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When δ-semiperfect rings are semiperfect

Engin Büyükaşık, Christian Lomp

Abstract

Zhou defined δ -semiperfect rings as a proper generalization of semiperfect rings. The purpose of this

paper is to discuss relative notions of supplemented modules and to show that the semiperfect rings are

precisely the semilocal rings which are δ -supplemented. Module theoretic version of our results are obtained.
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1. Introduction

H. Bass characterized in [4] those rings R whose left R -modules have projective covers and termed
them left perfect rings. He characterized them as those semilocal rings which have a left t-nilpotent Jacobson
radical Jac(R). Bass’s semiperfect rings are those whose finitely generated left (or right) R -modules have

projective covers. Kasch and Mares transferred in [5] the notions of perfect and semiperfect rings to modules
and characterized semiperfect modules by a lattice-theoretical condition as follows. A module M is called
supplemented if for any submodule N of M there exists a submodule L of M minimal with respect to
M = N + L . The left perfect rings are then shown to be exactly those rings whose left R -modules are
supplemented while the semiperfect rings are those whose finitely generated left R -modules are supplemented.
Equivalently it is enough for a ring R to be semiperfect if the left (or right) R -module R is supplemented.
Recall that a submodule N ≤ M is said to be small, denoted by N � M , if N + L �= M for all proper
submodules L of M , and that L ≤ M , is said to be essential in M , denoted by L � M , if L ∩ K �= 0 for
each nonzero submodule K ≤ M . A module M is said to be singular if M � N/L for some module N and a
submodule L ≤ N with L � N .

In [8], Zhou called a ring R δ -semiperfect if every finitely generated R -module M has a projective δ -

cover P , i.e. P is a projective left R -module with a projection p : P → M onto M such that the kernel Ker(p)

is δ -small in P , where a submodule X ≤ Y is said to be δ -small in Y (denoted by X �δ Y ) if X + Z �= Y

for each proper submodules Z < Y with Y/Z singular. It is known that a ring R is δ -semiperfect if and only
if it is a δ -supplemented module. Here a module M is called δ -supplemented if every submodule L ≤ M has
a δ -supplement N in M , i.e. M = N +L and N ∩L �δ N . For further properties of δ -semiperfect rings and
δ -supplemented modules we refer to [6] and [8].
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Zhou proved that δ -semiperfect rings properly contains semiperfect rings (see [8, Example 4.1]). An easy

example of a ring that is δ -semiperfect, but not semilocal had been given by Zhou in [8] as follows: Let F

be the field of two elements and A = F N the (commutative) ring of sequences over F , whose operation are
pointwise multiplication and pointwise addition. Note that the unit element 1A of A is the sequence which
is constant 1. Let R ⊆ A be the subring generated by 1A and all sequences that have only a finite number
of entries non-zero. Then Soc(R) consists of all sequences that have only a finite number of entries non-zero

and R/Soc(R) is the only singular simple R -module. Moreover, R/Soc(R) � F is a field, i.e. Soc(R) is an

essential maximal ideal of R and R is δ -local (see below), hence δ -semiperfect. On the other hand, since A is

von Neumann regular, R is von Neumann regular, i.e. Jac(R) = 0 and R is not semilocal.

The purpose of this paper is to discuss the gap between supplemented and δ -supplemented modules
and our main result is that an arbitrary associative unital ring R is semiperfect if and only if it is semilocal
and δ -semiperfect. We characterize finitely generated δ -supplemented modules M as those which are sums
of simple and δ -local modules or equivalently which satisfy the property that every maximal submodule of M

has a δ -supplement. The notion of a δ -coclosed submodule is defined and it is shown that a submodule is a
δ -supplement if and only if it is δ -coclosed and a weak δ -supplement.

2. δ -supplements

In this section we show that some of the technicalities on supplement submodules have their relative
equivalent. Let P be the class of all singular simple R -modules. For a module M , as in [8], let

δ(M) = Rej(P) =
⋂

{N ≤ M | M/N ∈ P} =
∑

{N ≤ M | N �δ M}.

Let S be a nonsingular simple module. Then it is easy to see that δ(S) = S . Also note that if K is a maximal

submodule which is essential in M , then M/K is singular, so δ(M) ≤ K .

We have the following basic Lemma.

Lemma 2.1 [8, Lemma 1.2] A submodule N ≤ M is δ -small if and only if for all submodules X ≤ M :

if X + N = M, then M = X ⊕ Y for a projective semisimple submodule Y with Y ≤ N.

A submodule N ≤ M is said to be coclosed if N/K � M/K implies K = N for each K ≤ N . Every
supplement submodule of a module M is coclosed. The notion of coclosed submodules is generalized as follows.

Definition 2.2 Let M be an R -module and N ≤ M . We call N a δ -coclosed submodule of M if, whenever
N/X is singular and N/X �δ M/X for some X ≤ N, we have X = N .

Supplements are coclosed and so are their δ -equivalents:

Lemma 2.3 Let M be any module and N ≤ M be a δ -supplement in M . Then N is δ -coclosed.

Proof. Let N be a δ -supplement of K in M . Then N + K = M and N ∩ K �δ N . Suppose N/X is

singular and N/X �δ M/X for some X ≤ N . Then we have

N/X + (K + X)/X = M/X,
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and
M/(K + X) � N/(N ∩ (K + X))

is singular as a factor module of the singular module N/X . Therefore we have (K + X)/X = M/X as

N/X �δ M/X . Then we get K + X = M , and so by modular law N = N ∩K + X . Since N ∩K �δ N and

N/X is singular, we have X = N . So N is a δ -coclosed submodule of M . �

In the following proposition we give some properties of δ -coclosed submodules.

Proposition 2.4 Let N be a δ -coclosed submodule of M . Then the following hold.

(1) If K ≤ N ≤ M and K �δ M then K �δ N . Hence δ(N) = N ∩ δ(M) .

(2) If X is a proper submodule of N such that N/X �δ M/X, then N = X ⊕ X′ for some X′ ≤ N .

(3) If N is singular, then N is coclosed.

Proof. (1) Let K �δ M and suppose K + X = N for some X ≤ N with N/X singular. Then N/X =

(K + X)/X �δ M/X by [8, Lemma 1.3(2)]. So that X = N , because N is δ -coclosed.

Clearly δ(N) ≤ N ∩ δ(M). Therefore we only need to prove that N ∩ δ(M) ≤ δ(N). Let x ∈ N ∩ δ(M).

Then Rx �δ M , a nd so by the first part of the proof Rx �δ N , that is, x ∈ δ(N). Hence δ(N) = N ∩ δ(M).

(2) Let X ≤ N with N/X �δ M/X . Let X′ ≤ N be the maximal submodule in N such that

X ∩X′ = 0. Then X ⊕X′ �N by [3, Proposition 5.21(1)], and so N/(X ⊕X′) is singular. On the other hand,

N/(X ⊕ X′) �δ M/(X ⊕ X′). Since N is δ -coclosed, we have N = X ⊕ X′ , as desired.

(3) Since singular modules are closed under factor modules, this is clear. �

Corollary 2.5 Let N be a δ -supplement submodule of M . Then δ(N) = N ∩ δ(M) .

Proof. By Lemma 2.3 and Proposition 2.4(1). �

Corollary 2.6 For a module M and a submodule N ≤ M , consider the following statements.

(1) N is a δ -supplement submodule of M .

(2) N is δ -coclosed in M .

(3) For all X ≤ N , X �δ M implies X �δ N .

Then (1) ⇒ (2) ⇒ (3) hold. If N has a weak δ -supplement in M , i.e. N + K = M and N ∩ K �δ M for

some submodule K ≤ M , then (3) ⇒ (1) holds.

Proof. (1) ⇒ (2) By Lemma 2.3.

(2) ⇒ (3) By Proposition 2.4(1).

(3) ⇒ (1) Suppose N has a weak δ -supplement in M . Then N + L = M and N ∩ L �δ M . Then

N ∩ L �δ N by (3), i.e N is a δ -supplement of L in M . �
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3. On the structure of δ -supplemented modules

A module M is said to be local if M has a largest proper submodule. It is easy to see that, M is local
if and only if Rad(M) is a maximal submodule of M and Rad(M) � M (see [7, 41.4]).

Definition 3.1 Let M be an R -module. M is said to be δ -local if δ(M) �δ M and δ(M) is a maximal
submodule of M .

It is easy to see that every simple module is local, and a simple module is δ -local if and only if it is
singular. Let S be a nonsingular simple module and S′ be a singular simple module. Then S is local but not
δ -local, since δ(S) = S . On the other hand, let M = S ⊕ S′ , then clearly M is not local. Since δ(S) = S

and δ(S′) = 0, we have δ(M) = δ(S) ⊕ δ(S′) = S . Clearly δ(M) is maximal, and nonsingularity of S implies

δ(M) �δ M , so M is δ -local.

The following lemma is elementary, we include it for completeness.

Lemma 3.2 Let M be a module and H a local submodule of M . Then H is a supplement of each proper
submodule K ≤ M with H + K = M .

Proof. Since K is a proper submodule of M and K + H = M , we have K ∩ H is a proper submodule of
H . Therefore K ∩ H � H , since H is local. That is, H is a supplement of K in M . �

Lemma 3.3 Any δ -local module is δ -supplemented.

Proof. Let M be a δ -local module and N be a proper submodule of M . Since δ(M) is a maximal submodule

of M , we have either N ≤ δ(M) or δ(M) + N = M . If N ≤ δ(M) then M is a δ -supplement of N in M .

Now suppose N + δ(M) = M . Since δ(M) �δ M , we have N ⊕ Y = M for some semisimple submodule

Y ≤ δ(M) by Lemma 2.1. Clearly, Y is a δ -supplement of N in M . Therefore M is δ -supplemented. �

Lemma 3.4 Let M be an R -module and let K be a maximal submodule with Soc(M) ≤ K . If L is a
δ -supplement of K in M , then L is δ -local.

Proof. By hypothesis, we have K+L = M and K∩L �δ L . We claim that K∩L is an essential submodule
of L . Really, if (K∩L)∩T = 0 for some nonzero submodule T ≤ L , then L = (K∩L)⊕T and L/(K∩L) � T

is simple. We get M = K + L = K + T , and so T � K ; giving a contradiction since Soc(M) ≤ K . Therefore

δ(L) ≤ K ∩ L . Hence δ(L) = K ∩L. �

A submodule N ≤ M is called cofinite if M/N is finitely generated. M is called cofinitely δ -supplemented
if every cofinite submodule of M has a δ -supplement in M . In case M is finitely generated, clearly every
submodule of M is cofinite; so M is δ -supplemented if and only if M is cofinitely δ -supplemented. Therefore
by [1, Proposition 2.5], if a finitely generated module M is a sum of δ -supplemented modules then M is
δ -supplemented.

Proposition 3.5 For a finitely generated module M , the following are equivalent.

(1) M is δ -supplemented.
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(2) every maximal submodule of M has a δ -supplement.

(3) M = H1 + H2 + · · ·+ Hn where Hi is either simple or δ -local.

Proof. (1) ⇒ (2) Clear.

(2) ⇒ (3) Let Λ(M) ≤ M be the sum of all δ -supplement submodules of maximal submodules N ≤ M

with Soc(M) ≤ N . Then by Lemma 3.4 Λ(M) is a sum of δ -local submodules of M . We claim that

M = Soc(M) + Λ(M). Suppose the contrary. Then Soc(M) + Λ(M) ≤ K for some maximal submodule

K ≤ M , because M is finitely generated. By (2) K has a δ -supplement L in M . Since Soc(M) ≤ K , L is

δ -local by Lemma 3.4. Hence L ≤ Λ(M) ≤ K , a contradiction. Therefore M = Soc(M) + Λ(M). Since M is
finitely generated, M is a finite sum of simple submodules and δ -local submodules, as desired.

(3) ⇒ (1) By Lemma 3.3, δ -local modules are δ -supplemented, and clearly simple modules are also
δ -supplemented. Therefore M is δ -supplemented as a finite sum of δ -supplemented modules. �

By [7, 41.6], a finitely generated module is supplemented if and only if it is a (finite) sum of local
modules. Hence we can conclude from Proposition 3.5 that if every δ -local submodule of a module M with
finitely generated socle is local, then M is supplemented if and only if it is δ -supplemented.

4. When δ -supplemented modules are supplemented

We will turn to the problem of characterising when a δ -semiperfect ring is semiperfect. Recall that a
module M is called semilocal if M/ Rad(M) is semisimple.

For any module M , let X(M) = Soc(M)/(Soc(M) ∩ Rad(M)).

Lemma 4.1 Let R be a ring and M a finitely generated, δ -supplemented left R -module. Then M is semilocal
if and only if Soc(M)/ Soc(M) ∩ Rad(M) is finitely generated.

Proof. If M is semilocal (and finitely generated), then M/ Rad(M) is semisimple artinian. Moreover

X(M) = Soc(M)/(Soc(M) ∩ Rad(M)) � (Soc(M) + Rad(M))/ Rad(M) ⊆ M/ Rad(M)

implies that X(M) is semisimple artinian; so X(M) finitely generated.

To show the converse we use induction on the length of X(M) = Soc(M)/(Soc(M)∩Rad(M)). Suppose

X(M) = 0, i.e. Soc(M) ⊆ Rad(M). Then Rad(M) = δ(M) and hence M/δ(M) is semisimple.

Assume that any finitely generated δ -supplemented module N with X(N) of length n ≥ 0 is semilocal

and let M be a finitely generated δ -supplemented module with X(M) having length n + 1. Since Soc(M) �⊆
Rad(M), there exists a simple direct summand E ⊆ M with M = E ⊕ N for some N ⊆ M . Morever

Rad(M) = Rad(N) and Soc(M) = E ⊕ Soc(N). Hence

X(M) = Soc(M)/(Soc(M) ∩ Rad(M)) � E ⊕ (Soc(N)/ Soc(N) ∩ Rad(N)) = E ⊕ X(N).

Thus N is a finitely generated δ -supplemented module (direct summands of δ -supplemented modules are δ -

supplemented) and X(N) has length n . By induction hypothesis N is semilocal and hence M = E ⊕ N is
semilocal. �
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It is shown in [6, Theorem 3.3] that, δ -semiperfect rings are exactly those rings R that are δ -supplemented

as a left (or right) R -module. Similarly, a ring R is semiperfect if and only if R is supplemented as a left (or

right) R -module (see [7, 42.6]).

Recall that projective δ -supplemented modules M are δ -lifting in the sense of [6], i.e for every submodule
N of M there exists a decomposition M = D1 ⊕ D2 such that D1 ⊆ N and N ∩ D2 �δ D2 .

Proposition 4.2 A projective semilocal, δ -supplemented module with small radical is supplemented.

Proof. Let S = Soc(M) = D ⊕ (S ∩ Rad(M)). Since M is semilocal, there exists N ⊆ M such that

D + N = M and D ∩ N ⊆ Rad(M). But since D ∩ Rad(M) = 0, M = D ⊕ N with D semisimple and

Rad(M) = Rad(N). Note that

Soc(N) = S ∩N = (D ⊕ S ∩ Rad(M)) ∩ N = (D ∩ N) ⊕ (S ∩ Rad(M) = S ∩ Rad(N) ⊆ Rad(N).

Hence if K ⊆ N is a maximal submodule, then N/K must be singular, since otherwise N/K would be isomor-

phic to a simple direct summand of N which is impossible as Soc(N) ⊆ Rad(N). Thus Rad(N) = δ(N). By

[6, 3.2] N is δ -lifting since it is δ -supplemented and projective. Hence for any submodule L ⊆ N there exist

A, B ⊆ N such that N = A⊕B and A ⊆ L and L∩B �δ B . In particular, L∩B ⊆ δ(B) ⊆ δ(N) = Rad(N).
As M has a small radical, so has N and hence L∩B � N . But since B is a direct summand of N , L∩B � B .
This shows that B is a supplement of L in N , i.e. N is a supplemented module. We showed that M = D⊕N

is the direct sum of two supplemented modules. Hence M is supplemented as a (finite) sum of supplemented
modules. �

Corollary 4.3 Let R be a ring with J = Jac(R) and S = Soc(RR) . Then the following statements are
equivalent.

(1) R is semiperfect.

(2) R is δ -semiperfect and semilocal.

(3) R is δ -semiperfect and S/S ∩ J is finitely generated.

Proof. (1) ⇒ (2) is clear, (2) ⇔ (3) follows from Lemma 4.1 and (2) ⇒ (1) follows from Proposition 4.2.
�

Remark 4.4 In particular any ring R with finitely generated left socle (e.g. R is left noetherian) is semiperfect
if and only if it is δ -semiperfect. There are δ -semiperfect rings which are not semilocal and hence not semiperfect
(see [8, Example 4.1]).

We finish this section by showing that the last remark also holds for modules, i.e. finitely generated
modules with finitely generated socle are supplemented if and only if they are δ -supplemented.

Lemma 4.5 Let M be a module and K ≤ M be a maximal submodule of M . Suppose Soc(M) is finitely
generated and K has a δ -supplement H in M . Then K has a supplement in M contained in H .
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Proof. By hypothesis, H is a δ -supplement of K in M , that is, K + H = M and K ∩ H �δ H. In
particular, K ∩ H ≤ δ(H). Since

M/K = (H + K)/K � H/(K ∩H)

is simple, K ∩H is a maximal submodule of H . Therefore, we have either δ(H) = H or δ(H) = K ∩H . First,

suppose that δ(H) = H . Then K ∩ H is not essential in H . So there exists a submodule T of H such that

H = (K ∩ H) ⊕ T. In this case, M = K + H = K ⊕ T, so T is a supplement of K in M and T is contained
in H .

Now, let δ(H) = K ∩H . If K ∩H � H , then H is a supplement of K in M . Suppose K ∩H = δ(H)

is not small in H , that is, δ(H) + L1 = H for some proper submodule L1 � H . Then by [8, Lemma 1.2],

H = L1 ⊕ Y1 for some semisimple submodule Y1 ≤ δ(H). Since L1 is a direct summand of H , we have

δ(L1) = L1 ∩ δ(H) = L1 ∩ H ∩ K = L1 ∩ K

and δ(L1) �δ L1 . We also have

K + H = K + L1 + Y1 = K + L1.

Therefore L1 is a δ -supplement of K .

Since L1 is a proper submodule of H and Y1 is a (nonzero) semisimple module contained in H , we have

Soc(L1) � Soc(H). Now, if δ(L1) � L1 , then L1 is a supplement of K in M , and we are done. Suppose δ(L1)

is not small in L1 . Then L1 = δ(L1) + L2 for some L2 � L1 . Arguing as above, we get L2 is a δ -supplement

of K in M with Soc(L1) � Soc(L2). Continuing in this way, if none of the Li ’s is a supplement of K we shall

get a strictly descending chain of submodules Soc(L1) ≥ Soc(L2) ≥ · · · of Soc(M). This will contradict the

fact that Soc(M) is finitely generated (see [3, Corollary 10.16]). Therefore K has a supplement in M . �

Corollary 4.6 Let M be a finitely generated module. Suppose Soc(M) is finitely generated. Then M is
supplemented if and only if M is δ -supplemented.

Proof. Necessity is clear. Sufficiency is a direct consequence of Proposition 3.5 and Lemma 4.5. �

Corollary 4.7 Let M be a module with finitely generated socle. Then M is cofinitely supplemented if and only
if M is cofinitely δ -supplemented.

Proof. Necessity is clear. Conversely suppose M is cofinitely δ -supplemented. Let K be a maximal sub-
module of M . If Soc(M) is not contained in K , then we have K + Soc(M) = M by maximality of K in M .

Then K + S = M for some simple submodule of M . Since S is simple and S � K , we have K ⊕ S = M , and

hence S is a supplement of K in M .
Now, if Soc(M) ≤ K and H is a δ -supplement of K in M , then K has a supplement in M by Lemma 4.5.

Hence M is cofinitely supplemented by [2, Theorem 2.8]. �
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