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Traveling wavefronts in a single species model with nonlocal

diffusion and age-structure∗

X. S. Li and G. Lin

Abstract

This paper is concerned with the existence of monotone traveling wavefronts in a single species model

with nonlocal diffusion and age-structure. We first apply upper and lower solution technique to prove the

result if the wave speed is larger than a threshold depending only on the basic parameters. When the wave

speed equals to the threshold, we show the conclusion by passing to a limit function.

Key Words: Age-structure, nonlocal diffusion, traveling wavefront, upper and lower solutions.

1. Introduction

Due to the different behavior of individuals with different ages in population dynamics, Aiello and
Freedmann [1] first introduced the following single species model with time delay and age-structure

{
u′

i(t) = αum(t) − rui(t) − αe−rτum(t − τ ),
u′

m(t) = αe−rτum(t − τ ) − βu2
m(t),

(1.1)

in which all the parameters are positive, ui and um denote the number of immature and mature individuals
of a single species, and time delay τ > 0 describes the time taken from birth to maturity. Based on the model
(1.1), Gourley and Kuang [5] further considered the spatial inhomogeneity of the individuals distribution and
proposed the following reaction-diffusion system with non-local delays:

⎧⎨⎩
∂ui(x,t)

∂t
= diΔui(x, t) + αum(x, t) − rui(x, t) − αe−rτ

∫
R

1√
4πdiτ

e
− y2

4diτ um(x − y, t − τ )dy,

∂um(x,t)
∂x = dmΔum(x, t) + αe−rτ

∫
R

1√
4πdiτ

e
− y2

4diτ um(x − y, t − τ )dy − βu2
m(x, t),

(1.2)

where di, dm are positive constants accounting for the diffusivity. In view of the background of the Gaussian
kernel, the random migration of the individuals of model (1.2) is obvious, see also [10, 12, 13, 14, 15].
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Recently, Al-Omari and Gourley [2] further derived a model that describes the immobility of the immature

members in the model proposed by [5], namely, let di = 0 in (1.2). In particular, they got the following reaction-

diffusion equation with time delay to model the dynamical behavior of um(x, t)

∂um(x, t)
∂t

= d
∂2um(x, t)

∂x2
+ αe−γτum(x, t − τ ) − βu2

m(x, t), x ∈ R. (1.3)

By the abstract results in Wu and Zou [16], the authors proved that (1.3) has a monotone traveling wavefront

connecting 0 with Kτ = α
β
e−γτ . Yang and Fang [17] further considered a spatially discrete equation as

duj(t)
dt

= d[uj+1(t) − 2uj(t) + uj−1(t)] + αe−γτuj(t − τ ) − βu2
j (t), j ∈ Z (1.4)

and proved the existence of traveling wavefronts connecting 0 with Kτ . Model (1.4) can model the evolution
of individuals that live in a discrete patch environment, and the migration of individuals is formulated by a
discrete Laplacian operator [4].

In this paper, we shall consider the non-local diffusion version of models (1.3) and (1.4) as follows

∂u(x, t)
∂t

=
∫

R

J(y − x)[u(y, t) − u(x, t)]dy + αe−γτu(x, t− τ ) − βu2(x, t), x ∈ R (1.5)

where the parameters are same to those of (1.3) and (1.4), J is a probability function describing the migration

of the individual. The reason why we formulate the migration by such an integral operator is that the (discrete)
Laplacian operator is not sufficiently accurate in describing the spatial diffusion for some evolutionary process,
such as the embryological development case [8]; we also refer to Bates [3] for more on the nonlocal diffusion
model.

Similar to these of [2, 5, 17], we shall consider the existence of traveling wavefronts of (1.5) in this paper,
and the main result is listed as follows.

Theorem 1.1 For any given τ ≥ 0 , there exists c∗ = c∗(τ ) > 0 such that (1.5) has a traveling wavefront
connecting 0 with Kτ if the wave speed is not smaller than c∗ .

We first establish the existence of traveling wavefronts if the wave speed is larger than some threshold of
the wave speed, which is based on an abstract result established in Pan et al. [9]; see also Li and Lin [7]. The
main technique is to construct proper upper and lower solutions. When the wave speed equals to the threshold
of the wave speed, we also prove the existence of traveling wavefronts by passing to a limit function, which is
motivated by the idea of Thieme and Zhao [11]; see also Pan et al. [9] for a non-local diffusion model with time
delay. Note that our result remains true if τ = 0, then our result implies that the longer the maturation delay
τ , the lower is the threshold of the wave speed, which is similar to the results in [2].

2. Preliminaries

We first consider the following nonlocal reaction-diffusion equation with time delay

∂u(x, t)
∂t

=
∫

R

J(y − x)[u(y, t) − u(x, t)]dy + f(ut(x), τ ), (2.6)
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where t ≥ 0, x ∈ R, u ∈ R, f : C([−τ, 0], R) → R is a continuous functional (which may involve the parameter

τ ), ut(x) ∈ C ([−τ, 0], R) is parametered by x ∈ R and given by ut(x)(s) = u(x, t + s), s ∈ [−τ, 0], t ≥ 0, x ∈ R.

A traveling wave solution of (2.6) is a spacial translation invariant solution of the form u(x, t) = U(x+ct),

in which c > 0 describes the wave speed and U ∈ C(R, R) means the wave profile function. Substituting it into

(2.6) and setting z = x + ct , then (2.6) becomes∫
R

J(y − z)[U(y) − U(z)]dy − cU ′(z) + fc(Uz ; τ ) = 0, (2.7)

where fc : C([−cτ, 0], R) → R is defined by fc(U ; τ ) = f(U c; τ ) with U c(s) = U(cs), s ∈ [−τ, 0] . If such a
traveling wave solution is monotone in t ∈ R , then it is also called a traveling wavefront. In particular, from the
background of traveling wavefronts in the population dynamics, we also require the traveling wavefronts satisfy
the asymptotic boundary conditions

lim
z→+∞

U(z) = U+
τ , lim

z→−∞
U(z) = U−

τ . (2.8)

Without loss of generality, we assume that U+
τ = Uτ , U−

τ = 0 such that (2.8) becomes

lim
z→+∞

U(z) = Uτ , lim
z→−∞

U(z) = 0.

For convenience, we list the following conditions on (2.6)

(N1) f(0̂; τ ) = f(Ûτ ; τ ) = 0, and f(n̂; τ ) �= 0 for n ∈ (0, Uτ ). Herein ·̂ denotes the constant value function in

C([−cτ, 0], R);

(N2) There exists a constant ατ ≥ 0 such that

fc(U1; τ )− fc(U2; τ ) + ατ [U1(0) − U2(0)] ≥
∫

R

J(x)dx[U1(0) − U2(0)]

for all U1, U2 ∈ C([−cτ, 0], R) with 0 ≤ U2(z) ≤ U1(z) ≤ Uτ , z ∈ [−cτ, 0] ;

(N3)
∫

R
J(x)u(x)dx ≥ 0 for any u(x) ∈ C(R, R) with u(x) ≥ 0, x ∈ R;

(N4) For any given μ ≥ 0,
∫

R
J(x)eμ|x|dx < ∞;

(N5)
∫

R
J(x)u(x)dx =

∫
R

J(x)u(−x)dx for any u(x) ∈ C(R, R);

(N6)
∫

R\0 J(x)dx > 0.

In order to prove the existence of traveling wavefronts, we need to construct proper profile set by upper
and lower solutions, which are defined as follows.

Definition 2.1 Assume that (N2) holds. A continuous function U(z) : R → [0, Uτ ] is called an upper (lower)

solution of (2.7), if U(z) is differentiable on R except finite points T , and U ′(z) are bounded for z ∈ R \ T

such that

cU ′(z) ≥ (≤)
∫

R

J(y − z)[U(y) − U(z)]dy + fc(Uz; τ ), z ∈ R \ T. (2.9)
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Similar to the proof of Pan et al. [9, Theorem 3.2], we can obtain the following conclusion although our
positive equilibrium depending on the time delay.

Theorem 2.2 Assume that (N1)–(N4) hold. Suppose that (2.7) has an upper solution U(z) and a lower solution

U(z) such that

(i) sups≤z U(s) ≤ U(z), z ∈ R;

(ii) supz∈R
U(z) > 0, infz∈R U(z) < Uτ .

Then (2.6) has a traveling wavefront U(z) connecting 0 with Uτ .

3. Proof of theorem 1.1

Let φ(z) be a traveling wavefront of (1.5), then φ(z) satisfies

cφ′(z) =
∫

R

J(y − z)[φ(y) − φ(z)]dy + αe−γτφ(z − cτ ) − βφ2(z), (3.10)

and we are interested in the asymptotic boundary conditions

φ(−∞) = 0, φ(+∞) = Kτ . (3.11)

Denote
fc(φ; τ ) = −βφ2(0) + αe−γτφ(−cτ ).

We first need to to verify that assumption (N1) and (N2) in the previous section are satisfied. Note that (N1)

is clear, we formulate the proof of (N2) as follows.

Lemma 3.1 For any c > 0 , fc(φ) satisfies (N2).

Proof. Let φ1, φ2 ∈ C([−cτ, 0]; R) such that 0 ≤ φ1(z) ≤ φ2(z) ≤ Kτ , z ∈ [−cτ, 0] . Then

fc(φ1; τ ) − fc(φ2; τ )

= −βφ2
1(0) + αe−γτφ1(−cτ ) + βφ2

2(0) − αe−γτφ2(−cτ ))

= −β
[
φ2

1(0) − φ2
2(0)

]
+ αe−γτ [φ1(−cτ ) − φ2(−cτ )]

≥ −β
[
φ2

1(0) − φ2
2(0)

]
≥ −2βKτ [φ1(0) − φ2(0)] .

We choose δτ = 2βKτ +
∫

R
J(x)dx , then

fc(φ1; τ ) − fc(φ2; τ ) + δτ [φ1(0) − φ2(0)] ≥
∫

R

J(x)dx[φ1(0) − φ2(0)].

Therefore, fc(φ) satisfies (N2). The proof is complete. �
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In order to construct such a pair of upper and lower solutions, we define

Δ(λ, c) =
∫

R

J(x)[eλx − 1]dx− cλ + αe−γτe−λcτ (3.12)

for positive constants c, λ . Then Δ(λ, c) is well-defined if (N4) holds and satisfies the following result.

Lemma 3.2 Assume that (N3)–(N6) hold. For any given τ ≥ 0 , there exists c∗ = c∗(τ ) > 0 such that (3.12)

has two distinct positive roots λ1(c) and λ2(c) with λ1(c) < λ2(c) for any c > c∗ , and (3.12) has no positive
root if c < c∗ . In particular,

Δ(λ, c) =

⎧⎪⎨⎪⎩
> 0 for λ > λ2;
< 0 for λ ∈ (λ1, λ2);
> 0 for λ < λ1.

Remark 3.3 It is also clear that the longer the maturation delay τ , the lower is the threshold of the wave
speed c∗(τ ).

Now, we construct upper and lower solutions of equation (2.7).

Lemma 3.4 Assume that (N3)–(N6) and c > c∗ hold. Then

φ(z) = min
{

Kτ , Kτeλ1(c)z
}

is an upper solution of (2.7).

Proof. It is sufficient to prove that∫
R

J(y − z)[φ(y) − φ(z)]dy − cφ
′
(z) + αe−γτφ(z − cτ ) − βφ

2
(z) ≤ 0, z �= 0. (3.13)

If z > 0, then φ(z) = Kτ , φ(z − cτ ) ≤ Kτ such that (3.13) is clear.

If z < 0, then φ(z) = Kτeλ1z, φ
′
(z) = Kτλ1e

λ1z. Then∫
R

J(y − z)[φ(y) − φ(z)]dy − cφ
′
(z) + αe−γτφ(z − cτ ) − βφ

2
(z)

<

∫
R

J(y − z)[φ(y) − φ(z)]dy − cφ
′
(z) + αe−γτφ(z − cτ )

≤
∫

R

J(y − z)[Kτeλ1y − Kτeλ1z]dy − cKτλ1e
λ1z + αe−γτKτλ1e

λ1z.

= 0.

by the definition of λ1(c), namely (3.13) holds. The proof is complete. �
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Lemma 3.5 Assume that (N3)–(N6) and c > c∗ hold. Then

φ(z) = max
{
0, Kτ(1 − Meεz)eλ1(c)z

}
is a lower solution of (2.7) if

ε ∈ (0, min{λ1(c), λ2(c) − λ1(c)}) , M ≥ βKτ

−Δ (λ1(c) + ε, c)
+ 1.

Proof. Let z1 = −1
ε

ln M , then

φ(z) =
{

0, z ≥ z1,
Kτ (1 − Meεz)eλ1z, z ≤ z1,

and it is sufficient to prove that

∫
R

J(y − z)
[
φ(y) − φ(z)

]
dy − cφ′(z) + αe−γτφ(z − cτ ) − βφ2(z) ≥ 0, z �= z1. (3.14)

If z > z1 , then φ(z) = 0 and φ(z − cτ ) ≥ 0 such that (3.14) is clear.

If z < z1, then φ(z) = Kτ (1 − Meεz)eλ1z such that

∫
R

J(y − z)
[
φ(y) − φ(z)

]
dy − cφ′(z) + αe−γτφ(z − cτ ) − βφ2(z)

≥
∫

R

J(y − z)
[
Kτ (1 − Meεy)eλ1y − Kτ (1 − Meεz)eλ1z

]
dy

−cKτ λ1e
λ1z + M(λ1 + ε)e(λ1+ε)z + αe−γτKτ (1 − Meε(z−cτ))eλ1(z−cτ) − βK2

τ e2λ1z

= −MKτ Δ (λ1(c) + ε, c) e(λ1+ε)z − βK2
τ e2λ1z.

By the definition of Δ(λ, c) and the choice of ε, we see that Δ (λ1(c) + ε, c) < 0. Thus,

−MΔ (λ1(c) + ε, c) e(λ1+ε)z − βKτ e2λ1z ≥ 0

if M ≥ βKτ

−Δ(λ1(c)+ε,c) + 1 holds, which implies that (3.14) holds. The proof is complete. �

By Theorem 2.2 and Lemmas 3.2–3.5, the following result is obvious.

Lemma 3.6 For any c > c∗(τ ) , (3.10) and (3.11) have a monotone solution φ(z) such that limz→−∞ φ(z)e−λ1(c)z =
Kτ .

For the case of c = c∗ , we also have the following result.

Lemma 3.7 If c = c∗(τ ) , then (3.10) and (3.11) have a monotone solution φ(z) .
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Proof. Let {cn}∞n=1 be a sequence satisfying

2c∗ = c1 < c2 < · · · , lim
n→+∞

cn = c∗.

Let φn(z) denote the monotone solution of (3.10) and (3.11) with c = cn , then

cnφ′
n(z) =

∫
R

J(y − z)[φn(y) − φn(z)]dy + αe−γτφn(z − cnτ ) − βφ2
n(z). (3.15)

Since the traveling wave solution is invariant in the sense of phase shift, then we can assume that φn(0) = Kτ

2

for all n ∈ N .
Note that φn(z) is bounded, it is clear that φn(z), φ′

n(z) are equicontinuous for n ∈ N and z ∈ R. By
Ascoli-Arzela lemma and a nested subsequence argument, there exists a subsequence of φn , still denote it by
φn(t), and a continuous function φ∗(z) such that

lim
n→∞

φn(z) = φ∗(z), lim
n→∞

φ′
n(z) = φ′

∗(z),

and the convergence is uniform on any bounded interval of R and is pointwise on R . Then the Lebesgue’s
dominant theorem implies that

c∗φ′
∗(z) =

∫
R

J(y − z)[φ∗(y) − φ∗(z)]dy + αe−γτφ∗(z − c∗τ ) − βφ2
∗(z).

Since φn(0) = Kτ

2 and φn(z) are monotone in z ∈ R , then limz→±∞ φ∗(z) exists and limz→−∞ φ∗(z) ≤
Kτ

2
≤ limz→+∞ φ∗(z), which further implies that

lim
z→−∞

φ∗(z) = 0, lim
z→+∞

φ∗(z) = Kτ .

Therefore, φ∗(z) satisfies (3.10)–(3.11) with c = c∗ . The proof is complete. �
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