

On construction of coherent states associated with homogeneous spaces

Ali Akbar Arefijamaal

Abstract

In this article, assume that $G = H \times_{\tau} K$ is the semidirect product of two locally compact groups H and K, respectively and consider the quasi regular representation on G. Then for some closed subgroups of G we investigate an admissible condition to generate the Gilmore-Perelomov coherent states. The construction yields a wide variety of coherent states, labelled by a homogeneous space of G.

Key Words: Locally compact abelian group, Semidirect product, Fourier transform, Square integrable representation, Coherent states.

1. Introduction

Wavelet transforms are often studied in the general framework of square-integrable representations [7, 13]. The coherent states, as a general form of wavelet transform, have become a widely used in mathematics and physics during the last decade. This type of coherent states introduced by Gilmore [10] and Perelomov [14] could be reformulated as a problem in group representation theory. The construction of coherent states on the Galilean group analyzed in [4] also one can find analogous results in the earlier papers [2, 3] for the Poincaré group. The study of coherent states for some semidirect product groups has been continued by Ali et al. [1].

The present paper extends the concept of coherent states to a general semidirect product group $H \times_{\tau} K$, where H and K are locally compact groups and K is also abelian. More precisely, the natural action Hon K (i.e. $(h,k) \mapsto \tau_h(k)$) induces a dual action from H on \hat{K} , the dual group of K, which is given by $(h,\gamma) \mapsto \gamma \circ \tau_h$. Fix $\omega \in \hat{K}$ and assume that O_{ω} and H^{ω} are the orbit and stabilizer subgroup of ω , respectively. Take $X = G/(H^{\omega} \times \{1_K\})$. Then there exists a one to one correspondence between X and $O_{\omega} \times K$. A case in point is precisely that $H^{\omega} = H$, analyzed in [6]. In [11] it is shown that X is topological isomorphic to $O_{\omega} \times K$ if O_{ω} is an open orbit. Hence, we can transfer the (Haar) measure of $O_{\omega} \times K \subseteq \hat{K} \times K$ to X. This is a G-invariant measure on X (section 3). Section 2 presents some basic facts about the continuous wavelet transform, with an introduction to the general theory of coherent states. Section 3 is devoted to introduce a condition to generate coherent states associated to the quasi regular representation of G.

²⁰⁰⁰ AMS Mathematics Subject Classification: 43A65; Secondary 81R30..

2. Preliminaries and notations

Let G be a locally compact topological group with the left Haar measure μ_G and modular function Δ_G . We review the basic definitions and properties of coherent states based on square integrable group representation associated to a homogeneous space of underlying group.

By a homogeneous space we mean a transitive G-space X that is homeomorphic to a quotient space G/H, for a closed subgroup H of G. Finding a G-invariant measure under the natural action $x \mapsto gx$ is impossible in general. However, it is well-known that the quasi-invariant measures exist on an arbitrary homogeneous space [9]. In fact, for a Radon measure ν on X and $g \in G$ the translation ν_q of ν is given by

$$d\nu_q(x) = d\nu(g^{-1}x)$$

The measure ν is called *quasi-invariant* if the measures ν_g are all equivalent.

DEFINITION 2.1 A Borel section on the homogeneous space X is a Borel map $\sigma : X \longrightarrow G$, satisfying $q(\sigma(x)) = x$, for all $x \in X$, where $q : G \longrightarrow X$ is the canonical quotient map.

Now assume that ν is a quasi-invariant measure on X and σ is a Borel section. In order to construct coherent states we require another quasi-invariant measure ν_{σ} which is given by

$$d\nu_{\sigma}(x) = \lambda(\sigma(x), x)d\nu(x).$$

The Borel measures ν_{σ} is independent of the choice of the quasi-invariant measure ν used to define it. Moreover if X admits a G-invariant measure m then ν_{σ} is a scalar multiple of m, for every quasi-invariant measure ν , see [1].

Let π be a square integrable unitary representation of G on a separable Hilbert space \mathcal{H} . Then the continuous wavelet transform (CWT) on G is defined by

$$W_{\psi}: \mathcal{H} \longrightarrow L^2(G), \qquad (W_{\psi}\phi)(g) = C_{\psi}^{-1} < \pi(g)\psi, \phi >, \qquad \text{for } \phi \in \mathcal{H}, \ g \in G,$$

where ψ is a nonzero (admissible) vector in \mathcal{H} and

$$C_{\psi}^{2} := \frac{1}{\|\psi\|^{2}} \int_{G} |<\pi(g)\psi, \psi > |^{2}d\mu_{G}(g) < \infty.$$

The CWT is a linear isometry and its adjoint is W_{ψ}^{-1} on ImW_{ψ} . Hence a vector $\phi \in \mathcal{H}$ can be reconstructed uniquely by

$$\phi = W_{\psi}^{\star}(W_{\psi}\phi) = \frac{1}{C_{\psi}} \int_{G} (W_{\psi}\phi)(g)\pi(g)\psi \ d\mu_{G}(g).$$
(1)

To develop the notion of square integrability, we use the following rank-one operators on \mathcal{H} ; $|\xi \rangle \langle \eta| : \phi \mapsto \langle \phi, \eta \rangle \xi$, for all $\xi, \eta \in \mathcal{H}$. It is easy to see that $|\xi \rangle \langle \eta|$ is a bounded linear operator and $||\xi \rangle \langle \eta| = ||\xi|| ||\eta||$.

DEFINITION 2.2 ([4]) Suppose (π, \mathcal{H}) is a unitary representation on G and H is a closed subgroup of G. Consider a quasi-invariant measure ν on X := G/H and fix a Borel section $\sigma : X \longrightarrow G$. Then we say

that π is square integrable $mod(H, \sigma)$ for the vector ψ if the integral

$$\int_X \pi(\sigma(x)) \ |\psi\rangle < \psi| \ \pi(\sigma(x))^* d\nu_\sigma(x)$$

converges weakly to a bounded positive invertible operator A_{σ} on \mathcal{H} , i.e.

$$\int_X |<\pi(\sigma(x))\psi,\eta>|^2 d\nu_\sigma(x) = <\eta, A_\sigma\eta>, \quad \forall \eta \in \mathcal{H}.$$

We also say that the vector ψ is admissible $mod(H, \sigma)$ or that the section σ is admissible for (π, η) . Now we define the family of covariant coherent states, indexed by points $x \in X$, as the orbit of ψ under G, through the representation U and the section σ :

$$\mathcal{H}_{\psi,\sigma} = \{\pi(\sigma(x))\psi; \ x \in X\}$$

In other words, one has the resolution

$$\int_X |\pi(\sigma(x))\psi><\pi(\sigma(x))\psi|\ d\nu_\sigma(x)=A_\sigma$$

(the integral interpreted in the weak sense).

It may happen that A_{σ}^{-1} is unbounded. In fact, $\mathcal{H}_{\psi,\sigma}$ constructs a frame if A_{σ}^{-1} is bounded. Moreover $A_{\sigma} = \lambda I, \lambda > 0$ if and only if $\mathcal{H}_{\psi,\sigma}$ is a tight frame [8].

Notice that $\mathcal{H}_{\psi,\sigma}$ is total in \mathcal{H} and if we define

$$W_{\psi,\sigma}: \mathcal{H} \longrightarrow L^2(X, d\nu), \qquad (W_{\psi,\sigma}\phi)(x) = C_{\psi,\sigma}^{-1} < \pi(\sigma(x))\psi, \phi >,$$

where

$$C_{\psi,\sigma}^{2} = \frac{1}{\|\psi\|^{2}} \int_{X} |<\pi(\sigma(x))\psi,\psi>|^{2} d\nu_{\sigma}(x) < \infty,$$
(2)

then $W_{\psi,\sigma}$ that is an isometry can be considered as the generalized continuous wavelet transform on homogeneous space X, hence $W_{\psi,\sigma}^{-1} = W_{\psi,\sigma}^{\star}$ on $ImW_{\psi,\sigma}$ and so we can obtain the reconstruction formula similar to (1), for more details see [4];

$$\phi = \frac{1}{C_{\psi,\sigma}} \int_X (W_{\psi,\sigma}\phi)(x) \ A_{\sigma}^{-1}\pi(\sigma(x))\psi \ d\nu_{\sigma}(x), \qquad \forall \ \phi \in \mathcal{H}.$$

3. Main results

Throughout this section we assume that H and K are two locally compact topological groups and K is also abelian. Let $G = H \times_{\tau} K$ be the semi direct product group of H and K where $h \mapsto \tau_h$ is a homomorphism of H into the group of automorphisms of K such that the mapping $(h, k) \mapsto \tau_h(k)$ from $H \times K$ onto K is continuous.

Moreover, the left Haar measure of G is $d\mu_G(h,k) = \delta(h)d\mu_H(h)d\mu_K(k)$ and $\Delta_G(h,k) = \delta(h)\Delta_H(h)\Delta_K(k)$ is its modular function, in which the positive continuous homomorphism δ on H is given by

$$\mu_K(E) = \delta(h)\mu_K(\tau_h(E)),\tag{3}$$

for all measurable subsets E of K (15.29 of [12]).

As before, fix a $\omega \in \widehat{K}$ with open orbit and take $X = G/\widetilde{H}$ where $\widetilde{H} = H^{\omega} \times \{1_K\}$ and H^{ω} is the ω -stabilizer subgroup of the action $H \times \widehat{K} \mapsto \widehat{K}; (h, \gamma) \mapsto \gamma \circ \tau_h$. Then it is obvious that

$$\rho: X \longrightarrow O_{\omega} \times K$$
$$(h,k)\widetilde{H} \mapsto (\omega \circ \tau_{h^{-1}}, k)$$

is a bijection. In fact, it is a topological isomorphism [11].

LEMMA 3.1 Let $\tau : H \to Aut(K)$ be the homomorphism used in the definition of $H \times_{\tau} K$. For every $h \in H$ and $\gamma \in \widehat{K}$ we have

$$(f \circ \tau_h)(\gamma) = \delta(h)\widehat{f}(\gamma \circ \tau_{h^{-1}}), \tag{4}$$

$$d\mu_{\widehat{K}}(\gamma \circ \tau_{h^{-1}}) = \delta(h) d\mu_{\widehat{K}}(\gamma), \tag{5}$$

in which $f \in L^1(K) \bigcap L^2(K)$.

Proof. Let $f \in L^1(K)$ then there exists a sequence $\{f_n\}$ in $C_c(K)$, the space of all continuous and compact supported functions on K, such that $f_n \longrightarrow f$ in $L^1(K)$. It is clear that $f_n \circ \tau_h \in C_c(K)$ for all $h \in H$ and $n \in \mathbb{N}$. Moreover by (3) we have

$$||f_n \circ \tau_h - f \circ \tau_h||_1 = \delta(h) ||f_n - f||_1.$$

That is, $f \circ \tau_h \in L^1(K)$. Now a straightforward calculation gives (4). To obtain (5), note that $d\mu_{\widehat{K}}(\gamma \circ \tau_h)$ is a translation invariant measure on \widehat{K} and by the Plancherel theorem (4.25 of [9]) for all $f \in L^1(K) \cap L^2(K)$ we have

$$\begin{split} \int_{\widehat{K}} |\widehat{f}(\gamma)|^2 d\mu_{\widehat{K}}(\gamma) &= \int_{K} |f(x)|^2 d\mu_{K}(x) = \delta(h^{-1}) \int_{K} |f(\tau_{h}(x))|^2 d\mu_{K}(x) \\ &= \delta(h^{-1}) \int_{\widehat{K}} |(f \circ \tau_{h})(\gamma)|^2 d\mu_{\widehat{K}}(\gamma) = \delta(h) \int_{\widehat{K}} |\widehat{f}(\gamma \circ \tau_{h^{-1}})|^2 d\mu_{\widehat{K}}(\gamma). \end{split}$$

Now we can construct a measure on X, in fact for every Borel set \mathcal{B} of X define $\nu(\mathcal{B}) = \mu_{\widehat{K}} \times \mu_K(\rho(\mathcal{B}))$. Then by using (3) and (5) for each $g = (h, k) \in G$ and $x = (h_0, k_0)\widetilde{H} \in X$ we have

518

$$d\nu_{g}(x) = d(\mu_{\widehat{K}} \times \mu_{K})(\rho(g^{-1}x))$$

= $d\mu_{\widehat{K}}(\gamma \circ \tau_{h_{0}^{-1}} \circ \tau_{h}) d\mu_{K}(\tau_{h^{-1}}(k^{-1}k_{0}))$
= $\delta(h^{-1}) d\mu_{\widehat{K}}(\gamma \circ \tau_{h_{0}^{-1}}) \delta(h) d\mu_{K}(k_{0})$
= $d(\mu_{\widehat{K}} \times \mu_{K})(\gamma \circ \tau_{h_{0}^{-1}}, k_{0})$
= $d\nu(x)$

i.e. ν is a *G*-invariant measure on *X*.

Therefore, ν_{σ} is also a *G*-invariant measure on *X*, for every Borel section σ . In other words, such a measure is unique up to constant multiple (see §4.1 of [1]). In the sequel, we denote this measure again by ν .

The general form of a Borel section for a semidirect product group has shown in the following theorem;

THEOREM 3.2 Let $G = H \times_{\tau} K$ be the semidirect product of H and K and $X = G/\tilde{H}$. Then every Borel section $\sigma : X \longrightarrow G$ of G can be expressed as $\sigma = (\sigma_1, \sigma_2)$ such that

$$\omega \circ \tau_{\sigma_1(x)^{-1}} = \omega \circ \tau_{h^{-1}} \tag{6}$$

$$\sigma_2(x) = k,\tag{7}$$

for all $x = (h, k)\widetilde{H} \in X$.

Proof. Let $\sigma = (\sigma_1, \sigma_2)$. Then it is easy to see that $q(\sigma(x)) = x$ if and only if

$$(h,k)^{-1}(\sigma_1(x),\sigma_2(x)) \in \widetilde{H}$$

So $h^{-1}\sigma_1(x) \in H^{\omega}$ and $\tau_h(k^{-1}\sigma_2(x)) = 1$. This proves (6). Moreover, (7) immediately follows the fact that τ_h is an automorphism on K, for each $h \in H$.

We are now ready to state our main result. In fact, we aim to simplify (2) to establish coherent states on a semidirect product group. In this way, we can develop the notion of continuous wavelet transform on G. The same idea was exploited to a certain extent in [6].

DEFINITION 3.3 The quasi regular representation $(U, L^2(K))$ associated to the semidirect product group $G = H \times_{\tau} K$ is defined by

$$U(h,k)f(y) = \delta(h)^{\frac{1}{2}} f(\tau_{h^{-1}}(yk^{-1})),$$

for all $f \in L^2(K)$, $(h,k) \in G$ and $y \in K$.

This representation is not irreducible in general (e.g. Affine group $G = (0, +\infty) \times_{\tau} \mathbb{R}$). However, a characterization of irreducible subrepresentations of U can be found in [5].

THEOREM 3.4 Let $(U, L^2(K))$ be the quasi regular representation on $G = H \times_{\tau} K$. Put $X = G/\widetilde{H}$ and fix a Borel section σ . Then $\psi \in L^2(K)$ is an admissible $mod(\widetilde{H}, \sigma)$ vector for U if

$$\int_{X} \delta(\sigma_{1}(x)) \|\psi \circ \tau_{\sigma_{1}(x)^{-1}}\|_{2}^{2} d\nu(x) < \infty.$$
(8)

Proof. For any $\eta \in L^2(K)$ let $\eta^{\bullet}(k) = \overline{\eta(k^{-1})}$ then $\widehat{\eta^{\bullet}} = \overline{\widehat{\eta}}$. Hence by using the Plancherel theorem we have;

$$< U(\sigma(x))\psi, \eta > = \int_{\widehat{K}} [U(\sigma(x))\psi](\gamma) \ \overline{\widehat{\eta}(\gamma)} \ d\mu_{\widehat{K}}(\gamma)$$

$$= \delta(\sigma_1(x))^{\frac{1}{2}} \int_{\widehat{K}} (\psi \circ \tau_{\sigma_1(x)^{-1}})(\gamma) \ \overline{\widehat{\eta}(\gamma)} \ \overline{\gamma}(\sigma_2(x)) \ d\mu_{\widehat{K}}(\gamma)$$

$$= \delta(\sigma_1(x))^{\frac{1}{2}} \int_{\widehat{K}} \widehat{\xi}_x(\gamma) \ \overline{\gamma}(\sigma_2(x)) \ d\mu_{\widehat{K}}(\gamma),$$

in which $\xi_x = (\psi \circ \tau_{\sigma_1(x)^{-1}}) \star \eta^{\bullet}$ and \star denotes the convolution on $L^2(K)$. Note that $\xi_x \in C_0(K)$ and $\|\xi_x\|_{\infty} \leq \|\psi \circ \tau_{\sigma_1(x)^{-1}}\|_2 \|\eta\|_2$ by Theorem 2.40 of [9]. Hence, by the Fourier inversion theorem (4.32 of [9]) we obtain:

$$<\eta, A_{\sigma}\eta > = \int_{X} < U(\sigma(x))\psi, \eta > \overline{< U(\sigma(x))}\psi, \eta > d\nu_{\sigma}(x)$$

$$= \int_{X} |< U(\sigma(x))\psi, \eta >|^{2} d\nu(x)$$

$$= \int_{X} \delta(\sigma_{1}(x)) | \int_{\widehat{K}} \widehat{\xi}_{x}(\gamma) \overline{\gamma}(\sigma_{2}(x)) d\mu_{\widehat{K}}(\gamma) |^{2} d\nu(x)$$

$$= \int_{X} \delta(\sigma_{1}(x)) | \xi_{x}(\sigma_{2}(x)) |^{2} d\nu(x)$$

$$\leq ||\eta||_{2}^{2} \int_{X} \delta(\sigma_{1}(x)) ||\psi \circ \tau_{\sigma_{1}(x)^{-1}}||_{2}^{2} d\nu(x).$$

References

- Ali, S.T., Antoine, J.P. and Gazeau, J.P.: Coherent States, Wavelets and Their Generalizations. New York. Springer-Verlag 2000.
- [2] Ali, S.T., Antoine, J.P. and Gazeau, J.P.: Square-integrability of group representations on homogeneous spaces. I. Reproducing triples and frames. Ann. Inst. H. Poincare 55, 829-855 (1991).
- [3] Ali, S.T., Antoine, J.P. and Gazeau, J.P.: Square-integrability of group representations on homogeneous spaces, II. Coherent and quasi-coherent states: The case of the Poincaré group. Ann. Inst. H. Poincaré 55, 857-890 (1991).

- [4] Antoine, J.P.: Galilean coherent states and wavelets. Math. Phys. Stud. 18, 15-26 (1995).
- [5] Arefijamaal, A.A. and Kamyabi-Gol, R.A.: A characterization of square integrable representations associated with CWT. J. Sci. I.R.Iran 18 (2), 159-166 (2007).
- [6] Arefijamaal, A.A. and Kamyabi-Gol, R.A.: On construction of coherent states associated with semidirect products, Int. J. Wavelets Multires. Inform. Proc. 6 (5), 749-759 (2008).
- [7] Bernier, D., Taylor K. F.: Wavelets from square-integrable representations. SIAM J. Math. Anal. 27 (2), 594-608 (1996).
- [8] Daubechies, I., Grosssman, A. and Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27, 1271-1283 (1986).
- [9] Folland, G.B.: A Course in Abstract Harmonic Analysis. Boca Katon. CRC Press 1995.
- [10] Gilmore, R.: Geometry of symmetrized states. Ann. Phys. 74, 391-463 (1972).
- [11] Glimm, J.: Locally compact transformation groups. Trans. Amer. Math. Soc. 101, 124-138 (1961).
- [12] Hewitt, E. and Ross, K.A.: Abstract Harmonic Analysis, Vol 1,2. Berlin. Springer-Verlag 1970.
- [13] Laugesen R.S., Weaver N., Weiss G., Wilson E.N.: Continuous wavelets associated with a general class of admissible groups and their characterization, J. Geom. Anal. 12, 89-102 (2002).
- [14] Perelomov, A.M.: Coherent states for arbitrary Lie group. Communications of Mathematical Physics. 26, 222-236 (1972).

Received 02.09.2008

Ali Akbar AREFIJAMAAL Department of Mathematics, Tarbiat Moallem University of Sabzevar, Sabzevar-IRAN e-mail: arefijamal@sttu.ac.ir