∇̄XϕU − ϕ(∇̄XU) (17)

g(ϕX, U)ξ − η(U)ϕX = h(X, tU) − Bh(X, U) − Ch(X, U).

From the tangential and normal components of (17), respectively, we get

g(ϕX, U) = 0 (18)

η(U)tX = Bh(X, U) (19)

and

η(U)nX = Ch(X, U) − h(X, tU). (20)

On the other hand, by interchanging roles of U and X in (17), we conclude

tX log(f)U = AnXU + X log(f)tU + Bh(X, U) − η(X)tU (21)

and

∇⊥
UnX = Ch(X, U) − h(U, tX). (22)

From (21), we reach

tX log(f)g(U, U) = g(AnXU, U) + g(Bh(X, U), U)

= g(h(U, U), nX) + g(Bh(X, U), U)

= g(h(U, U), nX) − g(h(X, U), ϕU)

= g(h(U, U), nX). (23)

On the other hand, since the ambient space M is a Kenmotsu manifold, by using Gauss formulae and (2), we
get

h(Z, ξ) = 0 (24)

for any Z ∈ Γ(TN). By using (20) and (22), we get nX = Ch(X, ξ) = 0. Thus we have tX log(f)g(U, U) = 0

which implies that tX log(f) = 0, that is, the warping function f is constant on Nθ . The proof is complete.�

Theorem 4.2 There do not exist proper warped product semi-slant submanifolds N = Nθ×f N⊥ in a Kenmotsu

manifold M such that Nθ is a proper slant submanifold, N⊥ is an anti-invariant submanifold of M and ξ is
tangent to N .
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Proof. Let N = Nθ ×f N⊥ be a proper warped product semi-slant submanifold of a Kenmotsu manifold M

such that ξ is tangent to N . For any X, Y ∈ Γ(TNθ) and U, V ∈ Γ(TN⊥) we have

(∇̄Xϕ)U = ∇̄XϕU − ϕ(∇̄XU)

g(ϕX, U)ξ − η(U)ϕX = −AnUX + ∇⊥
XnU − X log(f)nU

− ϕh(X, U). (25)

Considering the tangential and normal components of (25), respectively, we get

η(U)tX = AnUX + Bh(X, U) (26)

and

η(U)nX = X log(f)nU + Ch(X, U) −∇⊥
XnU. (27)

By interchanging roles of X and U in (25), we reach

g(ϕU, X)ξ − η(X)ϕU = tX log(f)U + h(U, tX) − AnXU + ∇⊥
UnX

− X log(f)nU − Bh(X, U) − Ch(X, U). (28)

From the tangential and normal components of (28), respectively, we have

tX log(f)U = AnXU + Bh(X, U) (29)

and

−η(X)nU = −X log(f)nU + h(U, tX) − Ch(U, X) + ∇⊥
UnX. (30)

From (29), we have

g(AnXU, tY ) + g(Bh(X, U), tY ) = 0. (31)

Since the ambient space M is a Kenmotsu manifold, ξ is tangent to N and by using (1), we obtain

g(Bh(X, U), tY ) = g(ϕh(X, U), ϕY )

= g(h(X, U), Y ) − η(Y )η(h(X, U)) = 0,

that is,

g(Bh(X, U), tY ) = g(h(U, tY ), nX) = 0. (32)

Thus we have

g(h(U, tY ), ϕX) = 0, (33)

for any X, Y ∈ Γ(TNθ). Moreover, making use of (26) and (33), we get

η(U)g(tX, tY ) = g(h(X, tY ), nU) + g(Bh(X, U), tY )

= g(h(X, tY ), ϕU). (34)
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By using the Gauss-Weingarten formulas and considering Nθ is totally geodesic in N , we arrive at

g(h(X, tY ), ϕU) = g(∇̄tY X, ϕU) = −g(ϕ(∇̄tY X), U)

= −g(∇̄tY ϕX − (∇̄tY ϕ)X, U)

= −g(∇̄tY tX, U) − g(∇̄tY nX, U) + g(g(ϕtY , X)ξ

− η(X)ϕtY , U)

= g(AnXtY, U) − η(U)g(tY, tX)

= g(h(tY, U), nX) − η(U)g(tY, tX)

= −η(U)g(tY, tX). (35)

Thus from (34) and (35), we conclude

η(U)g(tX, tY ) = g(h(X, tY ), ϕU) = 0. (36)

Here, if η(U) = 0, then by using (11) and (27), we have

X log(f)nU = η(∇XU) = g(∇XU, ξ) = −g(∇Xξ, U) = −g(X − η(X)ξ, U) = 0.

This is impossible. Because U is a nonzero vector field and N⊥ �= 0. Thus g(tX, tY ) = cos2 θ{g(X, Y ) −
η(X)η(Y )} = 0, which implies that the slant angle θ is either identically π/2 or the warping function f is
constant on Nθ . The proof is complete. �
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