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a four–holed sphere
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Abstract

We compute the growth series and the growth functions of reducible and pseudo-Anosov elements of the

pure mapping class group of the sphere with four holes with respect to a certain generating set. We prove

that the ratio of the number of pseudo-Anosov elements to that of all elements in a ball with center at the

identity tends to one as the radius of the ball tends to infinity.
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1. Introduction

A finitely generated group can be seen as a metric space after fixing a finite generating set. The metric is
the so called word metric. As is well-known, the mapping class group of a compact surface is finitely generated,
thus a metric space.

One of the purposes of this note is to prove that, after fixing a certain set of generators, in a ball centered
at the identity in the pure mapping class group of a four holed sphere (which is a free group of rank two),
almost all elements are pseudo–Anosov. More precisely, in a ball with center at the identity, the ratio of the
number of pseudo–Anosov elements to the number of all elements tends to one as the radius of the ball tends
to infinity. In fact, we prove more: We give the growth series of reducible and of pseudo–Anosov elements with
respect to a fixed set of generators. It turns out that the growth functions of these elements are rational. This
gives a partial answer to Question 3.13 and verifies Conjecture 3.15 in [2] in a special case. Similar results are

proved in [5] and [6] by using different methods, which do not immediately imply the results of this paper.

2. Preliminaries

Let G be a finitely generated group with a finite generating set A , so that every element of G can be

written as a product of elements in A∪A−1 . The length of an element g ∈ G (with respect to A) is defined as

||g||A = min{k : g = a1a2 · · ·ak, ai ∈ A ∪ A−1}.
1991 AMS Mathematics Subject Classification: 57N05, 20F38.
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The distance between two elements g and h is defined as dA(g, h) = ||h−1g||A . The function dA is a metric on
G , called the word metric. Of course, this metric depends heavily on the generating set. The choice of different
generating sets give rise to equivalent metrics. We will always fix a finite generating set A and drop A from
the notation.

For a subset P of G , the growth series of P relative to the generating set A is the formal power series∑
cnxn , where the coefficient cn of xn is the number of elements of length n in P . The growth function of P

is the function represented by the growth series. In the mapping class group, we may take P to be periodic,
reducible or pseudo-Anosov elements.

Let S be a compact connected orientable surface of genus g with r ≥ 0 holes (= boundary components).

The mapping class group Mod(S) = Mod(g, r) of S is defined as the group of isotopy classes of orientation-

preserving homeomorphisms S → S . The subgroup PMod(g, r) of Mod(g, r) consisting of isotopy classes of
homeomorphisms preserving each boundary component of S is the pure mapping class group.

Thurston’s classification of surface diffeomorphisms says that, for a mapping class f which is not the
identity, one of the following holds: (1) f is periodic, i.e. fm = 1 for some m ≥ 2; (2) f is reducible, i.e. there

is a (closed) one-dimensional submanifold C of S such that f(C) = C ; (3) f is pseudo-Anosov (Anosov if S

is a torus). It is well known that f is pseudo-Anosov if and only if f is neither periodic nor reducible.

It is well known that the mapping class group Mod(1, 0) of a torus is isomorphic to SL(2, Z). The

elements of the group Mod(1, 0) are classified by the traces of the corresponding matrices; if f is an element of

Mod(1, 0), then it is periodic if |trace(f)| < 2, reducible if |trace(f)| = 2, and Anosov if |trace(f)| > 2 (cf. see

[1]). In [7], Takasawa computed the growth series of periodic, reducible and Anosov elements of Mod(1, 0) and
found their growth functions. He proved that almost all elements of the mapping class group of the torus are
Anosov. That is, with respect to a certain generating set, the ratio of the number of Anosov elements to the
number of all elements in a ball centered at the identity tends to one as the radius of the ball tends to infinity.

Now let S be a sphere with four holes and let a and b be two distinct nonisotopic simple closed curves
on S such that each of a and b separates S into two pairs of pants and that a intersects b precisely at two
points (c.f. Figure 1). It is well known that PMod(0, 4) is isomorphic to the free group F2 and freely generated
by the Dehn twists ta and tb about a and b respectively. We will always take this generating set below.

3. The number of reducible and pseudo-Anosov elements in the mapping class group PMod(0, 4)

3.1. Counting certain elements in the free group of rank two

We begin by counting certain type of elements in the free group of rank two. Let F2 be the free group
of rank two freely generated by {α, β} . We fix this set of generators throughout this subsection.

The next lemma is elementary and is easy to prove.

Lemma 3.1 The growth series of F2 is

h(x) = 1 + 4x + 4 · 3x2 + 4 · 32x3 + · · ·+ 4 · 3n−1xn + · · · .

For an element γ ∈ F2 , let C(γ, n) denote the set of elements in F2 of length n of the form wγkw−1 ,

where k is an integer and w ∈ F2 . Let |C(γ, n)| denote the cardinality of C(γ, n).
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Lemma 3.2 1. If wαkw−1 and vαlv−1 are reduced, then wαkw−1 = vαlv−1 if and only if w = v and
k = l .

2. For each nonnegative integer r , |C(α, 2r + 1)| = |C(α, 2r + 2)| = |C(β, 2r + 1)| = |C(β, 2r + 2)| = 2 · 3r .

3. For each nonnegative integer r , |C(αβ, 2r + 1)| = 0 and |C(αβ, 2r + 2)| = 4 · 3r .

Proof. If wαkw−1 = vαlv−1 , then αk−l = w−1vαlv−1wα−l , a commutator. Hence, k = l . Now, by looking

at the lengths of each side of αk = w−1vαkv−1w , we deduce that w = v . The converse is clear, proving (1).

Define a function φ : C(α, 2r + 1) → C(α, 2r + 2) by

φ(wαkw−1) =
{

wαk+1w−1, if k > 0
wαk−1w−1, if k < 0,

where wαkw−1 is reduced. Clearly, the function φ is onto. It follows from (1) that it is also one-to-one.

Consider also the automorphism ψ : F2 → F2 given by ψ(α) = β and ψ(β) = α . The map ψ is an isometry

and ψ(C(α, n)) = C(β, n). Thus, the first three equalities in (2) are proved. In order to complete the proof

of (2), we show |C(α, 2r + 1)| = 2 · 3r . The proof of this claim is by induction on r .

Note that if k is even then the length of wαkw−1 is even for any w ∈ F2 . Hence, C(α, 2r + 1) contains

the conjugates of odd powers of α . Note also that if wαkw−1 is a reduced word of length n , then −n ≤ k ≤ n .

The set C(α, 1) contains only two elements, α and α−1 . Hence, the claim holds in the case r = 0.

Assume that |C(α, 2r+1)| = 2 · 3r . Define a function ϕ from C(α, 2r+1) to the subsets of C(α, 2r+3)
as follows:
• ϕ(α2r+1) = {α2r+3, βα2r+1β−1, β−1α2r+1β} ;

• ϕ(α−(2r+1)) = {α−(2r+3), βα−(2r+1)β−1, β−1α−(2r+1)β} ;

• ϕ(αwα−1) = {α2wα−2, βαwα−1β−1, β−1αwα−1β} ;

• ϕ(α−1wα) = {α−2wα2, βα−1wαβ−1, β−1α−1wαβ} ;

• ϕ(βwβ−1) = {β2wβ−2, αβwβ−1α−1, α−1βwβ−1α} ;

• ϕ(β−1wβ) = {β−2wβ2, αβ−1wβα−1, α−1β−1wβα} .

It is easy to check that the set

{ϕ(x) : x ∈ C(α, 2r + 1)}

is a partition of C(α, 2r + 3). That is, elements of this set are pairwise disjoint and their union is equal to

C(α, 2r + 3). We deduce from this that |C(α, 2r+ 3)| = 3|C(α, 2r + 1)| = 2 · 3r+1 , completing the proof of (2).

It is clear that |C(αβ, 2r+1)| = 0 for all r ≥ 0. Note that for any w ∈ F2 , the word length of w(αβ)kw−1

is at least 2|k| . That is, the set C(αβ, 2r + 2) does not contain any conjugate of (αβ)k for |k| > r + 1.

The element (βα)n is conjugate to (αβ)n and any element in C(αβ, 2r + 2) is of the form w(αβ)nw−1

or w(βα)nw−1 for some w ∈ F2 with ||w|| = r + 1 − n . Hence, we will only consider the (reduced) words in
these two forms.

The only conjugates of (αβ)k for |k| = r + 1 contained in C(αβ, 2r + 2) are elements of

Ar+1 = {(αβ)r+1, (βα)r+1 , (αβ)−(r+1), (βα)−(r+1)}.
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All other elements of C(αβ, 2r + 2) are conjugates of (αβ)k for |k| ≤ r , hence they are conjugates of elements

of C(αβ, 2r).

Consider the subset of C(αβ, 2r) consisting of the conjugates of (αβ)±r . They form the set

Ar = {(αβ)r, (βα)r , (αβ)−r, (βα)−r}.

Each element of Ar gives rise two elements of length 2r + 2 by conjugation. For instance, one may conjugate

(αβ)r only with α and β−1 in order to get an element of length 2r+2. Therefore, there are eight such elements

in C(αβ, 2r + 2).

The elements of the difference C(αβ, 2r)−Ar are of the form αwα−1 , α−1wα , βwβ−1 or β−1wβ . The

number of such elements is |C(αβ, 2r)|−4 and each gives rise to three elements of length 2r +2 by conjugation

(if there is cancellation, we do not need to take them).

It follows that
|C(αβ, 2r + 2)| = 4 + 8 + 3 (|C(αβ, 2r)| − 4) = 3|C(αβ, 2r)|.

Now, (3) follows from the fact that C(αβ, 2) consists of four elements; namely,

C(αβ, 2) = {αβ, βα, (αβ)−1, (βα)−1}.

This finishes the proof of the lemma. �

Corollary 3.3 The number of elements of length n conjugate to a power of α , β or αβ is 4 · 3r if n = 2r +1
and 8 · 3r if n = 2r + 2 (r ≥ 0) .

Proof. The set of elements of length n conjugate to the given elements is C(α, 2r + 1) ∪ C(β, 2r + 1) if

n = 2r + 1 and C(α, 2r + 2)∪C(β, 2r + 2)∪C(αβ, 2r + 2) if n = 2r + 2. These sets are pairwise disjoint. The
result now follows from Lemma 3.2. �

3.2. The mapping class group PMod(0, 4)

Since PMod(0, 4) is isomorphic to F2 , there are no periodic elements in PMod(0, 4). Elements of

PMod(0, 4) different from the identity are either reducible or pseudo-Anosov. In this section, we compute the

growth series and the growth functions of these elements in PMod(0, 4).

Let S be a sphere with four holes. A simple closed curve a on S is called trivial if either it bounds a
disc or it is parallel to a boundary component. Otherwise, it is called nontrivial.

Let us fix two nontrivial simple closed curves a and b on S intersecting transversely twice as in Figure 1.
It is well known that the Dehn twists ta and tb generate the group PMod(0, 4) freely. By the lantern relation,
there is a unique simple closed curve c on S separating S into two pairs of pants and intersecting both a and

b twice such that the Dehn twists ta, tb and tc satisfy tatbtc = 1 (c.f. Figure 1). Thus, we have tc = (tatb)−1 ,
and hence conjugates of powers ta , tb and tatb are reducible. In fact, they are the only reducible elements in
PMod(0, 4).
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Figure 1. The Dehn twists about a, b, c satisfy tatbtc = 1 in PMod(0, 4) by the lantern relation.

Lemma 3.4 The reducible elements of PMod(0, 4) consist of conjugates of nonzero powers of ta , tb and tatb .

Proof. Let f be a reducible element PMod(0, 4). Then F (d) = d for some nontrivial simple closed curve d

and F ∈ f . Thus, tdf = ftd , since ftdf−1 = tF (d) = td . Since PMod(0, 4) is a nonabelian free group and td

can be completed to a free basis of PMod(0, 4), we conclude that f = tkd for some nonzero integer k .

It follows from the classification of simple closed curves on S (c.f. see [4]) that there is a homeomorphism

H : S → S preserving each boundary component of S such that H(d) ∈ {a, b, c} .

Let h denote the isotopy class of H in PMod(0, 4). If H(d) = a then f = tkd = h−1tkah , if H(d) = b

then f = h−1tkb h , and if H(d) = c then f = h−1tkc h = h−1(tatb)−kh , proving the lemma. �

We are now ready to state and prove the main result of this paper.

Theorem 3.5 With respect to the generating set {ta, tb} of PMod(0, 4) ,

1. the growth series of reducible elements is

r(x) = 4(x + 3x3 + 32x5 + 33x7 + · · ·+ 3rx2r+1 + · · · )

+8(x2 + 3x4 + 32x6 + 33x8 + · · ·+ 3rx2r+2 + · · · ).

Hence, the growth function of reducible elements is

r(x) =
4x + 8x2

1 − 3x2
.

2. the growth series of pseudo-Anosov elements is

4
∞∑

r=0

3r(3r+1 − 2)x2r+2 + 4
∞∑

r=1

3r(3r − 1)x2r+1

and the growth function of pseudo-Anosov elements is

p(x) =
4x2(1 + 3x)

(1 − 3x)(1− 3x2)
.
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3. if pn and hn denote the number of pseudo-Anosov and all elements of length at most n respectively, then
we have

lim
n→∞

pn

hn
= 1 .

Proof. By Lemma 3.4, reducible elements in PMod(0, 4) are conjugates of nonzero powers of ta, tb and tatb .

By Corollary 3.3, the number of such elements of length n > 0 in PMod(0, 4) is 4 · 3r if n = 2r + 1 and 8 · 3r

if n = 2r + 2.
Therefore the growth series of reducible elements is

r(x) = 4x + 4 · 3x3 + 4 · 32x5 + 4 · 33x7 + · · ·+ 4 · 3rx2r+1 + · · ·

+8x2 + 8 · 3x4 + 8 · 32x6 + 8 · 33x8 + · · ·+ 8 · 3rx2r+2 + · · ·
= (4x + 8x2)(1 + 3x2 + 32x4 + 33x6 + · · ·+ 3rx2r + · · · ).

It follows that the growth function is given by

r(x) =
4x + 8x2

1 − 3x2
.

This proves (1).

The growth series and the growth function of all elements are

h(x) = 1 + 4x + 4 · 3x2 + 4 · 32x3 + · · ·+ 4 · 3n−1xn + · · ·

=
1 + x

1 − 3x
.

The growth series of pseudo-Anosov elements follows from this and (1). The growth function of pseudo-Anosov
elements is

p(x) = h(x) − 1 − r(x)

=
4x

1 − 3x
− 4x + 8x2

1 − 3x2

=
4x2(1 + 3x)

(1 − 3x)(1 − 3x2)
.

This proves (2).

Let rn denote number of reducible elements of length at most n . By (1), we have

rn = 4(1 + 3 + 32 + · · ·+ 3r) + 8(1 + 3 + 32 + · · ·+ 3r−1)

= 10 · 3r − 6

if n = 2r + 1 and

rn = 4(1 + 3 + 32 + · · ·+ 3r−1) + 8(1 + 3 + 32 + · · ·+ 3r−1)

= 2 · 3r+1 − 6
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if n = 2r . By Lemma 3.1, we get

hn = 1 + 4(1 + 3 + 32 + · · ·+ 3n−1)

= 2 · 3n − 1.

It follows that

lim
n→∞

rn

hn
= 0 .

Since pn = hn − rn − 1, the proof of (3) follows. �

3.3. A little more

Let ı (resp. j) denote the isotopy class of the rotation about the x -axis (resp. y -axis) by π . (We assume

that the surface lie in the three space and is invariant under these rotations, as in Figure 1.) Let Γ denote the

subgroup of the mapping class group Mod(0, 4) generated by PMod(0, 4), ı and j . Then Γ is isomorphic to

PMod(0, 4) × Z2 × Z2 , and is of index 6 in Mod(0, 4).

Since ı, j and ıj preserve each nonboundary parallel simple closed curve up to isotopy, it can be shown
that an element f in PMod(0, 4) is pseudo–Anosov if and only if fı, fj and fıj are pseudo–Anosov. It follows

that, with respect to the generating set {ta, tb, ı, j} of Γ, the ratio of the number of pseudo–Anosov elements
to that of all elements in a ball of radius n centered at the identity tends to one as n tends to infinity. It would
be good to extend this result to Mod(0, 4) and to all Mod(0, n).
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