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On weakly M-supplemented primary subgroups of finite groups∗

Long Miao and Wolfgang Lempken

Abstract

A subgroup H of a group G is said to be weakly M -supplemented in G if there exists a subgroup B of

G provided that (1) G = HB , and (2) if H1/HG is a maximal subgroup of H/HG , then H1B = BH1 < G .

where HG is the largest normal subgroup of G contained in H . In this paper we will prove that: Let F
be a saturated formation containing all supersolvable groups and G be a group with a normal subgroup H

such that G/H ∈ F . If every maximal subgroup of every noncyclic Sylow subgroup of F ∗(H) having no

supersolvable supplement in G , is weakly M -supplemented in G , then G ∈ F .
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1. Introduction

A subgroup H of a group G is called supplemented in G if there exists a subgroup K of G such that
HK = G and K is called a supplement of H in G . Obviously every subgroup of G is supplemented in G as
G can be one of its supplements. Hence we should give some restricting conditions.

The relationship between the properties of primary subgroups and the structure of finite groups has been
investigated extensively by many authors. For instance, in 1937 Hall [6] proved that a group G is solvable

if and only if every Sylow subgroup of G is complemented in G . In 1982 Arad and Ward [1] proved that a
group G is solvable if and only if every Sylow 2-subgroup and Sylow 3-subgroup of G are complemented
in G . In 1999 A.Ballester-Bolinches and X.Guo [2] proved that the class of all supersolvable groups with
elementary abelian Sylow subgroups is just the class of all finite groups for which every minimal subgroup is
complemented. In 1980 Srinivassan[13] proved that a finite group is supersolvable if every maximal subgroup of

Sylow subgroup is normal. By considering c-supplement of some primary subgroups, in 2000 Wang [14] obtained

some new conditions for the solvability and supersolvability of a finite group. In 2005 Miao and Guo [9]proved
that G is supersolvable if and only if every maximal subgroups of the Sylow subgroup of G is supersolvable
s-supplemented in G . In 2007, Miao [10] introduced the concept of Q -supplemented subgroups and obtained

some sufficient condition for supersolvability of finite groups. Recently, Miao and W. Lempken [11] introduced
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the definition of M-supplemented subgroup, and get some new information on the structure of finite groups.
Now, we continue these work and introduce the concept of weakly M-supplemented subgroups.

Definition 1.1 A subgroup H of a group G is said to be weakly M-supplemented in G if there exists a subgroup
B of G such that (1) G = HB , and (2) if H1/HG is a maximal subgroup of H/HG , then H1B = BH1 < G .
where HG is the largest normal subgroup of G contained in H .

We recall that a subgroup H is called M-supplemented in a finite group G , if there exists a subgroup B

of G such that G = HB and H1B is a proper subgroup of G for any maximal subgroup H1 of H . Moreover,
a subgroup H is called c-normal in G if there exists a normal subgroup K of G such that G = HK and
H ∩ K ≤ HG where HG is the largest normal subgroup of G contained in H .

It is clear that every M-supplemented subgroup and every c-normal subgroup are weakly M-supplemented.
In this paper, we shall investigate the properties of the weakly M-supplemented subgroups in a finite group G .

Throughout this paper, all groups are finite. Our terminology and notation are standard, see [4] and [12].

In particular, let G denote a finite group, M < ·G indicates that M is a maximal subgroup of G . |G| denotes

the order of G . U denotes the class of all supersolvable groups. π(G) denotes the set of all prime divisors of

G . For the group G , G = [H ]K denotes the fact that G is the semi-direct product of H and K where H is
normal in G .

Let π be a set of primes. We say that G ∈ Eπ if G has a Hall π -subgroup. We say that G ∈ Cπ if
G ∈ Eπ and any two Hall π -subgroups of G are conjugate in G . We say that G ∈ Dπ if G ∈ Cπ and every
π -subgroup of G is contained in a Hall π -subgroup of G .

Let F be a class of groups. F is said to be a formation provided that (1) if G ∈ F and H � G , then

G/H ∈ F , and (2) if G/M and G/N are in F , then G/M ∩N is in F . It is clear that for a formation, every

group G has a smallest normal subgroup (denoted by GF ) whose quotient G/GF is in F . The normal subgroup

GF is called the F -residual of G . A formation F is said to be saturated if G ∈ F whenever G/Φ(G) ∈ F .

It is well known that the class of all supersolvable groups and the class of all p-nilpotent groups are saturated
formations(cf.[5]).

2. Preliminaries

For the sake of convenience, we first list here some known results which will be useful in the sequel.

Lemma 2.1 Let G be a group. Then

(1) If H is weakly M-supplemented in G , H ≤ M ≤ G , then H is weakly M-supplemented in M .

(2) Let N � G and N ≤ H . Then H is weakly M-supplemented in G if and only if H/N is weakly

M-supplemented in G/N .

(3) Let π be a set of primes. Let K be a normal π
′
-subgroup and H be a π -subgroup of G . If H is

weakly M-supplemented in G , then HK/K is weakly M-supplemented in G/K .

(4) Let R be a solvable minimal normal subgroup of a group G and R1 be a maximal subgroup of R . If
R1 is weakly M-supplemented in G , then R is a cyclic group of prime order.

(5) Let P be a p-subgroup of G where p is a prime divisor of |G| . If P is weakly M-supplemented in
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G , then there exists a subgroup B of G such that |G : TB| = p for any maximal subgroup T of P containing
PG .

Proof. (1) If H is weakly M-supplemented in G , then there exists a subgroup B of G such that G = HB

and H1B < G for any maximal subgroup H1 of H with HG ≤ H1 . Since H ≤ M ≤ G , we have HG ≤ HM .
So we may set L = M ∩B . Clearly, L = M ∩B ≤ M and M = M ∩HB = H(M ∩B) = HL . Since TB < G

for every maximal subgroup T of H with HM ≤ T , we easily see that TL = T (M ∩B) = M ∩ TB is a proper
subgroup of M .

(2) It is obvious by the definition of weakly M-supplemented subgroups.

(3) If H is weakly M-supplemented in G , then there exists a subgroup B such that G = HB and

H1B = BH1 < G for any maximal subgroup H1 of H with HG ≤ H1 . Clearly, (HK/K)(BK/K) = G/K .

For any maximal subgroup T/K of HK/K with (HK/K)G/K ≤ T/K , since K is a π
′
-subgroup and H is a

π -subgroup, we have T = T1K where T1 is a maximal subgroup of H with HG ≤ T1 . Therefore

(T1K/K)(BK/K) = T1BK/K = (BK/K)(T1K/K) < G/K.

Otherwise, if T1BK = G , then |G : T1B| = |K : K ∩ T1B| is a π
′
-number; on the other hand, |G : T1B| =

|HB : T1B| is a π - number, a contradiction.

(4) If R1 is weakly M-supplemented in G , then there exists a subgroup B of G such that G = R1B

and TB = BT < G for any maximal subgroup T of R1 with (R1)G ≤ T . On the other hand, since R is

a minimal normal subgroup of G , we have G = RB and R ∩ B ∈ {1, R} . If R ∩ B = R , then B = G , a
contradiction. If R ∩B = 1, then R is a cyclic subgroup of prime order.

(5) If P is weakly M-supplemented in G , then there exists a subgroup B of G such that G = PB and

TB = BT < G for any maximal subgroup T of P with PG ≤ T . Since |P : T | = p , we get

|G| = |PB| = p|T ||B|/|P ∩ B| = (p/|(P ∩ B) : (T ∩ B)|) · |TB|.

As p is a prime and TB < G , we conclude that P ∩ B = T ∩B and |G : TB| = p . Now the claim follows. �

Lemma 2.2 [5, Theorem 1.8.17] Let N be a nontrivial solvable normal subgroup of a group G . If N ∩Φ(G) =

1 , then the Fitting subgroup F (N) of N is the direct product of minimal normal subgroups of G which are
contained in N .

Lemma 2.3 [17] If H is a subgroup of G with |G : H | = p, where p is the smallest prime divisor of |G| , then
H � G .

Lemma 2.4 [3] Suppose a finite group G has a Hall π -subgroup where π is a set of primes not containing 2.
Then all Hall π -subgroups of G are conjugate.

Lemma 2.5 Let G be a finite group and P a Sylow p-subgroup of G where p is the smallest prime divisor
of |G| . If every maximal subgroup of P having no p-nilpotent supplement in G , is weakly M-supplemented in

G , then G/Op(G) is solvable p-nilpotent.
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Proof. Assume that the claim is false and choose G to be a counterexample of smallest order. Clearly, G is
not a nonabelian simple group. Furthermore we have:

(1) Op(G) �= 1.

If Op(G) = P , then G/Op(G) is a p′ -group and of course it is p-nilpotent, a contradiction. If

1 < Op(G) < P , then G/Op(G) satisfies the hypotheses and the minimal choice of G implies that G/Op(G) ∼=
G/Op(G)/Op(G/Op(G)) is p-nilpotent, a contradiction.

(2) Op(G) = 1.

Let P1 be a maximal subgroup of the Sylow p-subgroup P of G where p is the smallest prime divisor
of |G| . If |G|p = p , then G is p-nilpotent by Burnside’s p-nilpotence Theorem, a contradiction. So we may

assume that |G|p � p2 . By hypotheses, if P1 has a p-nilpotent supplement in G , then there exists a subgroup

K of G such that G = P1K and K is p-nilpotent. Therefore we have Kp
′ � K where Kp

′ is a Hall p
′
-

subgroup of K and of course is the Hall p
′
-subgroup of G . Hence G = P1NG(Kp′ ). If P ∩ NG(Kp′ ) = P ,

then Kp
′ � G , a contradiction. If P ∩ NG(Kp

′ ) = L , where L < ·P , then

|G : NG(Kp
′ )| = |P : P ∩ NG(Kp

′ )| = |P : L| = p

and hence NG(Kp′ ) � G by Lemma 2.3, a contradiction. So we may assume that P ∩NG(Kp′ ) ≤ L2 < L1 where

L1 is the maximal subgroup of P and L2 is the maximal subgroup of L1 . If L1 has a p-nilpotent supplement
in G , then there exists a p-nilpotent subgroup H such that G = L1H . With the similar discussion we have

G = L1NG(Hp′ ) where Hp′ is the Hall p
′
-subgroup of H and of course of G . By Lemma 2.4, there exists an

element x of P such that NG(Kp′ ) = (NG(Hp′ ))x . Therefore G = L1NG(Hp′ ) = (L1NG(Hp′ ))x = L1NG(Kp′ ).

Furthermore,
P = P ∩ L1NG(Kp

′ ) = L1(P ∩ NG(Kp
′ )) = L1

a contradiction. So we may assume L1 is weakly M-supplemented in G , there exists a subgroup B of
G such that G = L1B and TB < G for any maximal subgroup T of L1 with (L1)G ≤ T . Moreover,

(L1)G ≤ Op(G) = 1 and hence L1 is M-supplemented in G in this case. Therefore L2B < G and |G : L2B| = p

by Lemma 2.1(5). Since p is the smallest prime divisor of |G| , Lemma 2.3 implies that L2B � G . We have

G = L1B = PB = PL2B and P ∩ L2B = L2(P ∩ B) is the Sylow p-subgroup of L2B . Clearly, L2(P ∩ B) is

the maximal subgroup of P . By hypotheses if L2(P ∩B) is weakly M-supplemented in G , then L2(P ∩B) is

M-supplemented in G and hence is M-supplemented in L2B by Lemma 2.1. So L2B is p-nilpotent by [11,

Lemma 2.11]. Therefore G is p-nilpotent, a contradiction.

So we may assume L2(P ∩B) has a p-nilpotent supplement in G . With the similar discussion as above,

there exists a p-nilpotent subgroup S of G such that G = L2(P ∩ B)S = L2(P ∩ B)NG(Sp
′ ) where Sp

′ is

a normal Hall p
′
-subgroup of S and also of G . By Lemma 2.4, there exists an element g of P such that

NG(Kp
′ ) = (NG(Sp

′ ))g . Therefore

G = L2(P ∩ B)NG(Sp
′ ) = (L2(P ∩ B)NG(Sp

′ ))g = L2(P ∩ B)NG(Kp
′ ).

Furthermore,
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P = P ∩ L2(P ∩ B)NG(Kp′ ) = L2(P ∩ B)(P ∩ NG(Kp′ )) = L2(P ∩ B),

a contradiction.
Thereby we get G/Op(G) is p-nilpotent. �

Lemma 2.6 [7, 8] Let G be a group and N a subgroup of G . The generalized Fitting subgroup F ∗(G) of G

is the unique maximal normal quasinilpotent subgroup of G . Then

(1) If N is normal in G , then F ∗(N) ≤ F ∗(G) ;

(2) F ∗(G) �= 1 if G �= 1 ; in fact, F ∗(G)/F (G) = Soc(F (G)CG(F (G))/F (G) ;

(3) F ∗(F ∗(G)) = F ∗(G) ≥ F (G) ; if F ∗(G) is solvable, then F ∗(G) = F (G) ;

(4) CG(F ∗(G)) ≤ F (G) ;

(5) Let P � G and P ≤ Op(G) ; then F ∗(G/Φ(P )) = F ∗(G)/Φ(P ) ;

(6) If K is a subgroup of G contained in Z(G) , then F ∗(G/K) = F ∗(G)/K .

Lemma 2.7 [11, Lemma 2.7] Let G be a finite group with normal subgroups H and L and let p ∈ π(G) .
Then the following hold:

1) If L ≤ Φ(G) , then F (G/L) = F (G)/L.

2) If L ≤ H ∩Φ(G) , then F (H/L) = F (H)/L.

3) If H is a p-group and L ≤ Φ(H) , then F ∗(G/L) = F ∗(G)/L.

4) If L ≤ Φ(G) with |L| = p , then F ∗(G/L) = F ∗(G)/L.

5) If L ≤ H ∩Φ(G) with |L| = p , then F ∗(H/L) = F ∗(H)/L.

Lemma 2.8 [15, Theorem3.1] Let F be a saturated formation containing U , G a group with a soluble normal

subgroup H such that G/H ∈ F . If for any maximal subgroup M of G , either F (H) ≤ M or F (H)∩M is a

maximal subgroup of F (H) , then G ∈ F . The converse also holds, in the case where F = U .

3. Main results

Theorem 3.1 Let G be a group and H be a normal subgroup of G such that G/H is supersolvable. If every
maximal subgroups of every noncyclic Sylow subgroup of H having no supersolvable supplement in G , is weakly
M-supplemented in G , then G is supersolvable.

Proof. Assume that the theorem is false and let G be a counterexample with minimal order. Then we have
the following claims:

(1) G is solvable.

By hypotheses and Lemma 2.5, H/Or(H) is solvable r -nilpotent where r is the smallest prime divisor

of |H | and hence G is solvable. Let L be a minimal normal subgroup of G contained in H . Clearly, L is an

elementary abelian p-group for some prime divisor of |G| .
(2) G/L is supersolvable and L is the unique minimal normal subgroup of G contained in H such that

H ∩ Φ(G) = 1. Furthermore, L = F (H) = CH(L).
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Firstly, we check (G/L, H/L) satisfies the hypotheses for (G, H). We know that H/L � G/L and

(G/L)/(H/L) ∼= G/H is supersolvable. Let Q = QL/L be a Sylow q -subgroup of H/L . We may assume that
Q is a Sylow q -subgroup of H . If p = q , we may assume that L ≤ P , where P is a Sylow p-subgroup of H .
If L ≤ P = Q , then every maximal subgroup of P/L is of the form P1/L with P1 a maximal subgroup of

P . If P1/L has no supersolvable supplement in G/L , then P1 does not admit supersolvable supplement in G ,

by hypotheses, P1 is weakly M-supplemented in G and hence P1/L is weakly M-supplemented in G/L by

Lemma 2.1. Now we assume that p �= q . Let Q1 be a maximal subgroup of a Sylow q -subgroup of H. Without

loss of generality, we may assume that Q1 = Q1L/L with Q1 a maximal subgroup of a Sylow q -subgroup of

H . Clearly, if Q1L/L has no supersolvable supplement in G/L , then Q1L/L is weakly M-supplemented in

G/L by Lemma 2.1. So G/L satisfies the hypotheses of the theorem. The minimal choice of G implies that

G/L is supersolvable. Since the class of all supersolvable groups is a saturated formation, we know that L is

the unique minimal normal subgroup of G which is contained in H and L � Φ(G). By Lemma 2.2 we have

F (H) = L . The solvability of H implies that L ≤ CH(L) = CH(F (H)) ≤ F (H) and so CH(L) = L = F (H).

(3) L is a Sylow subgroup of H .

Let q be the largest prime divisor of |H | and Q be a Sylow q -subgroup of H . Since G/L is supersolvable,

we have that H/L is supersolvable. Consequently, LQ/L char H/L � G/L and hence LQ � G . If p = q ,

then L ≤ Q � G . and Q ≤ F (H) = L . So L is a Sylow q -subgroup of H as desired.

Now we assume p < q . Let P be a Sylow p-subgroup of H . Clearly, P is not cyclic. Otherwise, G/L ∈ U
implies that G ∈ U . Then L ≤ P and PQ = PLQ is a subgroup of H . Note that every maximal subgroup
of noncyclic Sylow subgroup of PQ having no supersolvable supplement in PQ , is weakly M -supplemented in
PQ by Lemma 2.1. Therefore PQ satisfies the hypotheses for G . If PQ < G , the minimal choice of G implies
that PQ is supersolvable; in particular, Q � PQ . Hence LQ = L × Q and Q ≤ CH(L) ≤ L , a contradiction.

Now we may assume that G = PQ = H and L < P . Since G/L is supersolvable, LQ � G . By

the Frattini argument, G = LNG(Q). Note that L ∩ NG(Q) is normalized by NG(Q) and L . We have that

L ∩ NG(Q) = 1 since L is the unique minimal normal subgroup of G and Q is not normal in G in this case.

Therefore G = [L]NG(Q). Let P2 be a Sylow p-subgroup of NG(Q). Then LP2 is a Sylow p-subgroup of G .

Choose a maximal subgroup P1 of LP2 such that P2 ≤ P1 . Clearly, L � P1 and hence (P1)G = 1. Assume

P1 is weakly M-supplemented in G . Then there exists a subgroup B of G such that G = P1B and TB < G

for any maximal subgroup T of P1 such that T ≥ (P1)G = 1. We may assume P2 ≤ T for some maximal

subgroup T of P1 . Otherwise, P2 = P1 , then we have |L| = p and hence G/L is supersolvable implies that

G is supersolvable, a contradiction. By Lemma 2.1, |G : TB| = p . Therefore L ≤ TB or L ∩ TB = 1. If

L ∩ TB = 1, then |G : TB| = |L| = p , a contradiction. So we may assume L ≤ TB . Since P2 ≤ T , we have

LP2 ≤ TB , contrary to |G : TB| = p .

Now we may assume that P1 has a supersolvable supplement in G , that is, there exists a supersolvable
subgroup K of G such that G = P1K . In fact, K has a normal p-complement Q1 which is also a Sylow

q -subgroup of G . By Sylow’s theorem, there exists an element g ∈ L such that Qg
1 = Q . Since P1 � LP2 , we

have that G = P1K = (P1K)g = P1K
g . Since Kg ∼= K has a normal Sylow q -subgroup and Q = Qg

1 ≤ Kg , it

follows that Kg ≤ NG(Q). Since LP2 = LP2∩G = LP2∩P1K
g = P1(LP2∩Kg), we have that LP2∩Kg � P2 .

Otherwise LP2 ≤ P1P2 = P1 , a contradiction. Therefore P2 is a proper subgroup of P3 =< P2, LP2 ∩ Kg > .
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On the other hand, since both P2 and Kg are contained in NG(Q), P3 is a p-subgroup of NG(Q) which

contains a Sylow p-subgroup P2 of NG(Q) as a proper subgroup, a contradiction.

(4) G is supersolvable.

Let L1 be a maximal subgroup of L . If L1 has a supersolvable supplement in G , then there exists a
supersolvable subgroup K of G such that G = L1K . Since L is a minimal normal subgroup of G , we have
L ∩ K ∈ {1, L} . If L ∩ K = L , then G = L1K = K , a contradiction. If L ∩ K = 1, then |L| = p , also a
contradiction. So we have that L1 is weakly M-supplemented in G . In this case we know that L is a cyclic
subgroup of order p by Lemma 2.1, a contradiction.

The final contradiction completes our proof. �

Corollary 3.2 Let G be a group. If every maximal subgroup of every noncyclic Sylow subgroup of G not
admitting a supersolvable supplement, is weakly M-supplemented in G , then G is supersolvable.

Theorem 3.3 Let F be a saturated formation containing U . Suppose that G is a finite group with a normal
subgroup H such that G/H ∈ F . If every maximal subgroup of every noncyclic Sylow subgroup of H having
no supersolvable supplement in G , is weakly M-supplemented in G , then G ∈ F .

Proof. Assume that the claim is false and choose G to be a counterexample of minimal order. Since the
pair (H, H) satisfies the hypotheses for the pair (G, H) with H/H ∈ U , H is supersolvable by Theorem 3.1.

Now let p be the largest prime divisor of |H | and P ∈ Sylp(H); so we get P = Op(H) � G . Let L be a

minimal normal subgroup of G contained in P . Using similar arguments as for the proof of Claim (2) in the

proof of Theorem 3.1 we easily establish that G/L ∈ F and that L is the unique minimal normal subgroup of

G contained in H ; moreover, L = F (H) = CH(L) is noncyclic and H ∩ Φ(G) = 1.

Clearly, Ω1(Z(P )) � G and so L ≤ Ω1(Z(P )); hence P ≤ CH(L) = L and thus L = P ∈ Sylp(H). The

same arguments as in the last step of the proof of Theorem 3.1 now yield a final contradiction. �

Theorem 3.4 Let F be a saturated formation containing all supersolvable groups and G be a group with a
solvable normal subgroup H such that G/H ∈ F . If every maximal subgroup of every noncyclic Sylow subgroup

of F (H) having no supersolvable supplement in G , is weakly M-supplemented in G . Then G ∈ F .

Proof. Assume that the assertion is false and choose G to be a counterexample of minimal order.

For any maximal subgroup M of G , if F (H) ≤ M , then G ∈ F by Lemma 2.8, a contradiction. So we

may assume that there at least exists a maximal subgroup M of G not containing F (H).

Actually, since F (H) � M , there at least exists a prime p of π(|H |) with Op(H) � M . Then

G = Op(H)M and Op(H) ∩ M � G . If |Op(H)| = p , then |G : M | = p and hence G ∈ F by Lemma

2.8, a contradiction. Let Mp be a Sylow p-subgroup of M . Then we know that Gp = Op(H)Mp is a Sylow

p-subgroup of G . Now, let P1 be a maximal subgroup of Gp containing Mp and set P2 = P1 ∩ Op(H). Then

P1 = P2Mp . Moreover, P2 ∩ Mp = Op(H) ∩ Mp , so |Op(H) : P2| = |Op(H)Mp : P2Mp| = |Gp : P1| = p , that

is, P2 is a maximal subgroup of Op(H). Hence P2(Op(H) ∩ M) is a subgroup of Op(H). By the maximality

of P2 in Op(H), we have P2(Op(H) ∩ M) = P2 or Op(H).
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1) If P2(Op(H) ∩ M) = Op(H), then G = Op(H)M = P2M . Notice that Op(H) ∩ M = P2 ∩ M . So

Op(H) = P2 , a contradiction.

2) P2(Op(H)∩M) = P2 , that is, Op(H)∩M ≤ P2 . Clearly, Op(H)∩M � G , so Op(H)∩M ≤ (P2)G .

On the other hand, by hypotheses, if P2 has a supersolvable supplement in G , then there exists a subgroup
N of G such that G = P2N and N is a supersolvable group. Set K = (P2)GN , then G = P2N = P2K and

K/K ∩ (P2)G = K/(P2)G = (P2)GN/(P2)G
∼= N/N ∩ (P2)G ∈ U ⊆ F .

Now, we consider the following cases.

a) K < G .

Suppose that K1 is a maximal subgroup of G containing K . Then Op(H)∩K1 � G , which implies that

(Op(H) ∩ K1)M is a subgroup of G . If (Op(H) ∩ K1)M = G = Op(H)M , then Op(H) ∩ K1 = Op(H) since

(Op(H) ∩ K1) ∩ M = Op(H) ∩ M . This implies that Op(H) ≤ K1 , and hence G = Op(H)K1 = K1 , which is

contrary to the above hypotheses on K1 . Thus (Op(H) ∩ K1)M = M and Op(H) ∩ K1 ≤ M . Furthermore,

P2 ∩ K ≤ Op(H) ∩ K ≤ Op(H) ∩M ≤ (P2)G ≤ P2 ∩ K.

So Op(H) ∩ K = Op(H) ∩ M = P2 ∩ K . This is contrary to G = P2K = Op(H)K .

b) K = (P2)GN = G .

In this case, if (P2)G = 1, then N = G ∈ F , a contradiction. So we may assume that (P2)G �= 1.

Thus (P2)GM = M or (P2)GM = G . If (P2)GM = G , then G = (P2)GM = Op(H)M = P2M . Note that

Op(H) ∩ M = P2 ∩ M , so Op(H) = P2 , a contradiction. Therefore (P2)GM = M , that is (P2)G ≤ M , then

(P2)G ≤ Op(H) ∩ M ≤ (P2)G and hence Op(H) ∩ M = (P2)G . By hypotheses, G/(P2)G ∈ U implies that

|G/(P2)G : M/(P2)G| = |G : M | = p . This means that F (H)∩M has a prime index in F (H) and hence G ∈ F
also by Lemma 2.8, a contradiction.

So we may assume that P2 is weakly M-supplemented in G . There exists a subgroup B of G such
that P2B = G and TB < G for any maximal subgroup T containing (P2)G . If P2 is normal in G . The

maximality of M in G implies P2M = M or P2M = G . If P2M = G , then we have G = Op(H)M = P2M

and hence Op(H) = P2 since Op(H) ∩ M = P2 ∩ M , a contradiction. So P2M = M , that is, P2 ≤ M . Thus

Op(H) ∩ M = P2 ∩ M = P2 and hence

|F (H) : F (H) ∩M | = |G : M | = |Op(H) : Op(H) ∩ M | = p.

This indicates that F (H) ∩ M is a maximal subgroup of F (H). By Lemma 2.8, G ∈ F .

Next we may assume (P2)G < P2 . For any maximal subgroup T of P2 containing (P2)G , we have

|G : TB| = p by Lemma 2.1(5). Clearly, TB is a maximal subgroup of G . Then Op(H) ∩ TB � G ,

which implies that (Op(H) ∩ TB)M is a subgroup of G . If (Op(H) ∩ TB)M = G = Op(H)M , then

Op(H) ∩ TB = Op(H) since (Op(H) ∩ TB) ∩ M = Op(H) ∩ M . This implies that Op(H) ≤ TB , and hence

G = Op(H)TB = TB , which is contrary to the above hypotheses on TB . Thus Op(H)∩TB ≤ M . Furthermore,

P2 ∩ TB ≤ Op(H)∩ TB ≤ Op(H)∩M ≤ (P2)G ≤ P2 ∩ TB , from this, Op(H)∩ TB = Op(H)∩M = P2 ∩ TB .

This is contrary to G = P2B = Op(H)B .

The final contradiction completes our proof. �
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Corollary 3.5 Let G be a group with a solvable normal subgroup H such that G/H ∈ U . If every maximal

subgroup of every noncyclic Sylow subgroup of F (H) having no supersolvable supplement in G , is weakly M-
supplemented in G . Then G ∈ U .

Theorem 3.6 Let F be a saturated formation containing all supersolvable groups and G be a group with a
normal subgroup H such that G/H ∈ F . If every maximal subgroup of a noncyclic Sylow subgroup of F ∗(H)
having no supersolvable supplement in G , is weakly M-supplemented in G . Then G ∈ F .

Proof. Suppose that the theorem is false and choose G to be a counterexample of minimal order; so in
particular, H �= 1. We consider the following two case.

Case 1. F = U .
By Corollary 3.2 we easily verify that F ∗(H) is supersolvable and hence F (H) = F ∗(H) �= 1. Since H

satisfies the hypotheses of the theorem, the minimal choice of G implies that H is supersolvable if H < G .
Then G ∈ U by Corollary 3.5, a contradiction. Thus we have

(1) H = G , F ∗(G) = F (G) �= 1.

Let S be a proper normal subgroup of G containing F ∗(G). By Lemma 2.6, F ∗(G) = F ∗(F ∗(G)) ≤
F ∗(S) ≤ F ∗(G), so F ∗(S) = F ∗(G). And every maximal subgroup of every noncyclic Sylow subgroup of

F ∗(S) having no supersolvable supplement in S , is weakly M-supplemented in S by Lemma 2.1. Hence S is
supersolvable by the minimal choice of G and we get

2) Every proper normal subgroup of G containing F ∗(G) is supersolvable.

Suppose now that Φ(Op(G)) �= 1 for some p ∈ π(F (G)). By Lemma 2.6 we have F ∗(G/Φ(Op(G))) =

F ∗(G)/Φ(Op(G)). Using Lemma 2.1 observe that the pair (G/Φ(Op(G)), F ∗(G)/Φ(Op(G))) satisfies the

hypotheses of the theorem. The minimal choice of G then implies G/Φ(Op(G)) ∈ U . Since U is a saturated

formation we then get G ∈ U , a contradiction. Thus we have

(3) If p ∈ π(F (G)), then Φ(Op(G)) = 1 and so Op(G) is elementary abelian; in particular, F ∗(G) =

F (G) is abelian and CG(F (G)) = F (G).

If L is a minimal normal subgroup of G contained in F (G) and |L| = p where p ∈ π(F (G)), then set

C = CG(L). Clearly, F (G) ≤ C � G . If C < G , then C is solvable by (2). On the other hand, since G/C is

cyclic, then we have G is solvable, a contradiction. So we may assume C = G . Now we have L ≤ Z(G). Then

we consider subgroup G/L . By Lemma 2.6, we have F ∗(G/L) = F ∗(G)/L = F (G)/L . In fact, G/L satisfies

the condition of the theorem by Lemma 2.1. Therefore the minimal choice of G implies that G/L ∈ U and
hence G is supersolvable, a contradiction. This proves:

(4) There is no normal subgroup of prime order in G contained in F (G).

If every Sylow subgroup of F (G) is cyclic, then F (G) = H1 × · · ·Hr where Hi (i = 1, · · · , r ) is the

cyclic Sylow subgroup of F (G) and hence G/CG(Hi) is abelian for any i ∈ {1 · · ·r} . Moreover, we have

G/
⋂r

i=1 CG(Hi) = G/CG(F (G)) is abelian and hence G/F (G) is abelian since CG(F (G)) = CG(F ∗(G)) ≤
F (G). Therefore G is solvable, a contradiction. This proves that

(5) There exist noncyclic Sylow subgroup Op(G) of F (G) for some prime p ∈ π(F (G)).

Let P1 be a maximal subgroup of Op(G). If P1 has a supersolvable supplement in G , then there exists

a supersolvable subgroup K of G such that G = P1K = Op(G)K . Clearly, G/Op(G) ∼= K/K ∩ Op(G) is

supersolvable and hence G is solvable, a contradiction. So we obtain that
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(6) Every maximal subgroup of every noncyclic Sylow subgroup of F (G) has no supersolvable supplement
in G .

Set R = Op(G) ∩ Φ(G). If R = 1, then by Lemma 2.2, Op(G) is the direct product of some minimal

normal subgroup of G . So we may assume that Op(G) = R1× . . .×Rt , where Ri is a minimal normal subgroup

of G , i = 1.2...t . Consider the maximal subgroup P1 of P , P1 has the form

P1 = R1 × . . .× Ri−1 × Ri
∗ × Ri+1 × . . .× Rt,

where Ri
∗ is a maximal subgroup of Ri for some i . Let T denote the normal subgroup R1 × . . . × Ri−1 ×

Ri+1 × . . .Rt of G , then P1 = Ri
∗T .By hypotheses and (6), P1 is weakly M-supplemented in G . We claim

that (P1)G = T . Clearly, T ≤ (P1)G . On the other hand, if (P1)G > T , then we have (P1)G ∩ Ri
∗ > 1 by

(P1)G = (P1)G∩P1 = (P1)G∩(Ri
∗T ) = T ((P1)G∩Ri

∗). Hence we have that 1 < Ri
∗∩(P1)G ≤ Ri∩(P1)G < Ri

and Ri ∩ (P1)G is normal in G . Since Ri is a minimal normal subgroup of G , we have Ri ∩ (P1)G = Ri , a
contradiction. By hypotheses P1 is weakly M-supplemented in G . There exists a subgroup B of G such that
G = P1B and SB = BS < G for any maximal subgroup S of P1 containing (P1)G = T . So by Lemma 2.1(5)

we have |G : SB| = p . Since Ri is the minimal normal subgroup of G , we have Ri ∩ SB ∈ {1, Ri} . Clearly,

if Ri ≤ SB , then we have SB = RiSB = G , a contradiction. So we have Ri � SB , we know that |Ri| = p ,

contrary to (4). This contradiction leads to

(7) R = Op(G) ∩ Φ(G) �= 1.

Let Q be a Sylow q -subgroup of F (G), and let L be a minimal normal subgroup of G contained

in R , where q �= p . Then Q is elementary abelian by (3). By the definition of a generalized Fitting

subgroup, F ∗(G/L) = F (G/L)E(G/L) and [F (G/L), E(G/L)] = 1, where E(G/L) is the layer of G/L . Since

L ≤ Φ(G), F (G/L) = F (G)/L . Now set E/L = E(G/L). Since Q is normal in G and [F (G)/L, E/L] = 1,

[Q, E] ≤ Q ∩ L = 1, i.e., [Q, E] = 1. Therefore we have F (G)E ≤ CG(Q). If CG(Q) < G , then CG(Q)

is supersolvable by (2). Thus E(G/L) = E/L is supersolvable. The semisimplicity of E(G/L)/Z(E(G/L))

implies E(G/L) = Z(E(G/L)). So E(G/L) ≤ F (G/L) and F ∗(G/L) = F (G)/L , with the same argument

in (3), we have that G/L satisfies the hypotheses of the theorem. By the minimal choice of G , G/L is

supersolvable and so is G , a contradiction. If CG(Q) = G , then Q ≤ Z(G). By Lemma 2.6, F ∗(G/Q) =

F ∗(G)/Q = F (G)/Q . Similarly, G/Q is supersolvable and so is G by Corollary 3.5, a contradiction. This
verifies

(8) F (G) = Op(G), and G has a unique minimal normal subgroup L contained in R .

If R = Op(G), then by hypotheses any maximal subgroups P1 of Op(G) is weakly M-supplemented

in G . That is, there exists a subgroup B such that G = P1B and TB < G for any maximal subgroup T

of P1 containing (P1)G . Then G = P1B = B since P1 ≤ Φ(G), a contradiction. Hence R �= Op(G). Now

Φ(G/R) = 1. Then by Lemma 2.2, Op(G)/R = (H1/R)×· · ·×(Hm/R), where Hi/R(i = 1, · · ·m) are minimal

normal in G/R . With the same argument as in (7), we know that Hi/R(i = 1, · · ·m) are all of order p because

all maximal subgroups of Op(G)/R are weakly M-supplemented in G/R by Lemma 2.1. Again, since Op(G)

is an elementary abelian p-group, Hi is of the form < xi > R, (i = 1, · · ·m). This proves

(9) Op(G) =< x1 > × · · ·× < xm > ×R where < xi > R � G, (i = 1, · · ·m).
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Let R∗ be a maximal subgroup of R . Clearly, TR∗ is a maximal subgroup of Op(G) where T =<

x1 > × · · · < xm > . If (TR∗)G ∩ R = 1 for some maximal subgroup R∗ of R , then (TR∗)G∩ < x1 > R

is of order 1 or p . Observe that (TR∗)G∩ < x1 > R is normal in G , and its order is not p by (4). Thus

(TR∗)G∩ < x1 > R = 1, similarly, (TR∗)G∩ < x1 >< x2 > R = · · · = (TR∗)G∩TR = 1, i.e., (TR∗)G = 1. By
hypotheses, TR∗ is weakly M-supplemented in G and there exists a subgroup B of G such that G = TR∗B

and SB = BS < G for any maximal subgroup S containing (TR∗)G = 1. By Lemma 2.1, |G : SB| = p .

Clearly, SB is a maximal subgroup of G , and L ∩ SB ∈ {1, L} . If L ∩ SB = 1, then |L| = p , this is contrary

to (4). So we have L ≤ SB for any maximal subgroup S of TR∗ . Furthermore, if L ∩ TR∗ = 1, then also

we have |L| = p , a contradiction. So we get L ∩ TR∗ �= 1. We claim that L ∩ TR∗ ≤ S for any maximal

subgroup S of TR∗ . Otherwise, there exists a maximal subgroup S of TR∗ such that L ∩ TR∗ � S . So

we consider SB = (L ∩ TR∗)SB = TR∗B = G , a contradiction. Based on the discussion as above, we have

1 < L ∩ TR∗ ≤ Φ(TR∗) ≤ Φ(Op(G)), contrary to (3). Then we get

(10) For any maximal subgroup R∗ of R , we have (TR∗)G ∩ R �= 1, where T =< x1 > × · · · < xm > .

From (8) and (10), we have L ≤ (TR∗)G ∩ R for any maximal subgroup R∗ of R . By hypotheses,
TR∗ is weakly M-supplemented in G , so there exists a subgroup B such that G = TR∗B and SB < G for
any maximal subgroup S of TR∗ containing (TR∗)G . Then L ≤ (TR∗)G ∩ R ≤ TR∗ ∩ (TR∗)GB ∩ R =

R∗ ∩ (TR∗)GB . Thus L ≤ ⋂
R∗<·R(R∗ ∩ (TR∗)GB) = Φ(R) ∩ (

⋂
R∗<·R((TR∗)GB) = 1 by (3), a final

contradiction.
Case 2. F �= U .

By case 1, H is supersolvable. Particularly, H is solvable and hence F ∗(H) = F (H). Therefore G ∈ F
by Corollary 3.5.

The final contradiction completes our proof. �

Corollary 3.7 Let G be a group with a normal subgroup H such that G/H ∈ U . If every maximal subgroup

of a noncyclic Sylow subgroup of F ∗(H) having no supersolvable supplement in G , is weakly M-supplemented
in G . Then G ∈ U .

Corollary 3.8 [16, Theorem 1.1] Let F be a saturated formation containing all supersolvable groups. Suppose

that G is a group with a normal subgroup H such that G/H ∈ F . If all maximal subgroup of any Sylow subgroup

of F ∗(H) is c-normal in G , then G ∈ F .
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