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Injective simplicial maps of the arc complex

Elmas Irmak and John D. McCarthy

Abstract

In this paper, we prove that each injective simplicial map of the arc complex of a compact, connected,

orientable surface with nonempty boundary is induced by a homeomorphism of the surface. We deduce, from

this result, that the group of automorphisms of the arc complex is naturally isomorphic to the extended

mapping class group of the surface, provided the surface is not a disc, an annulus, a pair of pants, or a torus

with one hole. We also show, for each of these special exceptions, that the group of automorphisms of the

arc complex is naturally isomorphic to the quotient of the extended mapping class group of the surface by

its center.
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1. Introduction

Let R be a compact, connected, orientable surface of genus g with b boundary components, where b ≥ 1.
The extended mapping class group Γ∗(R) of R is the group of isotopy classes of self-homeomorphisms of R . The

mapping class group, Γ(R), of R is the group of isotopy classes of orientation preserving self-homeomorphisms

of R . Γ(R) is a subgroup of index 2 in Γ∗(R). An arc A on R is called properly embedded if ∂A ⊆ ∂R and

A is transversal to ∂R . A is called nontrivial (or essential) if A cannot be deformed into ∂R in such a way

that the endpoints of A stay in ∂R during the deformation. The arc complex A(R) is the abstract simplicial
complex whose simplices are collections of isotopy classes of properly embedded essential arcs on R which can
be represented by disjoint arcs. Γ∗(R) acts naturally on A(R) by simplicial automorphisms of A(R).

The main results of this paper are the following two theorems.

Theorem 1.1 Let R be a compact, connected, orientable surface of genus g with b ≥ 1 boundary components.
If λ : A(R) → A(R) is an injective simplicial map then λ is induced by a homeomorphism H : R → R (i.e

λ([A]) = [H(A)] for every vertex [A] in A(R)) .

Theorem 1.2 Let R be a compact, connected, orientable surface of genus g with b ≥ 1 boundary components.
If R is not a disc, an annulus, a pair of pants or a torus with one hole, then Aut(A(R)) is naturally isomorphic

to Γ∗(R) . For each of these special cases Aut(A(R)) is naturally isomorphic to Γ∗(R)/Z(Γ∗(R)) .
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Extended mapping class group was viewed as the automorphism group of the curve complex on orientable
surfaces by Ivanov to get information on the algebraic structure of the mapping class groups. Ivanov proved that
the automorphism group of the curve complex is isomorphic to the extended mapping class group for connected
orientable surfaces of genus at least 2 in [13]. In his paper, he also proved that the automorphisms of the arc
complex which are induced by automorphisms of the curve complex are induced by homeomorphisms of the
surface. As an application he proved that isomorphisms between any two finite index subgroups are geometric
if the genus is at least 2. Ivanov’s results were extended to lower genus cases by Korkmaz in [15]. Luo gave
a new proof that automorphisms of the curve complex are induced by homeomorphisms of the surface if the
dimension of the curve complex is at least one and the surface is not a torus with two holes in [16].

After Ivanov’s work, extended mapping class group was viewed as the automorphism group of various
geometric objects on surfaces. Some of these objects include Schaller’s complex (see [20] by Schaller), the

complex of pants decompositions (see [17] by Margalit), the complex of nonseparating curves (see [10] by Irmak),

the complex of separating curves (see [4] by Brendle-Margalit, and [18] by McCarthy-Vautaw), the complex of

Torelli geometry (see [6] by Farb-Ivanov), the Hatcher-Thurston complex (see [12] by Irmak-Korkmaz). As
applications, Farb-Ivanov proved that the automorphism group of the Torelli subgroup is isomorphic to the
mapping class group in [6], and McCarthy-Vautaw extended this result to g ≥ 3 in [18].

Some similar results on simplicial maps and the applications for orientable surfaces are as follows: Irmak
proved that superinjective simplicial maps of the curve complex are induced by homeomorphisms of the surface
to classify injective homomorphisms from finite index subgroups of the mapping class group to the whole group
(they are geometric except for closed genus two surface) for genus at least two in [8], [9], [10]. Behrstock-

Margalit and Bell-Margalit extended these results to lower genus cases in [2] and in [3]. Brendle-Margalit
proved that superinjective simplicial maps of separating curve complex are induced by homeomorphisms, to
prove that an injection from a finite index subgroup of K to the Torelli group, where K is the subgroup of
mapping class group generated by Dehn twists about separating curves, is induced by a homeomorphism in [4],

[5]. Shackleton proved that injective simplicial maps of the curve complex are induced by homeomorphisms

in [21] (he also considers maps between different surfaces), and he obtained strong local co-Hopfian results for
mapping class groups. Bell-Margalit proved that superinjective simplicial maps of the curve complex are onto.
For nonorientable odd genus surfaces Atalan-Ozan proved that the automorphism group of the curve complex
is isomorphic to the mapping class group if g + r ≥ 6 in [1].

After this paper was written, Irmak, the first author of this paper, proved similar results about the
arc complex on nonorientable surfaces in [11]. The main results in [11]: Let N be a compact, connected,

nonorientable surface of genus g with r ≥ 1 boundary components. If λ : A(N) → A(N) is an injective

simplicial map then λ is induced by a homeomorphism h : N → N , and Aut(A(N)) ∼= Γ(N)/Z(Γ(N)).

2. Mapping class groups and complex of arcs

In this section we will prove our main results for (g, b) = (0, 1), (g, b) = (0, 2), (g, b) = (0, 3), and

(g, b) = (1, 1). In the next section we will give a general argument for the proof of the remaining cases. Unless
otherwise indicated, all arcs will be assumed to be essential arcs on R . We will denote arcs by capital letters
and their isotopy classes by the corresponding lower case letters (e.g. A and a = [A] ∈ A(R)).
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Figure 1. The arc complex of a sphere with three holes and arcs representing its six vertices

Theorem 2.1 Let R be a compact, connected, orientable surface of genus g with b boundary components. If
(g, b) ∈ {(0, 1), (0, 2), (0, 3), (1, 1)} , then Aut(A(R)) is naturally isomorphic to Γ∗(R)/Z(Γ∗(R)) .

Proof. Case (i): Suppose that (g, b) = (0, 1). R is a disc and no arc on R is essential. Hence A(R) = ∅ ;

every injective simplicial map A(R) → A(R) is an automorphism of A(R); and Aut(A(R)) is a trivial group.

Γ∗(R) is a cyclic group of order two. It follows that Z(Γ∗(R)) = Γ∗(R) and, hence, Γ∗(R)/Z(Γ∗(R)) is also a

trivial group. Hence Γ∗(R)/Z(Γ∗(R)) is isomorphic to Aut(A(R)).

Case (ii): Suppose that (g, b) = (0, 2). R is an annulus, A(R) consists of a single vertex and Aut(A(R))

is a trivial group. The action of Γ∗(R) on π0(∂R) yields a short exact sequence:

1 → Z2 → Γ∗(R) → Σ(π0(∂R)) → 1, (1)

where Σ(π0(∂R)) ∼= Σ2 is the group of permutations of π0(∂R), Γ∗(R) → Σ(π0(∂R)) is the corresponding

representation, and the kernel Z2 of Γ∗(R) → Σ(π0(∂R)) is the cyclic group of order 2 generated by the
isotopy class of any orientation reversing involution of R which preserves each component of ∂R . The natural
representation Γ∗(R) → Σ(π0(∂R)) restricts to an isomorphism Γ(R) → Σ(π0(∂R)). It follows that the above

exact sequence (1) is a split short exact sequence, and Γ∗(R) is isomorphic to Z2 ⊕ Z2 . This implies that the

center Z(Γ∗(R)) of Γ∗(R) is equal to Γ∗(R); Γ∗(R)/Z(Γ∗(R)) is a trivial group; and, hence, Γ∗(R)/Z(Γ∗(R))

is isomorphic to Aut(A(R)).

Case (iii): Suppose that (g, b) = (0, 3). R is a pair of pants (i.e. a sphere with three holes), then

there are exactly six isotopy classes of essential arcs on R and A(R) is a two-complex represented by a regular

tessellation of a triangle by four triangles as illustrated in Figure 1. Aut(A(R)) is isomorphic to the symmetric

group Σ3 on three letters. Indeed, Aut(A(R)) is naturally isomorphic to the group of permutations Σ(π0(∂R))

of the set of components π0(∂R) of ∂R . The action of Γ∗(R) on π0(∂R) yields the short exact sequence

1 → Z2 → Γ∗(R) → Σ(π0(∂R)) → 1, (2)

where Σ(π0(∂R)) ∼= Σ3 is the group of permutations of π0(∂R), Γ∗(R) → Σ(π0(∂R)) is the corresponding

representation, and the kernel Z2 of Γ∗(R) → Σ(π0(∂R)) is the cyclic group of order 2 generated by the
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Figure 2. The arc complex of a torus with one hole and three arcs representing one of its triangles.

isotopy class of any orientation reversing involution of R which preserves each component of ∂R . The natural
representation Γ∗(R) → Σ(π0(∂R)) restricts to an isomorphism Γ(R) → Σ(π0(∂R)). It follows that the

above exact sequence (2) is a split short exact sequence. Since Σ3 has trivial center, it follows that Z2 is

equal to the center Z(Γ∗(R)) of Γ∗(R); Γ∗(R)/Z(Γ∗(R)) is also naturally isomorphic to Σ(π0(∂R)). Hence,

Γ∗(R)/Z(Γ∗(R)) is naturally isomorphic to Aut(A(R)).

Case (iv): Suppose that (g, b) = (1, 1). R is a torus with one hole. A(R) is represented by the

decomposition of the hyperbolic plane H into ideal triangles by the familiar Farey graph, F (see Figure 2).

More precisely, let S be the torus obtained by attaching a disc D to ∂R and P be a point in the

interior of D . Choose an identification of (S, P ) with the standard torus, (S1 × S1, (1, 1)). Then the isotopy
classes of arcs on R correspond naturally to the rational points on the circle at infinity S∞ = R

∗ = R ∪ ∞ ,
where the arc A on R corresponds to the rational point p/q if and only if the extension of the arc A on
R to a closed curve on S by “coning off” the endpoints of A in ∂D to the “center” P of D represents

±(p, q) ∈ Z ⊕ Z = π1(S1 × S1, (1, 1)).

The ideal triangles of the decomposition of the hyperbolic plane H by the Farey graph correspond to ideal
triangulations of (S, P ), which correspond to maximal simplices of A(R). As is well-known, (Γ∗(R), Z(Γ∗(R)) ∼=
(GL(2, Z), {±I}) and, hence, Γ∗(R)/Z(Γ∗(R)) ∼= PGL(2, Z) ∼= Aut(F) ∼= Aut(A(R)). �

Theorem 2.2 Let R be a compact, connected, orientable surface of genus g with b boundary components.
Suppose that (g, b) ∈ {(0, 1), (0, 2), (0, 3), (1, 1)} . If λ : A(R) → A(R) is an injective simplicial map then λ is
induced by a homeomorphism H : R → R .

Proof. For the cases (g, b) = (0, 1), (g, b) = (0, 2) and (g, b) = (0, 3) the proof follows from Theorem 2.1
as for all of these cases the arc complex has finitely many vertices so every injective simplicial map is an
automorphism.
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When (g, b) = (1, 1), we will prove that every injection is onto. Let w be a vertex of A(R). Let Δ be a

top dimensional simplex. Since λ is injective, we see that λ(Δ) corresponds to a top dimensional simplex, Δ′

in A(R). If w is a vertex of Δ′ , then w is in the image. Suppose that w is not a vertex of Δ′ . Take a top

dimensional simplex Δ′′ containing w . It is easy to see that there exists a chain Δ′ = Δ′
0, Δ′

1, · · · , Δ′
n = Δ′′ of

top dimensional simplices in A(R), connecting Δ′ to Δ′′ in such a way that the consecutive simplices Δ′
i, Δ

′
i+1

have exactly one common face of codimension 1. Let x′ be a vertex of Δ′ which is not in Δ′
1 . Let x, y, z be the

vertices of Δ such that λ(x) = x′ . There exists a unique top dimensional simplex containing y, z and not x ,

call it Δ1 . It is easy to see that λ(Δ1) = Δ′
1 , and so every vertex in Δ′

1 is in the image of λ . By an inductive
argument, using the above sequence we see that w is in the image of λ . The result of the theorem now follows
from Theorem 2.1. �

3. Triangulations

In this section, we assume that (g, b) �= (0, 1), (g, b) �= (0, 2), (g, b) �= (0, 3) and (g, b) �= (1, 1). Let

λ : A(R) → A(R) be an injective simplicial map. We will prove some properties of λ . First we give some
definitions.

Let T be a set of pairwise disjoint nonisotopic arcs on R . T is called a triangulation of R if each
component Δ of the surface RT , obtained from R by cutting R along T , is a disc with boundary ∂Δ equal
to a union of arcs A, B, C, D, E , and F , where A , B and C correspond to elements of T and D , E and F

correspond to arcs or circles in ∂R . Δ is called a triangle of T , and A, B, C are called sides of Δ. If A , B ,
and C correspond to distinct elements of T , then Δ is called an an embedded triangle of T . Otherwise Δ is
called a non-embedded triangle of T . The phrase triangle of T will also be used to refer to the image of any
component Δ of RT , under the natural quotient map q : RT → R . The images of A, B and C will also be
called as sides of the image triangle. Two distinct triangles of a triangulation T are called adjacent w.r.t. T if
they have a common side.

Let T be a triangulation of R . Let [T ] be the set of isotopy classes of elements of T . Note that [T ] is

a maximal simplex of A(R). Every maximal simplex σ of A(R) is equal to [T ] for some triangulation T of

R . So, λ([T ]) = [T ′] for some triangulation T ′ of R and λ restricts to a correspondence λ| : [T ] → [T ′] on

the isotopy classes. Note that the triangulation T ′ of R is well defined up to isotopy on R . By using Euler
characteristic arguments we see that the number of arcs in a triangulation is 6g + 3b − 6, and the number of
triangles in a triangulation is 4g + 2b− 4.

Let a and b be isotopy classes of properly embedded essential arcs on R . The geometric intersection
number i(a, b) of a and b is the minimum number of points in A ∩ B where A and B are arcs on R which
represent a and b .

Let σ be a maximal simplex of A(R) corresponding to a triangulation T of R . Let A ∈ T . If B is a

properly embedded arc such that i(a, b) = 1 and i(x, b) = 0 for each X ∈ T \ {A} , where a, b, x are the isotopy

classes of A, B, X respectively, then (σ \ {a})∪ {b} is a maximal simplex, say τ , of A(R). In this case, we will
say that τ is obtained from σ by an elementary move.

Proposition 3.1 If a and b are two vertices of complex of arcs A(R) such that i(a, b) = 1 , then i(λ(a), λ(b)) = 1 .
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Proof. Let A and B be representatives of a and b intersecting once. Note that we may complete A to a
triangulation T1 of R such that (T1 \ {A})∪ {B} is also a triangulation of R . Let T2 = (T1 \ {A})∪ {B} . Let

σi be the simplex of A(R) corresponding to the triangulation Ti of R , i = 1, 2, and σ0 = σ1 ∩ σ2 . Note that

σ2 \ {b} = σ0 = σ1 \ {a} , and σ2 is obtained from σ1 by replacing a with b (an elementary move).

Let σ′
i = λ(σi), i = 0, 1, 2, a′ = λ(a), and b′ = λ(b). Since λ is injective there exists a triangulation T ′

i

corresponding to σ′
i , i = 1, 2. Since i(a, b) �= 0, there does not exist a simplex of A(R) having both a and b

as vertices. Since a ∈ σ1 and b ∈ σ2 , it follows that σ1 �= σ2 . Since λ : A(R) → A(R) is an injective simplicial

map, it follows that σ′
1 �= σ′

2 . Let A′ be the representative of a′ in T ′
1 . Since σ2 \ {b} = σ0 = σ1 \ {a} and

λ : A(R) → A(R) is an injective simplicial map, σ′
2 \ {b′} = σ′

0 = σ′
1 \ {a′} .

Note that we may choose a representative B′ of b′ such that B′ is disjoint from and not isotopic to each
element of T ′

1 \ {A′} . Let T ′
2 = (T ′

1 \ {A′}) ∪ {B′} . Then T ′
2 is a triangulation of R and σ′

2 is the simplex

of A(R) corresponding to T ′
2 . Since σ′

1 and σ′
2 are distinct maximal simplices of A(R) containing σ′

0 , σ′
2 is

obtained from σ′
1 by an elementary move replacing a′ with b′ , we see that i(a′, b′) = 1, completing the proof. �

Proposition 3.2 Let Δ be an embedded triangle on R with sides corresponding to A , B and C . Then there
exists a triangulation T on R containing {A, B, C} such that the unique triangles ΔA , ΔB and ΔC of T on
R which are different from Δ and have, respectively, a side corresponding to A , a side corresponding to B ,
and a side corresponding to C , are distinct triangles of T on R .

Proof. Since Δ is an embedded triangle on R with sides corresponding to A , B and C , these are nonisotopic
essential properly embedded arcs on R . There exists a triangulation T of R such that {A, B, C} is contained
in T . Since Δ is an embedded triangle on R , there exist unique triangles ΔA , ΔB , and ΔC of T on R which
are different from Δ and have, respectively, a side corresponding to A , a side corresponding to B , and a side
corresponding to C . Since R is not a pair of pants, ΔA , ΔB and ΔC are not the same triangle on R .

Suppose that ΔA = ΔB . Then ΔA has a side corresponding to A and another side corresponding to B .

Suppose that ΔA is a non-embedded triangle on R . Then since ΔA has sides corresponding to A and
B , either ΔA is the unique triangle of T on R having a side corresponding to A or ΔA is the unique triangle
of T on R having a side corresponding to B , which is a contradiction, as Δ is a triangle different from ΔA

having a side corresponding to A and a side corresponding to B . It follows that ΔA is an embedded triangle
on R .

ΔA has a side corresponding to an element D of T , where D is not equal to A or B . Suppose that
D = C . Then ΔA is a triangle of T on R different from Δ having a side corresponding to C . In other words,
ΔA = ΔC and, hence, ΔA , ΔB and ΔC are the same triangle on R , which is a contradiction. Hence, D is
not equal to C .

Since ΔA is an embedded triangle of T on R with sides corresponding to A , B and D , there exists a
unique triangle ΔD of T on R which is different from ΔA and has a side corresponding to D . Note that there
is exactly one side of ΔD corresponding to D . Suppose that the other two sides of ΔD correspond to elements
E and F of T .

Suppose, on the one hand, that C is not equal to E or F . Since the sides of ΔD correspond to D , E

and F , none of which are equal to C , ΔD has no side corresponding to C . Since ΔC has a side corresponding
to C , it follows that ΔC and ΔD are distinct triangles of T on R . Since ΔA and ΔD are distinct triangles
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of T on R having a side corresponding to D , there is a quadrilateral Ω on R with sides corresponding to A ,
B , E , and F , and diagonal D as shown in the first part of Figure 3. Let D′ be a diagonal of Q such that
{D, D′} is a pair of diagonals of Ω as shown in the second part of Figure 3. Let T ′ = (T \ {D})∪ {D′} be the
triangulation on R which is obtained from the triangulation T on R by an elementary move replacing D with
D′ . It follows that the unique triangles Δ′

A , Δ′
B and Δ′

C of T ′ on R which are distinct from the triangle Δ of

T ′ on R and have, respectively, a side corresponding to A , a side corresponding to B , and a side corresponding
to C are distinct triangles of T ′ on R (see Figure 3).

Suppose, on the other hand, that C is equal to either E or F . We may assume that C = E . It
follows, by arguments similar to those given above, that ΔD is an embedded triangle of T on R with sides
corresponding to C , D and F , where F is some element of T which is not equal to A , B , C or D .

Since F is a side of the embedded triangle ΔD of T on R , there is a unique triangle ΔF of T on R

which is distinct from ΔD and has a side corresponding to F . By arguments similar to those given above,
there is exactly one side of ΔF which corresponds to F . Let the other two sides of ΔF correspond to elements
G and H of T .

Let T ′ be the triangulation obtained from T by an elementary move replacing the element F of T by
an element F ′ of T . Then let T ′′ be the triangulation obtained from T ′ by an elementary move replacing the
element D of T ′ by an element D′′ of T ′′ . It follows that the unique triangles Δ′′

A , Δ′′
B and Δ′′

C of T ′′ on

R, which are distinct from triangle Δ of T ′′ on R and have, respectively, a side corresponding to A , a side
corresponding to B , and a side corresponding to C , are distinct triangles of T ′′ on R (see Figure 4).

This shows, in any case, that there exists a triangulation of R with the desired properties, completing
the proof. �

Let {a, b, c} be a 2-simplex of A(R). We say that {a, b, c} corresponds to an embedded triangle on R if
there exists an embedded triangle Δ on R with sides corresponding to A , B and C representing a , b , and c .

Proposition 3.3 Let {a, b, c} be a 2-simplex of A(R) . If {a, b, c} corresponds to an embedded triangle on R ,

then {λ(a), λ(b), λ(c)} corresponds to an embedded triangle on R (see Figure 5).

Proof. Let Δ be an embedded triangle on R with sides corresponding to A , B , and C representing a , b

and c . Let T0 = {A, B, C} . It follows from Proposition 3.2 that we can complete the system of arcs T0 on R

A

C

B

E
D’

F

A

C

B

E
D

F

Figure 3. Obtaining four triangles by one elementary move.
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Figure 4. Obtaining four triangles by two elementary moves.
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Q'
E' D'
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Figure 5. Embedded triangle I.

to a triangulation T1 of R such that if ΔA is the unique triangle of T1 on R different from Δ having a side
corresponding to A , ΔB is the unique triangle of T1 on R different from Δ having a side corresponding to B ,
and ΔC is the unique triangle of T1 on R different from Δ having a side corresponding to C , then Δ, ΔA ,
ΔB , and ΔC are four distinct triangles of T1 on R .

Note that ∂ΔA is equal to a union of arcs, A1 , X1 , B1 , Y1 , C1 and Z1 , where A1 , B1 and C1

correspond to elements of T1 , and each of X1 , Y1 and Z1 corresponds to an arc in ∂R or a component of ∂R .
Without loss of generality, we assume that A1 corresponds to A , and Y1 is disjoint from A1 . Similarly, ∂ΔB

is equal to a union of arcs, A2 , X2 , B2 , Y2 , C2 and Z2 , where A2 , B2 and C2 correspond to elements of T1 ,
and each of X2 , Y2 and Z2 corresponds to an arc in ∂R or a component of ∂R . Without loss of generality, we
assume that B2 corresponds to B , and Z2 is disjoint from B2 . Likewise, ∂ΔC is equal to a union of arcs, A3 ,
X3 , B3 , Y3 , C3 and Z3 , where A3 , B3 and C3 correspond to elements of T1 , and each of X3 , Y3 and Z3

corresponds to an arc in ∂R or a component of ∂R . Without loss of generality, we assume that C3 corresponds
to C , and X3 is disjoint from C3 .

Let P be a properly embedded essential arc connecting Y1 to Z2 and intersecting only A and B

essentially once and disjoint from other elements of T as shown in Figure 5. Let Q be a properly embedded
essential arc connecting X3 to Z2 and intersecting only B and C essentially once and disjoint from other
elements of T as shown in Figure 5. Let S be a properly embedded essential arc connecting Y1 to X3 and
intersecting only A and C essentially once and disjoint from other elements of T as shown in Figure 5.
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Let T ′ be a triangulation on R such that λ([T ]) = [T ′] . Let A′ , B′ and C ′ be, respectively, the unique

representatives of λ(a), λ(b) and λ(c) in T ′ . Since λ is injective A′ , B′ and C ′ are distinct, and, hence,
disjoint and nonisotopic.

Let p , q , and s be the vertices of A(R) which are represented by the essential arcs P , Q , and S on R .

We see that {p, q, s} corresponds to an embedded triangle on R .

Let σ be the simplex of A(R) corresponding to the triangulation T . Note that i(p, x) = 0 for every

vertex x of σ other than a and b , i(p, a) = 1, and i(p, b) = 1. Since λ is an injective simplicial map, it follows

from Proposition 3.1 that i(λ(p), y) = 0 for every vertex y of λ(σ) other than λ(a) and λ(b); i(λ(p), λ(a)) = 1,

and i(λ(p), λ(b)) = 1. Hence, there exists an arc P ′ on R representing λ(p) such that P ′ intersects A′ and B′

essentially once and is disjoint from the other elements of T ′ . Likewise, there exists an arc Q′ on R representing
λ(q) such that Q′ intersects B′ and C ′ essentially once and is disjoint from the other elements of T ′ ; and there

exists an arc S′ on R representing λ(s) such that S′ intersects C ′ and A′ essentially once and is disjoint from

the other elements of T ′ .

Since the essential arc P ′ on R intersects A′ and B′ essentially once and is disjoint from the other
elements of the triangulation T ′ of R , there exists a triangle Δ1 of T ′ on R having sides corresponding to
A′ and B′ . Similarly, there exists a triangle Δ2 of T ′ on R having sides corresponding to B′ and C ′ , and a
triangle Δ3 of T ′ on R having sides corresponding to C ′ and A′ . Let the third side of Δ1 correspond to the
element D′ of T ′ ; the third side of Δ2 correspond to the element E′ of T ′ ; and the third side of Δ3 correspond
to the element F ′ of T ′ .

Suppose, on the one hand, that D′ = C ′ . Then Δ1 is a triangle of T ′ on R with sides corresponding
to A′ , B′ and C ′ . So, {λ(a), λ(b), λ(c)} corresponds to an embedded triangle on R . Thus, if D′ = C ′ , we are

done. Likewise, if E′ = A′ or F ′ = B′ , then we are done.

Hence, we may assume that D′ �= C ′ , E′ �= A′ and F ′ �= B′ . Note that, since A′ , B′ and C ′ are
distinct arcs on R , Δ1 has no side corresponding to C ′ . Since Δ2 has a side corresponding to C ′ , it follows
that Δ1 �= Δ2 . Likewise, Δ2 �= Δ3 and Δ3 �= Δ1 . Hence, Δ1 , Δ2 , and Δ3 are three distinct components of
RT ′ . Since P , Q , and S are disjoint, i(p, q) = i(q, s) = i(s, p) = 0. Since λ is a simplicial map, it follows that

i(λ(p), λ(q)) = i(λ(q), λ(s)) = i(λ(s), λ(p)) = 0. Hence, we may assume that P ′ , Q′ and S′ are disjoint arcs

on R . There are three cases to consider, depending on the placement of the arcs corresponding to C ′ , E′ and
F ′ on ∂Δ2 and ∂Δ3 . These cases are shown in Figures 5 and 6.

Case (i): Assume A′, B′, C ′, D′, E′, F ′ are as shown in Figure 5. Note that the arc P ′ on R representing

λ(p) intersects B′ and A′ once essentially and is disjoint from E′ , D′ , F ′ , and C ′ ; and the arc Q′ on R

representing λ(q) intersects B′ and C ′ once essentially and is disjoint from E′ , D′ , F ′ , and A′ . But then we

see that P ′ and Q′ intersect essentially (see Figure 5), which gives a contradiction, since i(λ(p), λ(q)) = 0.

Case (ii): Assume A′, B′, C ′, D′, E′, F ′ are as shown in the first part of Figure 6. As before, it follows

that the arc P ′ on R representing λ(p) intersects B′ and A′ once essentially and is disjoint from E′ , D′ , F ′ ,

and C ′ ; and the arc S′ on R representing λ(s) intersects A′ and C ′ once essentially and is disjoint from E′ ,

D′ , F ′ , B′ . But then we see that P ′ and S′ intersect essentially (see Figure 6), which gives a contradiction,

since i(λ(p), λ(s)) = 0.

The proof for the third case is similar to the proof for Case (ii); (see the second part of Figure 6).
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Figure 6. Embedded triangle II

Hence, we see that either D′ = C ′ or E′ = A′ or F ′ = B′ and, hence, as argued above, we are done. �

A
B

B*

C

D

A'

B'

C'

D'

B*'

Figure 7. Arc configurations I

Let (a, b) be an ordered 1-simplex of A(R). We say that (a, b) corresponds to a non-embedded triangle
on R if there exists a non-embedded triangle Δ on R with sides corresponding to A , B , and A , where A and
B represent a and b and A joins two different components of ∂R .

Proposition 3.4 Let (a, b) be an oriented edge of A(R) . If (a, b) corresponds to a non-embedded triangle on

R , then (λ(a), λ(b)) corresponds to a non-embedded triangle on R .

Proof. Let Δ be a non-embedded triangle on R with sides corresponding to A , B , where A and B represent
a and b , and A joins two different components of ∂R (see Figure 7).

Since R is not a pair of pants, there is an embedded triangle Δ′ of T on R having a side corresponding
to B . Suppose that the other sides of Δ′ correspond to C and D as shown in Figure 7.

Let B∗ be as shown in Figure 7, b∗ be the vertex of A(R) corresponding to B∗ , c be the vertex of A(R)

corresponding to C , and d be the vertex of A(R) corresponding to D . Let Δ1 be the embedded triangle with
sides A , B∗ and C and Δ2 be the embedded triangle with sides A , B∗ and D . It follows from Proposition

3.3 that there are embedded triangles Δ′
1 and Δ′

2 on R such that Δ′
1 has sides A′ , B∗′ and C ′ , and Δ′

2 has

sides A′ , B∗′ and D′ , where A′ , B∗′ , C ′ and D′ represent λ(a), λ(b∗), λ(c), and λ(d).

Since λ is an injective simplicial map and i(b, b∗) = 1, it follows from Proposition 3.1 that i(λ(b), λ(b∗)) =

1. We see that the arc B′ representing λ(b) can be chosen so that it is disjoint from A′ , C ′ and D′ and inter-
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Figure 8. Arc configurations II

sects B∗′ once. But then this implies that A′ and B′ are the sides of a non-embedded triangle on R , and A′

connects two different components of ∂R , (see Figure 7). Since A′ and B′ represent λ(a) and λ(b), it follows

that (λ(a), λ(b)) corresponds to a non-embedded triangle on R . �

Proposition 3.5 Let A, B, C, D and E be essential, pairwise disjoint, nonisotopic, properly embedded arcs
on R . Suppose that there exists a subsurface K of R and a homeomorphism φ : (K, A, B, C, D, E) →
(K0, A0, B0, C0, D0, E0) where K0 and A0, B0, C0, D0, E0 are as shown in Figure 8 (i). There exist A′ ∈
λ(a), B′ ∈ λ(b), C ′ ∈ λ(c), D′ ∈ λ(d), E′ ∈ λ(e) , K′ ⊆ R and a homeomorphism χ : (K′, A′, B′, C ′, D′, E′) →
(K0, A0, B0, C0, D0, E0) .

Proof. Let F0 be as shown in Figure 8 (i). Let F = φ−1(F0). We see that F is an essential properly embed-
ded arc on R such that F intersects E once and F is disjoint from each of A, B, C, D . Since A, B, C, D, E are
pairwise disjoint, A, B, E and C, D, E form embedded triangles, by using that λ is injective and the results of
Proposition 3.3, we can choose A′ ∈ λ(a), B′ ∈ λ(b), C ′ ∈ λ(c), D′ ∈ λ(d), E′ ∈ λ(e) such that A′, B′, C ′, D′, E′

are pairwise disjoint, and A′, B′, E′ and C ′, D′, E′ form embedded triangles. Since E, F intersect once and F

is disjoint from each of A, B, C, D , we can choose F ′ ∈ λ(f) such that E′, F ′ intersect once and F ′ is disjoint

from each of A′, B′, C ′, D′ . Since A, C, F form an embedded triangle, A′, C ′, F ′ form an embedded triangle.
Then the result of the proposition follows. �

Proposition 3.6 Let A, B, C, D be essential pairwise disjoint nonisotopic properly embedded arcs on R . Sup-
pose that there exists a subsurface K of R and a homeomorphism φ : (K, A, B, C, D) → (K0, A0, B0, C0, D0)

where K0 and A0, B0, C0, D0 are as shown in Figure 8 (ii). There exist A′ ∈ λ(a), B′ ∈ λ(b), C ′ ∈ λ(c), D′ ∈
λ(d) , K′ ⊆ R and a homeomorphism χ : (K′, A′, B′, C ′, D′) → (K0, A0, B0, C0, D0) .

Proof. Let E0 be as shown in Figure 8 (ii). Let E = φ−1(E0). We see that E is an essential properly
embedded arc on R such that E intersects B once and E is disjoint from each of A, C, D . Since A, C, D, E are
disjoint, E, C form a non-embedded triangle, A, D, E form an embedded triangle, by using that λ is injective
and the results of Proposition 3.3 and Proposition 3.4, we can choose A′ ∈ λ(a), E′ ∈ λ(e), C ′ ∈ λ(c), D′ ∈ λ(d)
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such that A′, C ′, D′, E′ are pairwise disjoint, E′, C ′ form a non-embedded triangle and A′, D′, E′ form an em-
bedded triangle. Since E, B intersect once and B is disjoint from each of A, C, D , we can choose B′ ∈ λ(b) such

that E′, B′ intersect once and B′ is disjoint from each of A′, C ′, D′ , then the result of the proposition follows. �

Proposition 3.7 Let A, B, C, D be essential pairwise disjoint nonisotopic properly embedded arcs on R . Sup-
pose that there exists a subsurface K of R and a homeomorphism φ : (K, A, B, C, D) → (K0, A0, B0, C0, D0)

where K0 and A0, B0, C0, D0 are as shown in Figure 8 (iii). There exist A′ ∈ λ(a), B′ ∈ λ(b), C ′ ∈ λ(c), D′ ∈
λ(d) , K′ ⊆ R and a homeomorphism χ : (K′, A′, B′, C ′, D′) → (K0, A0, B0, C0, D0) .

Proof. Let E0 be as shown in Figure 8 (iii). Let E = φ−1(E0). Since A, B, C, D are pairwise disjoint,
A, B, C form an embedded triangle, and B, C, D form an embedded triangle, by using that λ is injective and
the results of Proposition 3.3 we choose A′ ∈ λ(a), B′ ∈ λ(b), C ′ ∈ λ(c), D′ ∈ λ(d) such that A′, B′, C ′, D′

are pairwise disjoint, A′, B′, C ′ form an embedded triangle and B′, C ′, D′ form an embedded triangle. Since
E, B intersect once and E is disjoint from each of A, C, D , we can choose E′ ∈ λ(e) such that E′, B′ intersect

once and E′ is disjoint from each of A′, C ′, D′ . Since A, C, E form an embedded triangle, A′, C ′, E′ form an
embedded triangle. Then the result of the proposition follows. �

Proposition 3.8 Let σ be a simplex of A(R) corresponding to a triangulation T of R . Let T ′ be a triangu-

lation of R such that λ(σ) is the simplex of A(R) corresponding to T ′ . For each arc J of T let J ′ be the

unique arc of T ′ such that λ([J ]) = [J ′] . Then there exist a homeomorphism H : R → R such that H(J) = J ′

for each arc J of T .

Proof. Let R1 denote the surface obtained from R by cutting R along T and R2 be the surface obtained
from R by cutting R along T ′ . R1 and R2 both have N components, where N = 4g + 2b − 4. Let
{Δi|1 ≤ i ≤ N} be the N distinct components of R1 .

Since R is not a pair of pants or a torus with two holes, no two distinct components of R1 can have
sides corresponding to the same elements of T . Likewise, no two distinct components of R2 can have sides
corresponding to the same elements of T ′ .

Let i be an integer with 1 ≤ i ≤ N . Since Δi is a component of R1 , Δi is a triangle of T with sides
corresponding to elements Ai , Bi and Ci of T . Let ai , bi , and ci be the vertices of A(R) represented by Ai ,

Bi and Ci . Then, {ai, bi, ci} corresponds to a triangle on R . Hence, by Propositions 3.3 and 3.4 , {a′
i, b

′
i, c

′
i}

corresponds to a triangle on R , where a′
i = λ(ai), b′i = λ(bi), and c′i = λ(ci). Let A′

i , B′
i , and C ′

i be the

unique elements of T ′ which represent a′
i , b′i , and c′i . It follows that there exists a unique triangle Δ′

i of T ′

on R with sides corresponding to A′
i , B′

i , and C ′
i .

Moreover, the correspondence Δi �→ Δ′
i establishes a bijection from the set of exactly N distinct

components {Δi|1 ≤ i ≤ N} of R1 to the set of exactly N distinct components {Δ′
i|1 ≤ i ≤ N} of R2 .

Suppose, on the one hand, that Δi is embedded. Then, by Proposition 3.3, Δ′
i is embedded. Let Ji , Ki

and Li be the arcs in Δi corresponding to Ai , Bi and Ci , and J ′
i , K′

i and L′
i be the arcs in Δ′

i corresponding

to A′
i , B′

i and C ′
i . Note that there exists a homeomorphism Fi : (Δi, Ji, Ki, Li) → (Δ′

i, J
′
i , K

′
i, L

′
i) which is
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well-defined up to relative isotopies. In particular, the orientation type of Fi : (Δi, Ji, Ki, Li) → (Δ′
i, J

′
i, K

′
i, L

′
i)

(i.e. whether it is orientation-reversing or orientation-preserving) is fixed.

Suppose, on the other hand, that Δi is non-embedded. Let Ji , Ki , and Li be the arcs in Δi

corresponding to Ai , Bi , and Ci , and J ′
i , K′

i , and L′
i be the arcs in Δ′

i corresponding to A′
i , B′

i , and

C ′
i . We may assume that Ai = Ci , so that Ai joins two different components of ∂R , and Bi joins a component

of ∂R to itself. Then, by Proposition 3.4, Δ′
i is non-embedded, A′

i = C ′
i , A′

i joins two different boundary

components of ∂R , and B′
i joins a component of ∂R to itself.

In this situation there is an ambiguity in the choice of Ji and Li . After all, Ji and Li both correspond
to Ai (i.e. Ji and Li both correspond to Ci ). Likewise, there is an ambiguity in the choice of J ′

i and L′
i .

Suppose that (Ji, Li, J
′
i, L

′
i) has been specified. Then there exist a homeomorphism Fi : (Δi, Ji, Ki, Li) →

(Δ′
i, J

′
i, K

′
i, L

′
i) which is well-defined up to relative isotopies, and a homeomorphism F ∗

i : (Δi, Ji, Ki, Li) →
(Δ′

i, L
′
i, K

′
i, J

′
i) which is well-defined up to isotopies. In particular, in this situation, the orientation type of

Fi : (Δi, Ji, Ki, Li) → (Δ′
i, J

′
i, K

′
i, L

′
i) is fixed; the orientation type of F ∗

i : (Δi, Ji, Ki, Li) → (Δ′
i, L

′
i, K

′
i, J

′
i)

is fixed; and Fi : (Δi, Ji, Ki, Li) → (Δ′
i, J

′
i, K

′
i, L

′
i) and F ∗

i : (Δi, Ji, Ki, Li) → (Δ′
i, L

′
i, K

′
i, J

′
i) have opposite

orientation types.

By using Propositions 3.3, 3.4, 3.5, 3.6 and 3.7, we can choose homeomorphisms Gi : Δi → Δ′
i ,

1 ≤ i ≤ N , where Gi is isotopic to Fi , if Δi is embedded, and Gi is isotopic to either Fi or F ∗
i , if Δi

is non-embedded, so that the unique homeomorphism G : R1 → R2 whose restriction to Δi is equal to Gi ,
1 ≤ i ≤ N , covers a homeomorphism H : R → R . Roughly speaking, these propositions ensure that the
homeomorphisms Fi : Δi → Δ′

i and Fj : Δj → Δ′
j associated to embedded triangles Δi and Δj which have

sides corresponding to the same element of T , can be isotoped by a relative isotopy to agree, relative to the
natural quotient maps, q1 : R1 → R and q2 : R2 → R . In other words, the restrictions of Fi and Fj to pairs

of sides which correspond to the same element of T , which restrictions may be identified, via q1 and q2 , to
homeomorphisms from a fixed element of T to a fixed element of T ′ , have the same orientation type as such
homeomorphisms between fixed elements of T and T ′ .

When Δi is nonembedded, this condition on compatibility of orientation types of restrictions on pairs of
sides which correspond to the same element of T can be realized on all such pairs by making the appropriate
choice of either Fi or F ∗

i , 1 ≤ i ≤ N .

Once the correct choices are made so that this compatibility of orientations is realized, we may isotope
the chosen homeomorphisms, Fi or F ∗

i , to homeomorphisms Gi which agree, as homeomorphisms between

fixed elements of T and T ′ , on all pairs of sides which correspond to the same element of T .

It follows that H : R → R is a homeomorphism which maps each element J of T to the corresponding
element J ′ of T ′ , completing the proof. �

We will need the following strong form of connectivity for A(R) stated as the “Connectivity Theorem

for Elementary Moves” in Mosher [19]. See also Corollary 5.5.B in Ivanov’s survey article on Mapping Class

Groups [14].

Theorem 3.9 (Connectivity Theorem for Elementary Moves, [19]) Suppose that R is not a disc or an annulus.
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Then any two triangulations of R are related by a finite sequence of elementary moves. More precisely, if T

and T ′ are triangulations of R and σ and σ′ are the simplices of A(R) corresponding to T and T ′ , then

there exists a sequence of simplices σi , 1 ≤ i ≤ N such that σ1 = σ , σN = σ′ , and for each integer i with
1 ≤ i < N , σi+1 is obtained from σi by an elementary move.

Remark 3.10 The statement of Theorem 3.9 in Mosher [19] is in terms of ideal triangulations of a punctured

surface (S, P ) rather than triangulations of R . For our purposes here, we let S be the closed surface of genus
g obtained from R by attaching a disc Di to each component ∂i of ∂R , 1 ≤ i ≤ b , and P be a set of points,
xi , 1 ≤ i ≤ p , with xi in the interior of Di , 1 ≤ i ≤ b . Then we may relate triangulations of R as defined
in this paper to ideal triangulations of (S, P ) as defined in Mosher [19] by “coning off” arcs on R to arcs or
loops on S joining points in P to points in P . In this way, we obtain the above restatement of the Connectivity
Theorem for Elementary Moves in a form suitable for our purposes in this paper.

Theorem 3.11 Suppose that (g, b) �= (0, 1), (g, b) �= (0, 2) , (g, b) �= (0, 3) and (g, b) �= (1, 1) . Let λ : A(R) →
A(R) be an injective simplicial map. Then λ : A(R) → A(R) is geometric (i.e. there exists a homeomorphism

H : R → R such that for every essential arc A on R , λ([A]) = [H(A)]).

Proof. Let σ be a maximal simplex of A(R). Let T , T ′ , and H : R → R be as in Proposition 3.8. Let

ψ = H−1
∗ ◦ λ : A(R) → A(R). We see that ψ(x) = x for each vertex x of σ . Recall that (i) each vertex of

A(R) is contained in a codimension zero face of A(R), (ii) each codimension one face of A(R) is contained

in one or two codimension zero faces of A(R), and (iii) Theorem 3.9, Mosher’s “Connectivity by Elementary

Moves” holds. It follows from these facts that ψ = idA(R) : A(R) → A(R). Hence, λ = H∗ : A(R) → A(R).

That is to say, λ is geometric, being induced by the self-homeomorphism H : R → R . �

Theorem 3.12 Suppose that (g, b) �= (0, 1), (g, b) �= (0, 2), (g, b) �= (0, 3), and (g, b) �= (1, 1) . Then Aut(A(R))

is naturally isomorphic to the extended mapping class group Γ∗(R) .

Proof. By Theorem 3.11, the natural representation ρ : Γ∗(R) → Aut(A(R)) is surjective. Let h be an

element of ker(ρ) and H : R → R be a homeomorphism of R representing h . H preserves the isotopy
class of every essential arc on R . Since R is not a disc or an annulus, there exists a triangulation T of R .
Since H : R → R preserves the isotopy class of every essential arc on R , we may isotope H : R → R to a
homeomorphism H0 : R → R such that, for each element J of T , H0(J) = J .

Since R is not a pair of pants, there exists an embedded triangle Δ of T on R with sides A , B , and C .
Since A , B and C are elements of T , there exists an embedded triangle Δ′ of T on R with sides corresponding
to H0(A), H0(B), and H0(C).

Since A , B , and C are elements of T , H0(A) = A , H0(B) = B , and H0(C) = C . It follows that Δ′ and

Δ are triangles on R with sides A , B and C . Since R is not a pair of pants Δ′ = Δ. So, H0(Δ) is equal to Δ

and, hence, the homeomorphism H0 : R → R restricts to a homeomorphism H0| : (Δ, A, B, C) → (Δ, A, B, C).

We may isotope H0 : R → R relative to the union |T | of the elements of T , to a homeomorphism H1 : R → R

which restricts to the identity map H1| = idΔ : Δ → Δ of Δ.

Note that any other triangle Δ′′ of the triangulation T of R is connected to the triangle Δ of the
triangulation T of R by a sequence of triangles which have sides corresponding to the same element of T .
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Since H : R → R is orientation-preserving, it follows, by a finite induction argument, that we may construct a
sequence of homeomorphisms, Hi : R → R , 0 ≤ i ≤ N , with N equal to the number of triangles of T on R ,
such that H0 preserves each element of T and is isotopic on R to H ; H1 preserves each element of T , fixes
each point of at least one triangle of T on R , and is isotopic on R to H0 relative to |T | ; and for each integer
i with 2 ≤ i ≤ N , Hi preserves each element of T , fixes each point of at least i triangles of T , and is isotopic
on R to Hi−1 relative to the union of |T | with i − 1 triangles of T fixed pointwise by Hi−1 .

Since N is equal to the number of triangles of T on R , it follows that HN = idR : R → R . Since
H : R → R is, by induction, isotopic to HN : R → R , it follows that H : R → R is isotopic to idR : R → R .
Hence, we have Γ∗(R) ∼= Aut(A(R)). �
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