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An expansion result for a Sturm-Liouville eigenvalue problem with

impulse

Şerife Faydaoğlu and Gusein Sh. Guseinov

Abstract

The paper is concerned with an eigenvalue problem for second order differential equations with impulse.

Such a problem arises when the method of separation of variables applies to the heat conduction equation for

two-layered composite. The existence of a countably infinite set of eigenvalues and eigenfunctions is proved

and a uniformly convergent expansion formula in the eigenfunctions is established.

Key Words: Green’s function; Completely continuous operator; Impulse conditions; Eigenvalue; Eigenvec-

tor.

1. Introduction

An equation for temperatures in a solid 0 ≤ x ≤ b composed of a layer 0 ≤ x < a of material in contact
with a layer a < x ≤ b of another material is given by (see, for example, [6, 13])

ρ(x)
∂u(x, t)

∂t
=

∂

∂x

[
p(x)

∂u(x, t)
∂x

]
− q(x)u(x, t), (1)

x ∈ [0, a)∪ (a, b], t > 0.

We shall assume that ρ(x), p(x), and q(x) are real-valued, p(x) is differentiable on [0, a)∪ (a, b] , ρ(x), p′(x),

and q(x) are piecewise continuous on [0, a)∪ (a, b] and ρ(x) > 0, p(x) > 0, q(x) ≥ 0. In addition, it is assumed

that there exist finite left-sided and right-sided limits ρ(a ± 0), p(a ± 0), and q(a ± 0), and that ρ(a ± 0) > 0,

p(a ± 0) > 0.

For solution u(x, t) of equation (1) we take at x = a interface conditions of the form

u(a − 0, t) = αu(a + 0, t), ux(a − 0, t) = βux(a + 0, t), (2)

in which α and β are given positive real numbers, and at the end faces x = 0 and x = b we take the zero
temperature conditions

u(0, t) = u(b, t) = 0. (3)
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The initial temperature of the composite is given by

u(x, 0) = f(x), x ∈ [0, a)∪ (a, b]. (4)

Note that the conditions in (2) represent an impulse phenomenon at x = a (see [2, 3, 10, 14]).

Let us look for a nontrivial solution of (1)–(3), ignoring the initial condition (4), which has the form

u(x, t) = e−λty(x), x ∈ [0, a)∪ (a, b], (5)

where λ is a complex constant and y(x) is a function independent of t (but, in general, dependent on λ) that

is not identically zero. Substituting (5) into (1)–(3), we obtain

−[p(x)y′]′ + q(x)y = λρ(x)y, x ∈ [0, a)∪ (a, b], (6)

y(a − 0) = αy(a + 0), y′(a − 0) = βy′(a + 0), (7)

y(0) = y(b) = 0. (8)

So, the function (5) is a nontrivial solution of problem (1)–(3) if and only if λ is an eigenvalue and y(x)

is a corresponding eigenfunction of problem (6)–(8).

In Section 2 of the present paper it is shown that the eigenvalue problem (6)–(8) has a countably infinite

set of eigenvalues λ1, λ2, . . . tending to +∞ , with the corresponding eigenfunctions υ1(x), υ2(x), . . . . Primary
tools in our proof are a suitable Green’s function and the Hilbert-Schmidt theorem on symmetric completely
continuous operators.

By linearity of problem (1)–(3) the function

u(x, t) =
∞∑

k=1

cke−λktυk(x) (9)

is a formal solution of (1)–(3), where c1, c2, . . . are arbitrary constants. Now we try to choose the constants ck

so that (9) will also satisfy the initial condition (4). This leads to

f(x) =
∞∑

k=1

ckυk(x), x ∈ [0, a)∪ (a, b]. (10)

Thus the problem of possibility to expand a given function f(x) in eigenfunctions υ1(x), υ2(x), . . . arises.

In Section 3 it is proved that if f is a continuous function on [0, a)∪ (a, b] having a piecewise continuous

derivative on [0, a)∪ (a, b] and finite limits f(a± 0), f ′(a± 0) and satisfying the impulse condition f(a− 0) =

αf(a+0) and boundary conditions in (8), then for f a uniformly convergent on [0, a)∪ (a, b] expansion formula

(10) holds. The coefficients ck in (10) and hence in (9), are found by the formula

ck =
∫ a

0

ρ(x)f(x)υk(x)dx + ω

∫ b

a

ρ(x)f(x)υk(x)dx, (11)
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where

ω = αβ
p(a − 0)
p(a + 0)

(12)

is a positive real number.

Note that in [7] the eigenvalue problem (6)−(8) was investigated by the authors in the case

p(x) ≡ 1, ρ(x) =
{

ρ2
1 , x ∈ [0, a),

ρ2
2, x ∈ (a, b],

where ρ1 and ρ2 are positive constants. There it was proved by examining the asymptotic behavior of the
resolvent function of problem (6)−(8) and taking then a contour integral of the resolvent function that there is
a positive constant c not depending on x and n such that∣∣∣∣∣f(x) −

n∑
k=1

ckυk(x)

∣∣∣∣∣ ≤ c

n
, x ∈ [0, a)∪ (a, b], (13)

provided that f is a twice differentiable function on [0, a)∪(a, b] satisfying impulse conditions (7) and boundary

conditions (8) and being such that f ′′(x) is integrable over [0, b] . In (13), the coefficients ck are defined by

(11). Result (13), which gives an asymptotic estimate when n → ∞ of the amount by which the nth partial

sum of the series (10) differs from f(x), of course implies the uniform convergence of expansion (10). Thus
the main result of the present paper is that in the theorem on uniformly convergent expansion the condition of
existence of a second derivative of f is reduced to the condition of existence of a first derivative of f . This is
achieved by making use of a method employed by Steklov in the case of absence of the impulse (see [15, Section

182]).

Conditions in (7), which we call the impulse conditions, are called in the literature also as the discontinuity

conditions or the transmission conditions; see [1, 4, 5, 11, 12, 16]. In these papers the uniformity of convergence
of eigenfunction expansions is not investigated. In our presentation in the present paper we follow the main
outlines of [8].

2. Mean square convergent expansions

Denote by L2
ρ[a, b] the Hilbert space of all real-valued measurable functions y on [0, b] such that

∫ b

0

ρ(x)y2(x)dx < ∞,

with the inner product (scalar product)

〈y, z〉 =
∫ a

0

ρ(x)y(x)z(x)dx + ω

∫ b

a

ρ(x)y(x)z(x)dx (14)

and the norm ‖y‖ defined by

‖y‖2 = 〈y, y〉 =
∫ a

0

ρ(x)y2(x)dx + ω

∫ b

a

ρ(x)y2(x)dx,
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where ω is given by (12).

Next denote by D the set of all functions y ∈ L2
ρ[a, b] satisfying the following three conditions:

1. y is continuous on [0, a)∪ (a, b] and y(0) = y(b) = 0.

2. y is continuously differentiable on [0, a)∪ (a, b] , there exist finite limits y(a ± 0), y′(a ± 0), and

y(a − 0) = αy(a + 0), y′(a − 0) = βy′(a + 0).

3. y′ is differentiable almost everywhere on [0, a)∪ (a, b] and

∫ b

0

|y′′|2 dx < ∞.

Obviously D is a linear subset dense in L2
ρ[0, b] . Now we define the operator A : D ⊂ L2

ρ[0, b] −→ L2
ρ[0, b]

as follows. The domain of definition of A is D and we put

(Ay)(x) =
1

ρ(x)
{−[p(x)y′(x)]′ + q(x)y(x)}, x ∈ [0, a)∪ (a, b],

for y ∈ D .

We see that the eigenvalue problem (6)–(8) is equivalent to the equation

Ay = λy, y ∈ D, y = 0. (15)

Theorem 1 We have for all y, z ∈ D ,

〈Ay, z〉 = 〈y, Az〉, (16)

〈Ay, y〉 =
∫ a

0

[p(x)y′2(x) + q(x)y2(x)]dx

+ω

∫ b

a

[p(x)y′2(x) + q(x)y2(x)]dx. (17)
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Proof. Integrating by parts we have for all y, z ∈ D

〈Ay, z〉 =
∫ a

0

[−(py′)′ + qy]zdx + ω

∫ b

a

[−(py′)′ + qy]zdx

= −p(x)y′(x)z(x)|a−0
0 +

∫ a

0

(py′z′ + qyz)dx

−ωp(x)y′(x)z(x)|ba+0 + ω

∫ b

a

(py′z′ + qyz)dx

=
∫ a

0

(py′z′ + qyz)dx + ω

∫ b

a

(py′z′ + qyz)dx

= p(x)y(x)z′(x)|a−0
0 +

∫ a

0

y[−(pz′)′ + qz]dx

+ωp(x)y(x)z′(x)|ba+0 + ω

∫ b

a

y[−(pz′)′ + qz]dx

=
∫ a

0

y[−(pz′)′ + qz]dx + ω

∫ b

a

y[−(pz′)′ + qz]dx = 〈y, Az〉,

where we have used the boundary conditions u(a) = u(b) = 0 and the impulse conditions u(a−0) = αu(a+0),

u′(a − 0) = βu′(a + 0) for functions u ∈ D . Simultaneously, we have also got (17). The theorem is proved. �

Relation (16) shows that the operator A is symmetric (self-adjoint), while (17) shows that it is positive:

〈Ay, y〉 > 0 for all y ∈ D, y = 0.

Therefore all eigenvalues of the operator A are real and positive and two eigenfunctions corresponding to the
distinct eigenvalues are orthogonal in the sense of inner product (14). Besides, it can easily be seen that

eigenvalues of problem (6)–(8) are simple, that is, to each eigenvalue there corresponds a single eigenfunction

up to a constant factor (equation (6) with the impulse conditions (7) can not have two linearly independent

solutions satisfying y(0) = 0).

Note that the kernel of A ,
kerA = {y ∈ D : Ay = 0}

consists only of the zero element. Indeed, if y ∈ D and Ay = 0, then from (17) we have y′(x) = 0 for

x ∈ [0, a) ∪ (a, b] and hence

y(x) = c1 for x ∈ [0, a) and y(x) = c2 for x ∈ (a, b],

where c1 and c2 are constants. Then from the impulse condition y(a − 0) = αy(a + 0) we have c1 = αc2 and

hence by the condition y(0) = 0 (or y(b) = 0) we find c1 = c2 = 0 so that y(x) ≡ 0.

It follows that the inverse operator A−1 exists. To present its explicit form we introduce the Green
function (see [7])

G(x, ξ) = − 1
Wξ(ϕ, ψ)

{
ϕ(x)ψ(ξ) if 0 ≤ x ≤ ξ ≤ b,
ϕ(ξ)ψ(x) if 0 ≤ ξ ≤ x ≤ b,

(18)
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for x, ξ ∈ [0, a)∪ (a, b] , where ϕ(x) and ψ(x) are solutions of the problem

−[p(x)y′]′ + q(x)y = 0, x ∈ [0, a)∪ (a, b],

y(a − 0) = αy(a + 0), y′(a − 0) = βy′(a + 0),

satisfying the initial conditions

ϕ(0) = 0, ϕ′(0) = 1; ψ(b) = 0, ψ′(b) = 1

(for the existence and uniqueness of such solutions see [7]), and

Wx(ϕ, ψ) = p(x)[ϕ(x)ψ′(x) − ϕ′(x)ψ(x)], x ∈ [0, a)∪ (a, b],

the Wronskian of solutions ϕ , ψ , is constant on each of the intervals [0, a) and (a, b] and hence (see [7])

Wx(ϕ, ψ) =
{

−p(0)ψ(0) if x ∈ [0, a),
− 1

ω p(0)ψ(0) if x ∈ (a, b]. (19)

Note that ψ(0) = 0. Otherwise we would have ψ ∈ D and Aψ = 0, so that ψ ∈ kerA . But this is a

contradiction, since we showed above that ker A = {0} , but ψ is not equal to the zero element (we have

ψ′(b) = 1).

Then it is not difficult to see that

(A−1u)(x) =
∫ b

0

G(x, ξ)ρ(ξ)u(ξ)dξ, u ∈ L2
ρ[0, b]. (20)

The equations (18), (19), and (20) imply that A−1 is a completely continuous (or compact) operator. It is also

symmetric with respect to the inner product (14).

The eigenvalue problem (15) is equivalent (note that λ = 0 is not an eigenvalue of A) to the eigenvalue
problem

Bu = μu, u ∈ L2
ρ[0, b], u = 0,

where

B = A−1 and μ =
1
λ

.

In other words, if λ is an eigenvalue and y ∈ D is a corresponding eigenfunction for A , then μ = λ−1 is an

eigenvalue for B with the same eigenfunction y ; conversely, if μ = 0 is an eigenvalue and u ∈ L2
ρ[0, b] is a

corresponding eigenfunction for B , then u ∈ D and λ = μ−1 is an eigenvalue for A with the same eigenfunction
u .

Note that μ = 0 can not be an eigenvalue for B . In fact, if Bu = 0, then applying to both sides A we
get that u = 0.

Next we use the following well-known Hilbert-Schmidt theorem (see, for example, [9, Sec. 24.3]): For
every completely continuous symmetric linear operator B in a Hilbert space H there is an orthonormal system
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{υk} of eigenvectors corresponding to eigenvalues {μk} (μk = 0) such that each f ∈ H can be written uniquely
in the form

f =
∑

k

ckυk + h,

where h ∈ ker B , that is, Bh = 0 . Moreover,

Bf =
∑

k

μkckυk

and if the system {υk} is infinite, then limμk = 0 (k → ∞) .

As a corollary of the Hilbert-Schmidt theorem we have: If B is a completely continuous symmetric linear
operator in a Hilbert space H and if ker B = {0} , then the eigenvectors of B form an orthogonal basis of H .

Applying the corollary of the Hilbert-Schmidt theorem to the operator B = A−1 and using the above
described connection between the eigenvalues and eigenfunctions of A and the eigenvalues and eigenfunctions
of B we obtain the following result.

Theorem 2 For the eigenvalue problem (6)–(8), there exists an orthonormal system {υk} of eigenfunctions

corresponding to eigenvalues {λk} . Each eigenvalue λk is positive and simple and λk → ∞ as k → ∞ . The

system {υk} forms an orthonormal basis for the Hilbert space L2
ρ[0, b] . Therefore any function f ∈ L2

ρ[0, b] can

be expanded in eigenfunctions υk in the form

f(x) =
∞∑

k=1

ckυk(x), (21)

where ck are the Fourier coefficients of f defined by

ck =
∫ a

0

ρ(x)f(x)υk(x)dx + ω

∫ b

a

ρ(x)f(x)υk(x)dx. (22)

Note that series (21) converges to the function f in metric of the space L2
ρ[0, b] , which means that

∫ a

0

ρ(x)

[
f(x) −

n∑
k=1

ckvk(x)

]2

dx + ω

∫ b

a

ρ(x)

[
f(x) −

n∑
k=1

ckvk(x)

]2

dx

→ 0 as n → ∞. (23)

Since

∫ a

0

ρ(x)

[
f(x) −

n∑
k=1

ckυk(x)

]2

dx + ω

∫ b

a

ρ(x)

[
f(x) −

n∑
k=1

ckυk(x)

]2

dx

=
∫ a

0

ρ(x)f2(x)dx + ω

∫ b

a

ρ(x)f2(x)dx −
n∑

k=1

c2
k,
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we get from (23) the Parseval equality

∫ a

0

ρ(x)f2(x)dx + ω

∫ b

a

ρ(x)f2(x)dx =
∞∑

k=1

c2
k. (24)

Remark 3 Since α, β, p(a − 0) , and p(a + 0) are positive numbers and c1 ≤ ρ(x) ≤ c2 for some positive

constants c1 and c2 , we see that the condition f ∈ L2
ρ[0, b] is equivalent to the condition f ∈ L2[0, b] and (23)

is equivalent to

lim
n→∞

∫ b

0

[
f(x) −

n∑
k=1

ckυk(x)

]2

dx = 0

so that the series in (21) converges to the function f in usual metric of the space L2[0, b] , that is, in mean
square metric.

3. Uniformly convergent expansions

In this section we prove the following result.

Theorem 4 Let f be a continuous function on [0, a)∪(a, b] satisfying the boundary conditions f(0) = f(b) = 0

and such that it has a derivative f ′(x) everywhere on [0, a) ∪ (a, b] , except at a finite number of points

x1,x2, . . . , xm, the derivative being continuous everywhere except at these points, at which f ′ has finite limits

from the left and right. Further, suppose that there exist finite limits f(a ± 0), f ′(a ± 0) and f satisfies the

impulse condition f(a − 0) = αf(a + 0) . Then the series

∞∑
k=1

ckυk(x), (25)

where ck is defined by (22), converges uniformly on [0, a)∪ (a, b] to the function f .

Proof. First we assume for simplicity that the function f is differentiable everywhere on [0, a] ∪ (a, b] .
Consider the functional

J(y) =
∫ a

0

[
p(x)y′2(x) + q(x)y2(x)

]
dx + ω

∫ b

a

[
p(x)y′2(x) + q(x)y2(x)

]
dx

so that we have J(y) ≥ 0. Substituting in the functional J(y)

y = f(x) −
n∑

k=1

ckυk(x),
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where ck are defined by (22), we obtain

J

(
f −

n∑
k=1

ckυk

)

=
∫ a

0

p

(
f ′ −

n∑
k=1

ckυ′
k

)2

dx +
∫ a

0

q

(
f −

n∑
k=1

ckυk

)2

dx

+ω

∫ b

a

p

(
f ′ −

n∑
k=1

ckυ′
k

)2

dx + ω

∫ b

a

q

(
f −

n∑
k=1

ckυk

)2

dx

=
∫ a

0

(
pf ′2 + qf2

)
dx + ω

∫ b

a

(
pf ′2 + qf2

)
dx

−2
n∑

k=1

ck

{∫ a

0

(pf ′υ′
k + qfυk) dx + ω

∫ b

a

(pf ′υ′
k + qfυk)dx

}
dx

+
n∑

k,l=1

ckcl

{∫ a

0

(pυ′
kυ′

l + qυkυl)dx + ω

∫ b

a

(pυ′
kυ′

l + qυkυl)dx

}
. (26)

Next, integrating by parts, we have

∫ a

0

(pf ′υ′
k + qfυk)dx + ω

∫ b

a

(pf ′υ′
k + qfυk)dx

= p(x)f(x)υ′
k(x)|a−0

0 +
∫ a

0

f [−(pυ′
k)′ + qυk]dx

+ωp(x)f(x)υ′
k(x)|ba+0 + ω

∫ b

a

f [−(pυ′
k)′ + qυk]dx

= λk

(∫ a

0

ρfυkdx + ω

∫ b

a

ρfυkdx

)

= λkck,

∫ a

0

(pυ′
kυ′

l + qυkυl)dx + ω

∫ b

a

(pυ′
kυ′

l + qυkυl)dx

= p(x)υk(x)υ′
l(x)|a−0

0 +
∫ a

0

υk[−(pυ′
l)
′ + qυl]dx

+ωp(x)υk(x)υ′
l(x)|ba+0 + ω

∫ b

a

υk[−(pυ′
l)
′ + qυl]dx

= λl

(∫ a

0

ρυkυldx + ω

∫ b

a

ρυkυldx

)

= λlδkl,
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where δkl is the Kronecker symbol and where we have used the boundary conditions

f(a) = f(b) = 0, υk(a) = υk(b) = 0,

and the impulse conditions

f(a − 0) = αf(a + 0), υk(a − 0) = αυk(a + 0), υ′
k(a − 0) = βυ′

k(a + 0).

Therefore we get from (26)

J

(
f −

n∑
k=1

ckυk

)

=
∫ a

0

(
pf ′2 + qf2

)
dx + ω

∫ b

a

(
pf ′2 + qf2

)
dx−

n∑
k=1

λkc2
k.

Since the left-hand side is nonnegative for all n, we get the inequality

∞∑
k=1

λkc2
k ≤

∫ a

0

(
pf ′2 + qf2

)
dx + ω

∫ b

a

(
pf ′2 + qf2

)
dx (27)

analogous to Bessel’s inequality, and the convergence of the series on the left follows. All the terms of this series
are nonnegative, since λk > 0. Note that the proof of (27) is entirely unchanged if we assume that the function

f(x) satisfies only the conditions stated in the theorem. Indeed, when integrate by parts, it is sufficient to

integrate over the intervals on which f ′ is continuous and then add all these integrals (the integrated terms are

vanished by f(a) = f(b) = 0 and the fact that f , ϕk , and ϕ′
k are continuous on [0, a)∪ (a, b] ). We now show

that the series
∞∑

k=1

|ckυk(x)| (28)

is uniformly convergent on [0, a)∪(a, b] . Obviously from this the uniformly convergence of series (25) will follow.
Using the integral equation

υk(x) = λk

∫ b

0

G(x, ξ)ρ(ξ)υk(ξ)dξ,

which follows from υk = λkA−1υk by (20), we can rewrite (28) as

∞∑
k=1

λk|ckgk(x)|, (29)

where

gk(x) =
∫ b

0

G(x, ξ)ρ(ξ)υk(ξ)dξ. (30)

Setting

K(x, ξ) =
1

p(0)ψ(0)

{
ϕ(x)ψ(ξ) if 0 ≤ x ≤ ξ ≤ b,
ϕ(ξ)ψ(x) if 0 ≤ ξ ≤ x ≤ b,
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we have from (30), by (18) and (19),

gk(x) =
∫ a

0

K(x, ξ)ρ(ξ)υk(ξ)dξ + ω

∫ b

a

K(x, ξ)ρ(ξ)υk(ξ)dξ.

Therefore gk(x) can be regarded as the Fourier coefficient of K(x, ξ) as a function of ξ. By using inequality

(27), we can write

∞∑
k=1

λkg2
k(x) ≤

∫ a

0

[
p(ξ)K2

ξ (x, ξ) + q(ξ)K2(x, ξ)
]
dξ

+ω

∫ b

a

[
p(ξ)K2

ξ (x, ξ) + q(ξ)K2(x, ξ)
]
dξ, (31)

where Kξ(x, ξ) is the derivative of K(x, ξ) with respect to ξ. All the functions appearing under the integral

sign are bounded and it follows from (31) that

∞∑
k=1

λkg2
k(x) ≤ M,

where M is a positive constant. Now replacing λk by
√

λk

√
λk we apply the Cauchy-Schwarz inequality to the

segment of series (29):

m+n∑
k=m

λk |ckgk(x)| ≤

√√√√m+n∑
k=m

λkc2
k

√√√√m+n∑
k=m

λkg2
k(x) ≤

√√√√m+n∑
k=m

λkc2
k

√
M

and this inequality, together with the convergence of the series with terms λkc2
k (see (27)), at once implies that

series (29), and hence series (28) is uniformly convergent on [0, a) ∪ (a, b]. Denote the sum of series (25) by

f1(x):

f1(x) =
∞∑

k=1

ckvk(x). (32)

Since the series in (32) is uniformly convergent on [0, a)∪ (a, b], we get that

∫ a

0

ρ(x)f1(x)υk(x)dx + ω

∫ b

a

ρ(x)f1(x)υk(x)dx = ck.

Therefore the Fourier coefficients of f1 and f are the same. Then the Fourier coefficients of the difference
f1 − f are zero and applying the Parseval equality (24) to the function f1 − f we get that f1 − f = 0, so that

the sum of series (25) is equal to f(x). �
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