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Complete systems of differential invariants of vector fields in a

euclidean space

Djavvat Khadjiev

Abstract
The system of generators of the differential field of all G -invariant differential rational functions of a

vector field in the n-dimensional Euclidean space Rn is described for groups G = M(n) and G = SM(n) ,

where M(n) is the group of all isometries of Rn and SM(n) is the group of all euclidean motions of

Rn . Using these results, vector field analogues of the first part of the Bonnet theorem for groups Aff(n) ,

M(n), SM(n) in Rn are obtained, where Aff(n) is the group of all affine transformations of Rn . These

analogues are given in terms of the first fundamental form and Christoffel symbols of a vector field.
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1. Introduction

Let M(n) be the group of all isometries of the n-dimensional Euclidean space Rn , O(n) be the group

of all orthogonal transformations of Rn and SM(n) be the subgroup of M(n) generated by rotations and
translations of Rn .

According to the Bonnet theorem (see [3], p. 49; [13], p. 19), if U and W are regular hypersurfaces in

Rn+1 such that I(U) = I(W ), II(U) = II(W ), where I and II are the first and the second fundamental forms

of a hypersurface, then there exists F ∈ SM(n +1) such that W = FU (the first part of the Bonnet theorem).

The following vector field analogue of the Bonnet theorem in R3 is given in ([2], pp. 69–71):

Let us be given for G ⊆ R3 the functions Aik and Bik of Cartesian coordinates, where A1k = −A2k, i =
1, 2; k = 1, 2, 3 . Suppose that the functions satisfy the following system:

∂Aik

∂xl
− ∂Ail

∂xk
+ BilBjk − BikBjl = 0,

∂Bik

∂xl
− ∂Bil

∂xk
+ AikBjl − AilBjk = 0.

Then there are the orthonormal vector fields a1, a2,n in G such that

∂ai

∂xk
= Aikaj + Bikn, i �= j,
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∂n

∂xk
= −B1ka1 − B2ka2.

The vector fields a1, a2,n are defined uniquely up to their choice at one point.

We note that the part “The vector fields a1, a2,n are defined uniquely up to their choice at one point.”

of this theorem is not clear. Indeed, the functions A1k = ( ∂a1
∂xk

, a2), A2k = ( ∂a2
∂xk

, a1), Bik = −( ∂n
∂xk

, ai) are

O(3)-invariant, but they are not invariant with respect to parallel translations in R3 . Hence the clear form
of the part of this theorem is as follows: “The vector fields a1, a2,n are defined uniquely up to an orthogonal

transformation of R3 .” This means that the system of functions Aik, Bik is the complete system of joint
O(3)-invariants of orthonormal vector fields a1, a2, n .

In the present paper, we give vector field analogues of the first part of the Bonnet theorem for groups
Aff(n), M(n), SM(n) in Rn , where Aff(n) is the group of all affine transformations of Rn . First we describe
systems of generators of the differential field of all H -invariant differential rational functions of a vector field
in Rn for groups H = M(n) and H = SM(n). Using these results, we prove vector field analogues of the first
part of the Bonnet theorem for mentioned groups. These analogues are given in terms of the first fundamental
form and Christoffel symbols of a vector field.

Let G be a group and α(G) be an action of G on the set of all smooth vector fields in Rn . Investigations

of the problem of α(G)-equivalence of vector fields, α(G)-invariant vector fields and α(G)-invariants of vector
fields have important role in many areas of mathematics and mathematical physics.

Let ρ be a linear representation of a group G in Rn and x be a smooth vector field in Rn . Consider

the action ρ∗(g)(x(a)) = ρ(g)x(ρ(g−1)a) of G on the set of all smooth vector fields in Rn . The problem of

describing of the general form of all ρ∗(G)-invariant (that is, equivariant) polynomial vector fields for a compact

Lie groups G has been studied intensively in bifurcation theory [4, 6, 9]. By using the Theorems of Schwartz and

Poe’naru ([9], Theorem XII4.3 and Theorem XII5.2), this problem reduces to an algebraic problem in invariant

theory. The problem of ρ∗(G)-equivalence of smooth vector fields and complete systems of ρ∗(G)-invariants of

polynomial vector fields are investigated in the theory of differential equations [15-17, 8]. Invariants of vector

fields are studied also in differential geometry [1, 2, 7].

The present paper is organized as follows. In section 2, we give some known definitions and propositions,
which we use in the next sections.

In section 3, we describe the system of generators of the differential field of all G -invariant differential
rational functions of a vector field for groups G = M(n) and G = SM(n) (Theorems 1 and 2).

In section 4, using results of the section 3, we prove that: 1. the set of all Christoffel symbols of the
second kind of a vector field is a complete system of Aff(n)-invariants on the set of all regular vector fields

(Theorem 3); 2. the set of all coefficients of the first fundamental form of a vector field is a complete system of

M(n)-invariants on the set of all regular vector fields (Theorem 4); 3. the set of all Christoffel symbols of the

first and second kinds of a vector field is a complete system of M(n)-invariants (Theorem 5). A similar result

has been obtained for the group SM(n) (Theorem 6). Theorems 3-6 are vector field analogues of the first part

of the Bonnet theorem for groups G = Aff(n), M(n), SM(n).

In this paper, we use methods of invariant theory. A similar approach to the theory of curves was used
in the book [11] and papers [5, 12, 14].
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2. Complete systems of invariants

Let A be a set, G be a group and α be an action of G on A . Elements a, b ∈ A is called G -equivalent

if there exists q ∈ G such that b = α(q, a). In this case, we write a
G∼ b . Let K be a set. A function h : A → K

is called G -invariant if a, b ∈ A, a
G∼ b implies h(a) = h(b). Denote by Map(A, K)G the set of all G -invariant

functions h : A → K .

Definition 1 ([15], p.11) A system {f1, f2, . . . , fm} , where fi ∈ Map(A, K)G , will be called a complete system

of G-invariants of the action α if a, b ∈ A, fi(a) = fi(b) for all i ∈ {1, 2, . . . , m} imply a
G∼ b .

Let P = {f1, f2, . . . , fm} ⊂ Map(A, K)G . Denote by Map(A, K; P ) the set of all h : A → K such that
h is a function of the system P .

Proposition 1 Let P = {f1, f2, . . . , fm} be a complete system of G-invariant functions on A . Then Map

(A, K)G = Map(A, K; P ) .

Proof. Proof is given in ([15], p. 11, Theorem 1.1). �

Definition 2 ([15], p. 11) A complete system P = {f1, f2, . . . , fm} of G-invariant functions will be called a

minimal complete system if P \ {fi} is not complete for any i ∈ {1, 2, . . . , m} .

Proposition 2 Let P = {f1, f2, . . . , fm} be a complete system, where fi ∈ Map(A, K)G . Then P is a minimal

complete system if and only if fj /∈ Map(A, K; P \ {fj}) for all j = 1, 2, · · · , m.

Proof. ⇒ . Assume that P is a minimal complete system and fj ∈ Map(A, K; P \ {fj}) for some j = k .

Since P is a minimal complete system, the subsystem P \ {fk} is not a complete system. Hence there exist

a, b ∈ A such that fi(a) = fi(b) for all i ∈ {1, 2, . . . , m} \ {k} but a is not G -equivalent to b . Using fk ∈
Map(A, K; P \ {fk}) and equalities fi(a) = fi(b) for all i ∈ {1, 2, . . . , m} \ {k} , we obtain that fk(a) = fk(b).

Then fi(a) = fi(b) for all i ∈ {1, 2, . . . , m} . Since P is a complete system, we obtain a
G∼ b . It is a contradiction.

Therefore fj /∈ Map(A, K; P \ {fj}) for all j = 1, 2, · · · , m .

⇐=. Assume that fj /∈ Map(A, K; P \ {fj}) for all j = 1, 2, · · · , m and P is not a minimal complete

system. Then there exists k ∈ {1, 2, . . . , m} such that P \ {fk}) is a complete system. Then, by Proposition 1,

fk ∈ Map(A, K; P \ {fk}). It is a contradiction. Hence P is a minimal complete system. �

3. Generating systems of differential fields of all G-invariant differential rational functions of a
vector field

In the sequel, n is a natural number such that n > 1. Let J be an open subset of Rn .

Definition 3 A C∞ -mapping x : J → Rn is called a vector field in Rn .
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Let GL(n) be the group of all non-degenerate real n × n- matrices. Put Aff(n)={F : Rn → Rn | Fx =

gx + b , g ∈ GL(n) , b ∈ Rn} , where gx is the multiplication of a matrix g and a column vector x ∈ Rn . Let

O(n) be the group of all orthogonal real n×n-matrices. Then M(n)={F : Rn → Rn | Fx = gx + b , g ∈ O(n) ,

b ∈ Rn} and SM(n) = {F ∈ M(n) : detg = 1}.

Let x(u) be a vector field in Rn . Then Fx(u) is also a J -vector field in Rn for all F ∈ M(n) . Let G

be a subgroup of Aff(n) .

Definition 4 J -vector fields x(u) and y(u) in Rn is called G -equivalent if there exists F ∈ G such that

y(u) = Fx(u) for all u ∈ J . In this case, it will be denoted by x
G∼ y .

Denote by N0 the set of all non-negative integers. Let x(u) = x(u1, u2, . . . , un) be a vector field in Rn .
For mi ∈ N0, 1 ≤ i ≤ n , we put

x(0,0,...,0) = x, x(m1,m2,...,mn) =
∂m1+m2+···+mn x

∂um1
1 um2

2 · · ·∂umn
n

.

Definition 5 (See [10, 11].) A polynomial q(x, x(1,0,0,...,0), x(0,1,0,...,0), . . . , x(m1,m2,m3,...,mn)) of x and a finite

number of partial derivatives x(1,0,0,...,0), x(0,1,0,...,0), . . . , x(m1,m2,m3,...,mn) of x with coefficients from R is called
a differential polynomial of x .

Denote such polynomials by q {x} . The set of all differential polynomials of x will be denoted by R {x}.

It is a differential R -algebra (see [10]) with respect to the differentiations ∂
∂u1

, ∂
∂u2

, . . . , ∂
∂un

. This differential

R -algebra is also an integral domain. The quotient field of it will be denoted by R < x > . It is a differential

field (see [10]) with respect to the differentiations ∂
∂u1

, ∂
∂u2

, . . . , ∂
∂un

. An element h of R < x > will be called

a differential rational function of x and denoted by h < x > .

Let x(u1, u2, . . . , un), y(u1, u2, . . . , un), . . . , z(u1, u2, . . . , un) be a finite number of vector fields in Rn . A
differential polynomial and a differential rational function of vector fields x, y, . . . , z are defined similarly. They
will be denoted by p {x, y, . . . , z} and p < x, y, . . . , z > , respectively. The differential field of all differential
rational functions of x, y, . . . , z will be denoted by R < x, y, . . . , z > .

Definition 6 A differential rational function h < x, y, . . . , z > is called G-invariant if h < gx, gy, . . . , gz >=
h < x, y, . . . , z > for all g ∈ G .

The set of all G-invariant differential rational functions of x, y, . . . , z will be denoted by R < x, y, . . . , z >G .
It is a differential subfield of the differential field R < x, y, . . . , z >.

Definition 7 A subset S of R < x, y, . . . z >G is called a generating system of R < x, y, . . . z >G if the

smallest differential subfield of it containing S is R < x, y, . . . z >G .

Let (x, y) =
n∑

i=1
xiyi be the scalar product of vectors x = (x1, · · · , xn) and y = (y1, · · · , yn) in Rn . So

(x(m1,m2,...,mn), x(p1,p2,...,pn)) is the scalar product of vectors x(m1,m2,...,mn) , x(p1,p2,...,pn) in Rn .
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Theorem 1 . The system

(
∂

∂ui
x,

∂

∂uj
x

)
, 1 ≤ i ≤ j ≤ n, (1)

is a generating system of the differential field R < x >M(n) .

Proof. First we prove several lemmas. Let R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x > be the differential field of all differential

rational functions of ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x and O(n) is the group of all n × n-orthogonal real matrices.

Lemma 1 R < x >M(n)= R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x >O(n) .

Proof. Let q < x >= q(x, ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x, . . . , x(m1,m2,m3,...,mn)) ∈ R < x >M(n) . Then it is invariant

with respect to translations in Rn . This implies that

q < x >= q(
∂

∂u1
x,

∂

∂u2
x, . . . ,

∂

∂un
x, . . . , x(m1,m2,m3,...,mn)) = q <

∂

∂u1
x,

∂

∂u2
x, . . . ,

∂

∂un
x > .

It is also O(n)-invariant. Hence it is an O(n)-invariant differential rational function of ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x .

Conversely, assume that q is a O(n)-invariant differential rational function of ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x . Then it

is invariant with respect to translations in Rn . Hence it is M(n)-invariant. �

Lemma 2 Let f ∈ R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x >O(n) . Then there exist O(n)-invariant differential polynomials

f1, f2 such that f = f1/f2 .

Proof. Proof is similar to the proof in ([11], p. 106). �

Lemma 3 The system of all elements (x(m1,m2,...,mn), x(p1,p2,...,pn)) , where m1 + m2 + · · ·+ mn ≥ 1, p1 + p2 +

· · ·+ pn ≥ 1, mi ∈ N0, pi ∈ N0 , is a generating system of R < x >M(n) as a field.

Proof. Let R[x(m1,m2,...,mn), mi ∈ N0]O(n) be the R -algebra of all O(n)-invariant polynomials of the system{
x(m1,m2,...,mn)

}
, where mi ∈ N0, m1 +m2 + · · ·+mn ≥ 1. It is obvious that R[x(m1,m2,...,mn), mi ∈ N0]O(n) =

R
{

∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x
}O(n)

. According to the First Main Theorem for O(n) (see [19], p. 53), the system
{
(x(m1,m2,...,mn), x(p1,p2,...,pn))

}
, where m1 + m2 + · · · + mn ≥ 1, p1 + p2 + · · · + pn ≥ 1, mi ∈ N0, pi ∈ N0 , is

a generating system of the R -algebra R[x(m1,m2,...,mn), mi ∈ N0]O(n) = R
{

∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x
}O(n)

. Using

Lemmas 1 and 2, we obtain that the system
{
(x(m1,m2,...,mn), x(p1,p2,...,pn))

}
, where m1+m2 +· · ·+mn ≥ 1, p1+

p2 + · · ·+ pn ≥ 1, mi ∈ N0, pi ∈ N0 , is a generating system of R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x >O(n)= R < x >M(n)

as a field. �
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Denote by Δ = Δx the determinant det
∥∥∥( ∂

∂ui
x, ∂

∂uj
x)

∥∥∥
i,j=1,2,...,n

. Let V be the system Eq.(1). Denote

by R {V } the differential R -subalgebra of R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x >O(n) generated by elements of V .

Lemma 4 Δ ∈ R {V } .

Proof. By the definition of V , ( ∂
∂ui

x, ∂
∂uj

x) ∈ V for all 1 ≤ i, j ≤ n . Hence Δ ∈ R {V } . �

Denote by R
{
V, Δ−1

}
the differential R -subalgebra of R < ∂

∂u1
x, ∂

∂u2
x, . . . , ∂

∂un
x >O(n) generated

by elements of the system V and the function Δ−1 . According to Lemmas 1 and 3, for a proof of our

theorem, it is enough to prove that (x(m1,m2,...,mn), x(p1,p2,...,pn)) ∈ R
{
V, Δ−1

}
for all mi, pi ∈ N0 such that

m1 + m2 + · · ·+ mn ≥ 1 and p1 + p2 + · · ·+ pn ≥ 1.

Denote by Gr(y1, . . . , ym; z1, . . . , zm) the matrix ||(yi, zj)||i,j=1,2,...,m of vectors y1, . . . , ym, z1, . . . , zm in

Rn . Let detGr(y1 , y2, . . . , ym; z1, z2, . . . , zm) be the determinant of the matrix Gr(y1, y2, . . . , ym; z1, z2, . . . , zm).
The following is known.

Lemma 5 The equality

detGr(y1, y2, . . . , yn+1; z1, z2, . . . , zn+1) = det|| < yi, zj > ||i,j=1,2,...,n+1 = 0

holds for all vectors y1, y2, . . . , yn+1, z1, z2, . . . , zn+1 in Rn .

Proof. A proof is given in ([11], p. 106–107; [19], p. 75). �

Lemma 6 Let x(b1,b2,...,bn) and x(c1,c2,...,cn) be elements such that 1 ≤ b1 + b2 + · · · + bn, 1 ≤ c1 + c2 +

· · · + cn , (x(b1,b2,...,bn), ∂
∂ui

x) ∈ R
{
V, Δ−1

}
and (x(c1,c2,...,cn), ∂

∂ui
x) ∈ R

{
V, Δ−1

}
for all 1 ≤ i ≤ n . Then

(x(b1,b2,...,bn), x(c1,c2,...,cn)) ∈ R
{
V, Δ−1

}
.

Proof. Applying Lemma 5 to vectors

y1 = z1 =
∂

∂u1
x, y2 = z2 =

∂

∂u2
x, · · · , yn = zn =

∂

∂un
x, yn+1 = x(b1,b2,...,bn), zn+1 = x(c1,c2,...,cn),

we obtain the equality detA = 0, where

A = ‖(yi, zj)‖i,j=1,2,...,n+1 .

Let Dn+1j be the cofactor of the element (yn+1, zj) of the matrix A for j = 1, 2, . . . , n + 1. The equality

detA = 0 implies the equality

(yn+1, z1)Dn+11 + (yn+1, z2)Dn+12 + · · ·+ (yn+1, zn)Dn+1n + (yn+1, zn+1)Dn+1n+1 = 0. (2)

Since Δ = Dn+1n+1 , Eq. (2) implies the equality

(yn+1 , zn+1) = (x(b1,b2,...,bn), x(c1,c2,...,cn))=−(yn+1, z1)Dn+11 + (yn+1, z2)Dn+12 + · · ·+ (yn+1, zn)Dn+1n

Δ
. (3)
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In Eq. (3), by the supposition of the lemma, (yn+1, zj) = (x(b1,b2,...,bn), ∂
∂uj

x) ∈ R
{
V, Δ−1

}
for every

j : 1 ≤ j ≤ n . We prove that Dn+1s ∈ R
{
V, Δ−1

}
for every s : 1 ≤ s ≤ n . We have Dn+1s = (−1)n+1+s

detGr(y1 , y2, . . . , yn; z1, z2, . . . , zs−1, zs+1, . . . , zn, zn+1)). By the definition of V , we obtain (yi, zj) ∈ V ⊂
R {V } for all i, j : 1 ≤ i, j ≤ n . By the supposition of our lemma, we have (yi, zn+1) = ( ∂

∂ui
x, x(c1,c2,...,cn)) ∈

R
{
V, Δ−1

}
for every i : 1 ≤ i ≤ n . Hence Dn+1s ∈ R

{
V, Δ−1

}
for every s : 1 ≤ s ≤ n and Eq.(3) implies

(yn+1, zn+1) ∈ R
{
V, Δ−1

}
. �

Lemma 7 ( ∂
∂ui

∂
∂uj

x, ∂
∂ul

x) ∈ R
{
V, Δ−1

}
for all i, j, l ∈ {1, 2, . . . , n}.

Proof. We have
∂

∂uj
(

∂

∂ui
x,

∂

∂ui
x) = 2(

∂

∂ui

∂

∂uj
x,

∂

∂ui
x)

for all i, j ∈ {1, 2, . . . , n}. This equality implies ( ∂
∂ui

∂
∂uj

x, ∂
∂ui

x) ∈ R
{
V, Δ−1

}
for all i, j ∈ {1, 2, . . . , n}. Using

( ∂
∂ui

∂
∂uj

x, ∂
∂ui

x) ∈ R
{
V, Δ−1

}
and the equality

∂

∂ui
(

∂

∂ui
x,

∂

∂uj
x) = (

∂

∂ui

∂

∂ui
x,

∂

∂uj
x) + (

∂

∂ui
x,

∂

∂ui

∂

∂uj
x),

we obtain ( ∂
∂ui

∂
∂ui

x, ∂
∂uj

x) ∈ R
{
V, Δ−1

}
for all i, j ∈ {1, 2, . . . , n}. Assume that i �= j, i �= l, j �= l . We have

∂

∂uj
(

∂

∂ui
x,

∂

∂ul
x) = (

∂

∂ui

∂

∂uj
x,

∂

∂ul
x) + (

∂

∂ui
x,

∂

∂uj

∂

∂ul
x),

∂

∂ui
(

∂

∂uj
x,

∂

∂ul
x) = (

∂

∂ui

∂

∂uj
x,

∂

∂ul
x) + (

∂

∂uj
x,

∂

∂ui

∂

∂ul
x),

∂

∂ul
(

∂

∂ui
x,

∂

∂uj
x) = (

∂

∂ui

∂

∂ul
x,

∂

∂uj
x) + (

∂

∂ui
x,

∂

∂uj

∂

∂ul
x).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4)

Put ∂
∂uj

( ∂
∂ui

x, ∂
∂ul

x) = b1,
∂

∂ui
( ∂

∂uj
x, ∂

∂ul
x) = b2,

∂
∂ul

( ∂
∂ui

x, ∂
∂uj

x) = b3, ( ∂
∂ui

∂
∂uj

x, ∂
∂ul

x) = w1,

( ∂
∂uj

∂
∂ul

x, ∂
∂ui

x) = w2, ( ∂
∂ui

∂
∂ul

x, ∂
∂uj

x) = w3 . Then system Eq. (4) has the form: w1 + w2 = b1, w1 + w3 =

b2, w2 + w3 = b3 . We consider this system as a system of equations with respect to w1, w2, w3 . This system

has the unique solution (w1, w2, w3), where w1 = 1
2(b1 + b2 − b3) ∈ R

{
V, Δ−1

}
, w2 = 1

2(b1 + b3 − b2) ∈
R

{
V, Δ−1

}
, w3 = 1

2 (b2 + b3 − b1) ∈ R
{
V, Δ−1

}
. �

Lemma 8 (x(b1,b2,...,bn), ∂
∂ui

x) ∈ R
{
V, Δ−1

}
for all 1 ≤ i ≤ n and b1, b2, . . . , bn ∈ N0 such that 1 ≤

b1 + b2 + · · ·+ bn .

Proof. We prove this assertion by induction on p = b1 + b2 + · · ·+ bn . Let p = 1. By the definition of V ,

we have ( ∂
∂ui

x, ∂
∂uj

x) ∈ V ⊂ R
{
V, Δ−1

}
for all 1 ≤ i, j ≤ n . Hence the assertion holds for p = 1.
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Assume that the assertion holds for p > 1 that is assume that (x(b1,b2,...,bn), ∂
∂uj

x) ∈ R
{
V, Δ−1

}
for all 1 ≤ j ≤ n and b1, b2, . . . , bn ∈ N0 such that b1 + b2 + · · · + bn = p . By Lemma 7, we have

( ∂
∂ui

∂
∂uj

x, ∂
∂ul

x) ∈ R
{
V, Δ−1

}
for all i, j, l ∈ {1, 2, . . . , n}. Using Lemma 6 to (x(b1,b2,...,bn), ∂

∂uj
x) and

( ∂
∂ui

∂
∂uj

x, ∂
∂ul

x), we obtain that (x(b1,b2,...,bn), ∂
∂ui

∂
∂uj

x)) ∈ R
{
V, Δ−1

}
for all 1 ≤ i, j ≤ n and bs ∈ N0

such that b1 + b2 + · · ·+ bn = p . Since (x(b1,b2,...,bn), ∂
∂uj

x) ∈ R
{
V, Δ−1

}
by the supposition of our induction

and (x(b1,b2,...,bn), ∂
∂ui

∂
∂uj

x)) ∈ R
{
V, Δ−1

}
, the following equality

∂

∂ui
(x(b1,b2,...,bn),

∂

∂uj
x) = (

∂

∂ui
x(b1,b2,...,bn),

∂

∂uj
x) + (x(b1,b2,...,bn),

∂

∂ui

∂

∂uj
x).

implies that ( ∂
∂ui

x(b1,b2,...,bn), ∂
∂uj

x) ∈ R
{
V, Δ−1

}
for all i, j : 1 ≤ i, j ≤ n . This means that the assertion is

proved for p + 1. �

Lemma 9 (x(b1,b2,...,bn), x(c1,c2,...,cn)) ∈ R
{
V, Δ−1

}
for all b1, b2, . . . , bn, c1, c2, . . . , cn ∈ N0 such that 1 ≤

b1 + b2 + · · ·+ bn, 1 ≤ c1 + c2 + · · ·+ cn .

Proof. Using Lemmas 8 and 6, we obtain (x(b1,b2,...,bn), x(c1,c2,...,cn)) ∈ R
{
V, Δ−1

}
. �

We complete the proof of our theorem. By Lemma 4, Δ ∈ R {V } . Since R < V > is a field, we

obtain Δ−1 ∈ R < V > . Hence R
{
V, Δ−1

}
⊂ R < V > . By Lemma 9, (x(b1,b2,...,bn), x(c1,c2,...,cn)) ∈

R
{
V, Δ−1

}
⊂ R < V >⊂ R < x >M(n) for all b1, b2, . . . , bn, c1, c2, . . . , cn ∈ N0 such that 1 ≤ b1 + b2 +

· · ·+ bn, 1 ≤ c1 + c2 + · · · + cn . By Lemma 3, the system of all elements (x(m1,m2,...,mn), x(p1,p2,...,pn)), where

m1 + m2 + · · ·+ mn ≥ 1, p1 + p2 + · · ·+ pn ≥ 1, mi ∈ N0, pi ∈ N0 , is a generating system of R < x >M(n) as a

field. Hence R < V >= R < x >M(n) . The theorem is completed.

Let am ∈ Rn , m = 1, . . . , n , am = (am1 , am2, . . . , amn). The determinant det ‖aij‖i,j=1,2,...,n will be

denoted by [a1a2 · · ·an] . So
[
x(m11,m12,··· ,m1n)x(m21,m22,··· ,m2n) · · ·x(mn1,mn2,··· ,mnn)

]
is the determinant of the

vectors x(mi1,mi2,··· ,min) in Rn , i = 1, 2, . . . , n . Let SM(n) be the subgroup of M(n) generated by rotations
and translations of Rn .

Theorem 2 The system

[
∂

∂u1
x

∂

∂u2
x · · · ∂

∂un
x

]
,

(
∂

∂ui
x,

∂

∂uj
x

)
, 1 ≤ i ≤ j ≤ n, i + j < 2n, (5)

is a generating system of the differential field R < x >SM(n) .

Proof. First we prove several lemmas. Let SO(n) be the subgroup of O(n) generated by rotations of Rn .

Lemma 10 R < x >SM(n)= R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x >SO(n) .
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Proof. A proof is similar to the proof of Lemma 1. �

Lemma 11 Let f ∈ R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x >SO(n) . Then there exist SO(n)-invariant differential polyno-

mials f1, f2 such that f = f1/f2 .

Proof. A proof is similar to the proof in ([11], p. 106). �

Lemma 12 The system of all elements
[
x(m11,m12,··· ,m1n)x(m21,m22,··· ,m2n) · · ·x(mn1,mn2,··· ,mnn)

]
, (x(p1,p2,...,pn), x(q1,q2,··· ,qn)), (6)

where mi1 + mi2 + · · · + min ≥ 1, p1 + p2 + · · · + pn ≥ 1, q1 + q2 + · · · + qn ≥ 1 , is a generating system of

R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x >SO(n) as a field.

Proof. Let R[x(m1,m2,...,mn), m1+m2+· · ·+mn ≥ 1]SO(n) be the R -algebra of all SO(n)-invariant polynomi-

als of the system x(m1,m2,...,mn) , where m1+m2+· · ·+mn ≥ 1. According to the First Main Theorem for SO(n)

(see [19], p. 53), the system Eq. (6) is a generating system of R[x(m1,m2,...,mn), m1 + m2 + · · ·+ mn ≥ 1]SO(n) .

Lemma 11 implies that the system Eq. (6) is a generating system of R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x >SO(n) as a

field. �

Denote by Z the system Eq. (5) of differential polynomials. Let R {Z} be the differential R -subalgebra

of R < ∂
∂u1

x, ∂
∂u2

x, . . . , ∂
∂un

x >SO(n) generated by elements of the system Z .

Let δ = δx be the determinant of the matrix Gr(y1, y2, . . . , yn−1; z1, z2, . . . , zn−1), where y1 = z1 =
∂

∂u1
x, y2 = z2 = ∂

∂u2
x, · · · , yn−1 = zn−1 = ∂

∂un−1
x .

Lemma 13 (yi, zj) ∈ R {Z} for all 1 ≤ i, j ≤ n − 1 , δ ∈ R {Z} and δ−1 ∈ R < Z >.

Proof. Elements (yi, zj) of the determinant δ are functions
(

∂
∂ui

x, ∂
∂uj

x
)

, where 1 ≤ i, j ≤ n − 1. By the

definition of Z ,
(

∂
∂ui

x, ∂
∂uj

x
)
∈ Z ⊂ R {Z} for all 1 ≤ i, j ≤ n− 1. Hence δ ∈ R {Z} and δ−1 ∈ R < Z > . �

Let Δ be the function in the proof of Theorem 1.

Lemma 14 Δ ∈ R {Z} and Δ−1 ∈ R < Z >.

Proof. Since Δ =
[

∂
∂u1

x ∂
∂u2

x · · · ∂
∂un

x
]2

, we have Δ ∈ R {Z} . Hence Δ−1 ∈ R < Z > . �

Denote by R
{
Z, δ−1, Δ−1

}
the differential R -subalgebra of R < ∂

∂u1
x, ∂

∂u2
x, . . . , ∂

∂un
x > generated by

Z and functions δ−1, Δ−1 . By Lemmas 11 and 12, for a proof of our theorem, it is enough to prove that

(x(p1,...,pn), x(q1,··· ,qn)) and
[
x(m11,··· ,m1n) · · ·x(mn1,··· ,mnn)

]
elements of R

{
Z, δ−1, Δ−1

}
for all mij, pi, qi ∈ N0

such that mi1 + mi2 + · · ·+ min ≥ 1, p1 + p2 + · · ·+ pn ≥ 1, q1 + q2 + · · ·+ qn ≥ 1.
In the sequel, we need the following lemma.
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Lemma 15 The equality
[y1 . . . yn][z1 . . . zn] = det||(yi, zj)||i,j=1,2,...,n

holds for all vectors y1, . . . , yn, z1, . . . , zn in Rn .

Proof. A proof of the this lemma is given in ([11], p.72; [19], p. 53). �

Let V be the system in the proof of Theorem 1.

Lemma 16
(

∂
∂un

x, ∂
∂un

x
)
∈ R

{
Z, δ−1

}
and R

{
V, Δ−1

}
⊂ R

{
Z, δ−1, Δ−1

}
.

Proof. Using Lemma 15 to vectors y1 = z1 = ∂
∂u1

x, y2 = z2 = ∂
∂u2

x, · · · , yn = zn = ∂
∂un

x , we obtain

[
∂

∂u1
x

∂

∂u2
x · · · ∂

∂un
x

]2

= det ‖(yi, zj)‖i,j=1,2,...n = Δ. (7)

Denote by Dni the cofactor of the element (yn, zj) of the matrix A = ‖(yi, zj)‖i,j=1,2,...n for i =

1, 2, . . . , n . Then we obtain the equality

Δ = (yn, z1)Dn1 + (yn, z2)Dn2 + · · ·+ (yn, zn−1)Dnn−1 + (yn, zn)Dnn. (8)

Since δ = Dnn �= 0, equalities Eq. (7) and Eq. (8) imply

(yn, zn) =
(

∂

∂un
x,

∂

∂un
x

)
= Δδ−1 − (yn, z1)Dn1δ

−1 − (yn, z2)Dn2δ
−1 − (9)

· · · − (yn, zn−1)Dnn−1δ
−1.

In Eq. (9), (yn, zj) ∈ Z ⊂ R {Z} for every j : 1 ≤ j ≤ n−1 by the definition of Z . We prove that Dns ∈ R {Z}
for every 1 ≤ s ≤ n − 1. We have Dns = (−1)n+s detGr(y1 , y2, . . . , yn−1; z1, z2, . . . , zs−1, zs+1, . . . , zn). Ele-

ments of Dns have the following forms (yi, zj), where i, j < n , and (yi, zn), where i < n . By the definition of

Z , (yi, zj) ∈ Z ⊂ R {Z} for all i, j < n and (yi, zn) = (yn, zi) ∈ Z ⊂ R {Z} for all i < n . Hence Dns ∈ R {Z}

for every 1 ≤ s ≤ n − 1 and Eq. (9) implies (yn, zn) ∈ R
{
Z, δ−1

}
. Using

(
∂

∂un
x, ∂

∂un
x
)
∈ R

{
Z, δ−1

}
and

V ⊂ Z ∪ {(yn, zn)} , we obtain V ⊂ R
{
Z, δ−1

}
. Hence R

{
V, Δ−1

}
⊂ R

{
Z, δ−1, Δ−1

}
. �

Lemma 17 (x(p1,p2,··· ,pn), x(r1,r2,··· ,rn)) ∈ R
{
Z, δ−1, Δ−1

}
for all pi, ri ∈ N0 such that 1 ≤ p1 + p2 + · · ·+ pn

and 1 ≤ r1 + r2 + · · ·+ rn .

Proof. By Lemma 16, R
{
V, Δ−1

}
⊆ R

{
Z, δ−1, Δ−1

}
. Using R

{
V, Δ−1

}
⊆ R

{
Z, δ−1, Δ−1

}
and Lemma

9, we obtain (x(p1,p2,··· ,pn), x(r1,r2,··· ,rn)) ∈ R
{
Z, δ−1, Δ−1

}
for all pi, ri ∈ N0 such that 1 ≤ p1 + p2 + · · ·+ pn

and 1 ≤ r1 + r2 + · · ·+ rn . �

Lemma 18
[
x(m11,m12,··· ,m1n)x(m21,m22,··· ,m2n) · · ·x(mn1,m2,··· ,mnn)

]
∈ R

{
Z, δ−1, Δ−1

}
for all

mij ∈ N0 such that mi1 + mi2 + · · ·+ min ≥ 1, i = 1, 2, . . . , n .
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Proof. Using Lemma 15 to y1 = ∂
∂u1

x, y2 = ∂
∂u2

x, · · · , yn = ∂
∂un

x; z1 = x(m11,m12,··· ,m1n), z2 =

x(m21,m22,··· ,m2n) . . . , zn = x(mn1,mn2,··· ,mnn) , we obtain that

[y1 . . . yn][z1 . . . zn] = det||(yi, zj)||i,j=1,2,...,n. (10)

Since Δ = [y1 . . . yn]2 , Eq. (10) implies

[z1 . . . zn] = Δ−1[y1 . . . yn]det||(yi, zj)||i,j=1,2,...,n.

By Lemma 17, (yi, zj) = ( ∂
∂ui

x, x(mj1,mj2,··· ,mjn)) ∈ R
{
Z, δ−1, Δ−1

}
for all i, j = 1, 2, . . . , n . Since

[y1 . . . yn] ∈ Z ⊂ R
{
Z, δ−1, Δ−1

}
, we obtain [z1 . . . zn] ∈ R

{
Z, δ−1, Δ−1

}
. �

We complete the proof of our theorem. By Lemmas 13 and 14, δ−1, Δ−1 ∈ R < Z > . Hence

R
{
Z, δ−1, Δ−1

}
⊂ R < Z > . By Lemma 17, (x(b1,b2,...,bn), x(c1,c2,...,cn)) ∈ R

{
Z, δ−1, Δ−1

}
⊂ R < Z >

for all b1, b2, . . . , bn, c1, c2, . . . , cn ∈ N0 such that 1 ≤ b1 + b2 + · · ·+ bn, 1 ≤ c1 + c2 + · · ·+ cn . By Lemma 18,[
x(m11,m12,··· ,m1n)x(m21,m22,··· ,m2n) · · ·x(mn1,m2,··· ,mnn)

]
∈ R

{
Z, δ−1, Δ−1

}
⊂ R < Z > for all mij ∈ N0 such

that mi1 +mi2 + · · ·+min ≥ 1, i = 1, 2, . . . , n . Hence Lemmas 10 and 12 imply that R < Z >= R < x >SM(n) .
The theorem is complete.

4. The conditions of G-equivalence of vector fields

In this section, J is a connected open subset of Rn .

Definition 8 A J -vector field x will be called regular if
[

∂
∂u1

x(u) ∂
∂u2

x(u) . . . ∂
∂un

x(u)
]
�= 0 for all u ∈ J . The

set of all regular vector fields in Rn will be denoted by Hreg(n) .

Let x(u) be a regular vector field in Rn . Put Dix(u) = ∂
∂ui

x(u). Let
{
D1x(u), . . . , Dnx(u)

}
be the

biorthonormal system of the system {D1x(u), . . . , Dnx(u)} that is (Dix(u), Djx(u)) = δj
i for all u ∈ J and

i, j = 1, . . . , n . The following derivation formulas for vector fields are known ([18], p. 116):

{ ∂
∂ui

∂
∂uj

x(u) =
∑n

s=1 ps
ij {x}Dsx(u),

i, j = 1, 2, . . . , n;
(11)

{ ∂
∂ui

∂
∂uj

x(u) =
∑n

s=1 pij,s {x}Dsx(u),
i, j = 1, 2, . . . , n.

(12)

The functions pij,s {x} , ps
ij {x} are called the Christoffel symbols of the first and second kinds of a vector

field respectively.

Let x(u) be a vector field. Put gij(x) =
(

∂
∂ui

x, ∂
∂uj

x
)

. The form I(x) =
∑n

i,j=1 gij(x)duiduj will

be called the first fundamental form of a vector field x(u). According to Lemma 7, we have pij,s {x} =

( ∂2

∂ui∂uj
x, ∂

∂us
x) = 1

2( ∂
∂uj

gsi(x) + ∂
∂ui

gsj(x) − ∂
∂us

gij(x)) for all i, j, s = 1, 2, . . . , n .
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Theorem 3 Let x(u) and y(u) be regular J -vector fields in Rn . Then the following conditions are equivalent:

1. ps
ij {x(u)} = ps

ij {y(u)} for all u ∈ J and i, j, s = 1, 2, . . . , n ;

2. x
Aff(n)∼ y .

Proof. First we prove the following lemma.

Lemma 19 ps
ij {x} ∈ R

{
V, Δ−1

}
for all 1 ≤ i, j, s ≤ n .

Proof. Let i, j be fixed. We consider ∂
∂ui

∂
∂uj

x(u) =
∑n

s=1 ps
ij {x}Dsx(u) as a system of linear equations

with respect to p1
ij {x} , . . . , pn

ij {x}. Since [D1x(u), D2x(u), . . . , Dnx(u)] is the determinant of this system and

x(u) is a regular vector field, [D1x(u), D2x(u), . . . , Dnx(u)] �= 0 for all u ∈ J . Hence the system has the
following solutions:

ps
ij {x} =

[
D1x . . .Ds−1x

∂
∂ui

( ∂
∂uj

x)Ds+1x . . .Dnx
]

[D1xD2x . . .Dnx]
,

where s = 1, 2, . . . , n . This equality implies

ps
ij {x} =

[
D1x . . .Ds−1x

∂
∂ui

( ∂
∂uj

x)Ds+1x . . .Dnx
]
[D1xD2x . . .Dnx]

[D1xD2x . . .Dnx]2
. (13)

Using Lemmas 15 and 9, we obtain that
[
D1x . . .Ds−1x

∂

∂ui
(

∂

∂uj
x)Ds+1x . . .Dnx

]
[D1xD2x . . .Dnx] ∈ R

{
V, Δ−1

}
.

Since Δx = [D1xD2x . . .Dnx]2 , we have ps
ij {x} ∈ R

{
V, Δ−1

}
for all 1 ≤ i, j, s ≤ n . The lemma is proved.

(2) → (1). Let x
Aff(n)∼ y . Then Eq. (13) implies that the function ps

ij {x} is Aff(n)-invariant. Hence

ps
ij {x(u)} = ps

ij {y(u)} for all i, j, s = 1, 2, . . . , n and u ∈ J .

(1) → (2). Assume that the equality ps
ij {x(u)} = ps

ij {y(u)} holds for all i, j, s = 1, 2, . . . , n and u ∈ J .

Put A(x) = ‖D1xD2x . . .Dnx‖ and ∂
∂ui

A(x) =
∥∥∥ ∂

∂ui
D1x

∂
∂ui

D2x . . . ∂
∂ui

Dnx
∥∥∥ , where we consider Dix as a

column-vector. Eq. (11) implies A(x)−1 ∂
∂ui

A(x) =
∥∥ps

ij {x}
∥∥

s=1,...,n;j=1,...,n
. Using ps

ij {x(u)} = ps
ij {y(u)}

for all i, j, s = 1, 2, . . . , n , we obtain A(x(u))−1 ∂
∂ui

A(x(u)) = A(y(u))−1 ∂
∂ui

A(y(u)) for all i = 1, 2, . . . , n and

u ∈ J .

Now we complete the proof of our theorem. The equality A(x)−1 ∂
∂ui

A(x) = A(y)−1 ∂
∂ui

A(y) implies

∂

∂ui
(A(y)A(x)−1) = (

∂

∂ui
A(y))A(x)−1 + A(y)

∂

∂ui
(A(x)−1) = (

∂

∂ui
A(y))A(x)−1 −

A(y)A(x)−1(
∂

∂ui
A(x))A(x)−1 = A(y)(A(y)−1 ∂

∂ui
A(y) − A(x)−1 ∂

∂ui
A(x))A(x)−1 = 0
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for all i = 1, 2, . . . , n and u ∈ J . Using this equality for all i = 1, 2, . . . , n , we obtain that the matrix

A(y(u))A(x(u))−1 is not depend on u ∈ J . Put F = A(y)A(x)−1 . According to detA(x(u)) �= 0 and

detA(y(u)) �= 0 for all u ∈ J , we have detF �= 0 and A(y) = FA(x) for all u ∈ J . The equality

A(y(u)) = FA(x(u)) implies ∂
∂ui

y(u) = F ∂
∂ui

x(u) for all i = 1, 2, . . . , n and u ∈ J . Then there exists a

constant vector b ∈ Rn such that y(u) = Fx(u) + b for all u ∈ J . Theorem 3 is complete. �

This theorem means the system
{
ps

ij {x(u)} , i, j, s = 1, 2, . . . , n
}

of all Christoffel symbols of the second

kind is a complete system of Aff(n)-invariants of a vector field on the set Hreg(n). Below we prove that the

system of all Christoffel symbols of the first and second kind is a complete system of M(n)− invariants of a

vector field (Theorem 5).

Corollary 1 Let K be a set. Every Aff(n)-invariant function h : Hreg(n) → K is a function of the system{
ps

ij {x(u)} , i, j, s = 1, 2, . . . , n
}
.

Proof. A proof follows from Theorem 3 and Proposition 1. �

Let x(u) and y(u) be vector fields in Rn such that x
M(n)∼ y . Then f {x} = f {y} for any M(n)-

invariant differential polynomial f {x} . In particularly, gij(x(u)) = gij(y(u)) for all u ∈ J and i, j such that
1 ≤ i ≤ j ≤ n . The converse theorem is true for regular vector fields:

Theorem 4 Let x(u) and y(u) be regular vector fields in Rn such that

gij(x(u)) = gij(y(u)) (14)

for all u ∈ J and i, j such that 1 ≤ i ≤ j ≤ n . Then x
M(n)∼ y .

Proof. Since Δx(u) = det ‖gij(x)‖ , equalities Eq. (14) imply Δx(u) = Δy(u) for all u ∈ J . Using

Δx(u) �= 0, Δy(u) �= 0 for regular vector fields x and y , we get

Δx(u)−1 = Δy(u)−1 (15)

for all u ∈ J . Let V be the system {gij(x), 1 ≤ i ≤ j ≤ n} and f {x} ∈ R
{
V, Δ−1

}
). Then Eq. (14) and Eq.

(15) imply

f {x(u)} = f {y(u)} (16)

for all u ∈ J .

By Lemma 19, ps
ij {x} ∈ R

{
V, Δ−1

}
for all i, j, s = 1, 2, . . . , n . Then Eq. (16) implies ps

ij {x(u)} =

ps
ij {y(u)} for all u ∈ J and i, j, s = 1, 2, . . . , n . By Theorem 3, there exists F ∈ GL(n) and b ∈ Rn such that

y(u) = Fx(u) + b for all u ∈ J . We prove that F ∈ O(n).

Let A(x)� be the transpose matrix of the matrix A(x) in Theorem 3. Using the equality A(x)�A(x) =

‖gij(x(u))‖i,j=1,2,...,n and Eq. (14), we obtain A(x)�A(x) = A(y)�A(y). Since x(u) is a regular vector field,
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we have detA(x(u)) �= 0 for all u ∈ J . Hence equalities A(x)�A(x) = A(y)�A(y) and A(y) = FA(x) imply

F�F = E , where E is the unit matrix. Thus F ∈ O(n). �

Corollary 2 Let K be a set. Every M(n)-invariant function h : Hreg(n) → K is a function of elements of

V .
Proof. A proof follows from Theorem 4 and Proposition 1. �

Theorem 5 Let x(u) and y(u) be regular vector fields in Rn . Assume that the following conditions hold:

1. there exists u0 ∈ J such that det( ∂
∂ui

A(x(u0))) �= 0 for some i = 1, 2, . . . , n ;

2. ps
ij {x(u)} = ps

ij {y(u)} for all u ∈ J and i, j, s = 1, 2, . . . , n ;

3. pij,s {x(u)} = pij,s {y(u)} for all u ∈ J and i, j, s = 1, 2, . . . , n .

Then x
M(n)∼ y .

Proof. As in Theorem 3, equalities ps
ij {x} = ps

ij {y} for all i, j, s = 1, 2, . . . , n imply the existence of

F ∈ GL(n) and b ∈ Rn such that y(u) = Fx(u) + b for all u ∈ J . We prove that F ∈ O(n). Equalities

pij,s {x} = ( ∂2

∂ui∂uj
x, ∂

∂us
x) imply ‖pij,s {x(u)}‖s,j=1,2,...,n = A(x)� ∂

∂ui
A(x(u)). By the condition 3 of our the-

orem, we obtain A(x)� ∂
∂ui

A(x(u)) = A(y)� ∂
∂ui

A(y(u)) for all i = 1, 2, . . . , n . Using A(y(u)) = FA(x(u)) and

detA�(x(u)) = detA(x(u)) �= 0 for all u ∈ J , we get ∂
∂ui

A(x(u)) = F�F ∂
∂ui

A(x(u)) for all i = 1, 2, . . . , n .

Since det( ∂
∂ui

A(x(u0))) �= 0 for some u0 and i , this equality implies F�F = E . Hence F ∈ O(n). �

Proposition 3 The system V = {gij(x), 1 ≤ i, j ≤ n} is a minimal complete system of invariants of a vector

field on Hreg(n) for the group M(n) .

Proof. Prove the subset V \ {g11} is not a complete system of invariants on Hreg(n). Let J = In ,

where I = (0, 1) is the open interval of R . Consider the following two J -vector fields in Rn : x(u) =

(u1, u2, . . . , un), y(u) = (2u1, u2, . . . , un). We have g11(x)(u) = 1, g11(y)(u) = 4, gjj(x)(u) = gjj(y)(u) = 1

for all j ∈ {2, . . . , n} and gpq(x)(u) = gpq(y)(u) = 0 for all p, q ∈ {1, 2, . . . , n} such that p �= q . Since g11(x)

and g11(y) are M(n)-invariants, g1(x) = 1, g11(y) = 4, we obtain that the vector fields x and y are not

M(n)-equivalent. Hence the subsystem V \ {g11(x)} is not complete on Hreg(n). Similarly, the subsystem

V \ {gii(x)} is not complete on Hreg(n) for every i ∈ {2, . . . , n}.

Prove the subset V \{g12} is not a complete system of invariants on Hreg(n): Consider the following two

vector fields in Rn : x(u) = (u1, u2, . . . , un), y(u) = ( 1√
2
u1,

1√
2
u1+u2, . . . , un). We have gjj(x)(u) = gjj(y)(u) =

1 for all j ∈ {1, 2, . . . , n}, gpq(x)(u) = gpq(y)(u) = 0 for all p, q ∈ {1, 2, . . . , n} such that p �= q, (p, q) �= (1, 2).

Since g12(x) and g12(y) are M(n)-invariants, g12(x) = 0, g12(y) = 1√
2
, we obtain that the vector fields x

and y are not M(n)-equivalent. Hence the subsystem V \ {g12(x)} is not complete on Hreg(n). Similarly, the
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subsystem V \ {gij(x)} is not complete on Hreg(n) for every i, j ∈ {1, 2, . . . , n} such that i �= j . �

Theorem 6 Assume that x(u) and y(u) are regular vector fields in Rn such that

(
∂

∂ui
x(u),

∂

∂uj
x(u)

)
=

(
∂

∂ui
y(u),

∂

∂uj
y(u)

)
,

[
∂

∂u1
x(u)

∂

∂u2
x(u) · · · ∂

∂un
x(u)

]
=

[
∂

∂u1
y(u)

∂

∂u2
y(u) · · · ∂

∂un
y(u)

]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(17)

for all u ∈ J and all 1 ≤ i ≤ j ≤ n, i + j < 2n . Then x
SM(n)∼ y .

Proof. Let Z be the system Eq. (5) in Theorem 2 and f {x} ∈ R {Z} . Then Eq. (17) imply

f {x(u)} = f {y(u)} (18)

for all u ∈ J . Let δ = δx be the function in the proof of Theorem 2. By Lemma 13, δx ∈ R {Z} . Hence Eq.

(18) implies δx(u) = δy(u) for all u ∈ J . The following lemma will help us to complete the proof. �

Lemma 20 δx(u) �= 0 and δy(u) �= 0 for all u ∈ J .

Proof. Since x(u) is a regular vector field, we have
[

∂
∂u1

x(u) ∂
∂u2

x(u) · · · ∂
∂un

x(u)
]

�= 0 for all u ∈

J . Hence vectors ∂
∂u1

x(u), ∂
∂u2

x(u), · · · , ∂
∂un

x(u) are linearly independent for all u ∈ J . Then vectors

∂
∂u1

x(u), ∂
∂u2

x(u), · · · , ∂
∂un−1

x(u) also are linearly independent. This implies det
∥∥∥( ∂

∂ui
x, ∂

∂uj
x)

∥∥∥
i,j=1,2,...,n−1

=

δx(u) �= 0 for all u ∈ J . Similarly, δy(u) �= 0 for all u ∈ J . �

The equality δx = δy for all u ∈ J and Lemma 20 imply δ−1
x = δ−1

y for all u ∈ J . Let f {x} ∈
R

{
Z, δ−1

}
). Then the equality δ−1

x = δ−1
y , Eq. (17) and Eq. (18) imply

f {x(u)} = f {y(u)} (19)

for all u ∈ J . Using Eq. (19) and Lemma 16, we obtain the equality
(

∂
∂un

x(u), ∂
∂un

x(u)
)

=
(

∂
∂un

y(u), ∂
∂un

y(u)
)

.

This equality and Eq. (17) imply Eq. (14). Hence by theorem 4 there exist F ∈ O(n) and b ∈ Rn such that

y(u) = Fx(u) + b . Using this equality and the equality
[

∂
∂u1

x · · · ∂
∂un

x
]

=
[

∂
∂u1

y · · · ∂
∂un

y
]

in Eq.(17), we

get
[

∂
∂u1

x · · · ∂
∂un

x
]

=detF
[

∂
∂u1

x · · · ∂
∂un

x
]
. Since Δx(u) =

[
∂

∂u1
x · · · ∂

∂un
x
]2

�= 0 for all u ∈ J , we obtain

detF = 1. This means that x
SM(n)∼ y . Theorem 6 is proved.

Proposition 4 The system Z is a minimal complete system of invariants of a vector field on Hreg(n) for the

group SM(n) .
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Proof. Prove that the subsystem Z \
{[

∂
∂u1

x ∂
∂u2

x · · · ∂
∂un

x
]}

is not complete on Hreg(n). Let J =

In , where I = (0, 1) is the open interval of R . Consider the following vector fields in Rn : x(u) =

(u1, u2, . . . , un), y(u) = (−u1, u2, . . . , un). Then gjj(x)(u) = gjj(y)(u) = 1 for all j ∈ {1, 2, . . . , n− 1} and

gpq(x)(u) = gpq(y)(u) = 0 for all p, q ∈ {1, 2, . . . , n} such that p �= q . We have
[

∂
∂u1

x ∂
∂u2

x · · · ∂
∂un

x
]

= 1 and
[

∂
∂u1

y ∂
∂u2

y · · · ∂
∂un

y
]

= −1. Since the function
[

∂
∂u1

x ∂
∂u2

x · · · ∂
∂un

x
]

is SM(n)-invariant,
[

∂
∂u1

x ∂
∂u2

x · · · ∂
∂un

x
]
�=

[
∂

∂u1
y ∂

∂u2
y · · · ∂

∂un
y
]
, we obtain that the vector fields x and y are not SM(n)-

equivalent. Hence the subsystem Z \
{[

∂
∂u1

x ∂
∂u2

x · · · ∂
∂un

x
]}

is not complete on Hreg(n).

Prove that the subsystem Z \ {g11} is not complete on Hreg(n): Consider the following two vector fields

in Rn : x(u) = (u1, u2, . . . , un), y(u) = (2u1, u2, . . . ,
1
2
un). We have g11(x)(u) = 1, g11(y)(u) = 4, gjj(x)(u) =

gjj(y)(u) = 1 for all j ∈ {2, . . . , n − 1} ,
[

∂
∂u1

x ∂
∂u2

x · · · ∂
∂un

x
]

=
[

∂
∂u1

y ∂
∂u2

y · · · ∂
∂un

y
]

= 1 and gpq(x)(u) =

gpq(y)(u) = 0 for all p, q ∈ {1, 2, . . . , n} such that p �= q . Since g11(x) and g11(y) are SM(n)-invariants,

g11(x) = 1, g11(y) = 4, we obtain that the vector fields x and y are not SM(n)-equivalent. Hence the

subsystem Z \ {g11(x)} is not complete on Hreg(n). Similarly, the subsystem Z \ {gii(x)} is not complete on

Hreg(n) for every i ∈ {2, . . . , n− 1} .

Prove that the subsystem Z \ {g12} is not complete on Hreg(n). Consider the following two vector fields

in Rn : x(u) = (u1, u2, . . . , un), y(u) = ( 1√
2
u1,

1√
2
u1 + u2, . . . ,

√
2un). We have gjj(x)(u) = gjj(y)(u) = 1 for

all j ∈ {1, 2, . . . , n− 1} ,
[

∂
∂u1

x ∂
∂u2

x · · · ∂
∂un

x
]

=
[

∂
∂u1

y ∂
∂u2

y · · · ∂
∂un

y
]

= 1 and gpq(x)(u) = gpq(y)(u) = 0

for all p, q ∈ {1, 2, . . . , n} such that p �= q, (p, q) �= (1, 2). Since g12(x) and g12(y) are SM(n)-invariants,

g12(x) = 0, g12(y) = 1√
2
, we obtain that the vector fields x and y are not SM(n)-equivalent. Hence the

subsystem Z \ {g12(x)} is not complete on Hreg(n). Similarly, the subsystem Z \ {gij(x)} is not complete on

Hreg(n) for every i, j ∈ {1, 2, . . . , n} such that i �= j . �
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