Order-isomorphism and a projection's diagram of $C(X)$

Ahmed S. Al-Rawashdeh and Sultan M. Al-Suleiman

Abstract

A mapping between projections of C^{*}-algebras preserving the orthogonality, is called an orthoisomorphism. We define the order-isomorphism mapping on C^{*}-algebras, and using Dye's result, we prove in the case of commutative unital C^{*}-algebras that the concepts; order-isomorphism and the orthoisomorphism coincide. Also, we define the equipotence relation on the projections of $C(X)$; indeed, new concepts of finiteness are introduced. The classes of projections are represented by constructing a special diagram, we study the relation between the diagram and the topological space X. We prove that an order-isomorphism, which preserves the equipotence of projections, induces a diagram-isomorphism; also if two diagrams are isomorphic, then the C^{*}-algebras are isomorphic.

Key Words: Commutative C^{*}-algebras; projections order-isomorphism; infinite projections; clopen subsets.

1. Introduction

The algebra of continuous complex-valued functions on a compact Hausdorff space X, denoted by $C(X)$, is a commutative unital C^{*}-algebra. Let us recall the following main theorem, known as the Gelfand-Naimark Theorem.

Theorem 1.1 [8] Every commutative, unital C^{*}-algebra A is isometrically *-isomorphic to $C(\mathcal{A})$, where \mathcal{A} is the compact Hausdorff space of characters of A.

Let $\mathcal{P}(A)$ denote the set of projections of A. A projection $p \in \mathcal{P}(A)$ is said to be minimal if 0 is the only proper subprojection of p. For the case of $C(X)$, the projections are the characteristic functions on the clopen subsets of X (see [4] § IX.3).

Let A and B be two unital C^{*}-algebras. A projection orthoisomorphism mapping was defined by H . Dye in [5] as a bijection θ between the projections of A and B which preserves the orthogonality; that is, for any projections p and q of $A, p q=0$ if and only if $\theta(p) \theta(q)=0$. Also, he proved the following lemma.

Lemma 1.2 [5] Any projection orthoisomorphism θ between C^{*}-algebras A and B preserves the following: 0 , I, the orthocomplement $I-p$ of p, and the order.

[^0]
AL-RAWASHDEH, AL-SULEIMAN

For commutative, unital C^{*}-algebras, A. Al-Rawashdeh and W. Shatanawi in [1] discussed the orthoisomorphism property (orthogonality-preserving) for certain bijection θ on the projections of $C(X)$, in other words, discussing the Boolean isomorphism of the Boolean algebra of clopen subsets of X.

As every projection orthoisomorphism preserves the order, then a natural question arises here: is every bijection between the projections of two C^{*}-algebras which preserves the order an orthoisomorphism? In the first part of this paper, we study this question where we define the projection order-isomorphism as a bijection between the projections of C^{*}-algebras which preserves the order and we prove the following theorem.

Theorem 1.3 Let A and B be two commutative unital C^{*}-algebras, and let θ be a one-to-one mapping from $\mathcal{P}(A)$ onto $\mathcal{P}(B)$. Then θ is orthoisomorphism if and only if θ is order-isomorphism.

Recall that in a C^{*}-algebra A, two projections p and q are equivalent if there exists a partial isometry w such that $w w^{*}=p$ and $w^{*} w=q$. A projection p is called infinite if p is equivalent to one of its proper subprojection, otherwise it is called a finite projection. If A is a commutative C^{*}-algebra, then two projections are equivalent if and only if they are equal; this implies that every projection is finite. In the second part of this paper, we consider a compact Hausdorff subspace X of \mathbb{R} with the Lebesgue measure μ. We define the equivalence relation, that two projections in $\mathcal{P}(C(X))$ are called equipotent if the measure of their supports are equal. Afterwards, we establish new concepts of projections which seems to be similar to the concept of finiteness in general C^{*}-algebras but not affected by commutativity, this concept of projections will be related to the Lebesgue measure and shall be denoted by μ-finite and μ-infinite.

Furthermore, we construct a special type of diagram that describes the class of projections of the C^{*} algebras $C(X)$; these diagrams give information and descriptions about projections, in particular about μ infinite projections.

We define isomorphism between the diagrams and we prove (under some conditions) that if there is an order-isomorphism between C^{*}-algebras $C(X)$ and $C(Y)$, then the corresponding diagrams are isomorphic. Also, if two diagrams are isomorphic, then the corresponding C^{*}-algebras are isomorphic. Mainly we prove that following theorems.

Theorem 1.4 Let X and Y be two compact spaces in $\left(\mathbb{R}, \tau_{u}\right)$. If there exists an order-isomorphism between $\mathcal{P}(C(X))$ and $\mathcal{P}(C(Y))$, which preserves equipotence of projections, then $\mathfrak{D}(X)$ is isomorphic to $\mathfrak{D}(Y)$.

Theorem 1.5 Let X and Y be two locally connected compact spaces in $\left(\mathbb{R}, \tau_{u}\right)$. If $\mathfrak{D}(X)$ is isomorphic to $\mathfrak{D}(Y)$, then $C(X)$ and $C(Y)$ are isomorphic as C^{*}-algebras.

Let us now recall the following main result that will be used throughout the paper.

Theorem 1.6 [3] Let X and Y be two compact topological spaces. Then X is homeomorphic to Y if and only if $C(X)$ is isomorphic to $C(Y)$ as C^{*}-algebras.

AL-RAWASHDEH, AL-SULEIMAN

2. Order-Orthogonality Preserving

Let A and B be two unital C^{*}-algebras. We study the mappings between the set of projections $\mathcal{P}(A)$ and $\mathcal{P}(B)$ which preserve the order.

Definition 2.1 A projection order-isomorphism (simply, order-isomorphism) between two unital C^{*}-algebras A and B is a one-to-one mapping θ from $\mathcal{P}(A)$ onto $\mathcal{P}(B)$ which preserves the order. That is, $p \leq$ q if and only if $\theta(p) \leq \theta(q)$.

Let us prove the following result concerning the order-isomorphism mappings.

Lemma 2.2 Let A and B be two C^{*}-algebras, and let $\theta: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ be an order-isomorphism. Then $\theta(0)=0$.

Proof. As θ preserves the order and $0 \leq p$, for any $p \in \mathcal{P}(A)$, then $\theta(0) \leq \theta(p)$, for all $p \in \mathcal{P}(A)$ which implies that $\theta(0) \leq q$, for all $q \in \mathcal{P}(B)$ and hence $\theta(0)=0$.

In the following theorem we show that, in commutative unital C^{*}-algebras, the order-isomorphism and the orthoisomorphism coincide.

Theorem 2.3 Let A and B be two commutative unital C^{*}-algebras, and let θ be a one-to-one mapping from $\mathcal{P}(A)$ onto $\mathcal{P}(B)$. Then θ is an orthoisomorphism if and only if θ is an order-isomorphism.
Proof. If θ is orthoisomorphism, then by Lemma $1.2, \theta$ is order-isomorphism. To prove the other direction, suppose that $p, q \in \mathcal{P}(A)$ with $p q=0$. As B is commutative, $\theta(p) \theta(q) \in \mathcal{P}(B)$ and hence there exists $r \in \mathcal{P}(A)$ such that $\theta(r)=\theta(p) \theta(q)$. Since $\theta(r) \theta(p)=\theta(p) \theta(r)=\theta(r)$ and $\theta(r) \theta(q)=\theta(q) \theta(r)=\theta(r)$, then $\theta(r) \leq \theta(p)$ and $\theta(r) \leq \theta(q)$. As θ preserves the order, then $r \leq p$ and $r \leq q$. Thus, $r(p q)=(p q) r=r$ and hence $r \leq p q$. Therefore by Lemma 2.2, $\theta(r)=0$ and hence $\theta(p) \theta(q)=0$.

In the following theorem we establish some properties of order-isomorphisms in the case of commutative C^{*} algebras.

Theorem 2.4 Let A and B be two commutative unital C^{*}-algebras, and let $\theta: \mathcal{P}(A) \rightarrow \mathcal{P}(B)$ be an orderisomorphism. Then

1. if $p q=0$, then $\theta(p+q)=\theta(p)+\theta(q)$, for any $p, q \in \mathcal{P}(A)$,
2. $\theta(p q)=\theta(p) \theta(q)$, for any $p, q \in \mathcal{P}(A)$,
3. if $p \leq q$, then $\theta(q-p)=\theta(q)-\theta(p)$, for any $p, q \in \mathcal{P}(A)$,
4. $\theta(p \Delta q)=\theta(p) \Delta \theta(q)$, for any $p, q \in \mathcal{P}(A)$.

Proof.

1. If $p q=0$, then $p+q \in \mathcal{P}(A), \theta(p) \leq \theta(p+q), \theta(q) \leq \theta(p+q)$ and by Theorem 2.3, $\theta(p) \theta(q)=0$. Therefore we have $\theta(p)+\theta(q) \in \mathcal{P}(B)$ with $\theta(p)+\theta(q) \leq \theta(p+q)$. Let r be a projection such that $\theta(r)=\theta(p+q)-(\theta(p)+\theta(q))$. Then $\theta(r) \leq \theta(p+q), \theta(r) \theta(p)=0$, and $\theta(r) \theta(q)=0$. Thus, $r \leq p+q$

AL-RAWASHDEH, AL-SULEIMAN

and by Theorem 2.3, $r p=0$ and $r q=0$ which is true only if $r=0$. Therefore by Lemma 2.2, $\theta(r)=0$ and hence $\theta(p+q)=\theta(p)+\theta(q)$.
2. As $p q \leq p$ and $p q \leq q$, then $\theta(p q) \leq \theta(p), \theta(p q) \leq \theta(q)$ and hence $\theta(p q) \leq \theta(p) \theta(q)$. Let r be a projection such that $\theta(r)=\theta(p) \theta(q)-\theta(p q)$. Then $\theta(r) \leq \theta(p)$ and $\theta(r) \leq \theta(q)$, so $r \leq p, r \leq q$ and thus $r \leq p q$. On the other hand, since $\theta(r) \theta(p q)=0$, then by Theorem 2.3, we have $r(p q)=0$. Thus $r=0$ and by Lemma 2.2, $\theta(r)=0$. Hence $\theta(p q)=\theta(p) \theta(q)$.
3. If $p \leq q$, then $q-p \in \mathcal{P}(A)$ with $q=p+(q-p)$. As $p(q-p)=0$, then by (1) we have, $\theta(q)=\theta(p)+\theta(q-p)$ and hence $\theta(q-p)=\theta(q)-\theta(p)$.
4. As $p \Delta q=p+q-2 p q=(p-p q)+(q-p q)$ with $(p-p q)(q-p q)=0$, then by $(1), \theta(p \Delta q)=\theta(p-p q)+$ $\theta(q-p q)$. Also, since $p=(p-p q)+p q$ and $(p-p q) p q=0$, then again by $(1), \theta(p)=\theta(p-p q)+\theta(p q)$, therefore $\theta(p-p q)=\theta(p)-\theta(p q)$. Similarly, we have $\theta(q-p q)=\theta(q)-\theta(p q)$. So,

$$
\begin{aligned}
\theta(p \Delta q) & =(\theta(p)-\theta(p q))+(\theta(q)-\theta(p q)) \\
& =\theta(p)+\theta(q)-2 \theta(p q) \\
& =\theta(p)+\theta(q)-2 \theta(p) \theta(q) \quad(\text { by }(2)) \\
& =\theta(p) \Delta \theta(q) .
\end{aligned}
$$

Notice that in a commutative C^{*}-algebra A, the set of projections is a commutative ring under the operations: symmetric difference as addition and the usual multiplication.

Theorem 2.5 Let A and B be two commutative unital C^{*}-algebras, and let θ be a one-to-one mapping from $\mathcal{P}(A)$ onto $\mathcal{P}(B)$. Then the following are equivalent

1. θ is an orthoisomorphism,
2. θ is an order-isomorphism,
3. θ is a ring isomorphism.

Proof. We proved in Theorem 2.3 that (1) and (2) are equivalent. Also, by Theorem $2.4(2$ and 4$)$, it is evident that (2) implies (3). So, it is sufficient to prove that (3) implies (1): Let $p, q \in \mathcal{P}(A)$. Then

$$
\begin{array}{lll}
p q=0 & \text { iff } & \theta(p q)=0 \\
& \text { iff } & \theta(p) \theta(q)=0
\end{array}
$$

Therefore θ preserves orthogonality, and this completes the proof.

3. A Projection's Diagram of $C(X)$

Let X be a compact space in $\left(\mathbb{R}, \tau_{u}\right)$. We recall and establish some main results concerning components and clopen subsets of X.

AL-RAWASHDEH, AL-SULEIMAN

Theorem 3.1 [2] Let X be a compact space in $\left(\mathbb{R}, \tau_{u}\right)$. Then every component of X has the form $[a, b]$, for some $a, b \in X$ with $a \leq b$.

Theorem 3.2 [2] Let X be a locally connected compact space in $\left(\mathbb{R}, \tau_{u}\right)$. Then

1. a subset B of X is a component if and only if B is non-empty connected and clopen in X,
2. the number of clopen subsets of X is finite,
3. for $a \in X,\{a\}$ is a component of X if and only if a is an isolated point.

Let X be a compact space in $\left(\mathbb{R}, \tau_{u}\right)$, and let μ denote the Lebesgue measure. Define the equipotence relation \cong on $\mathcal{P}(C(X))$ as

$$
p \cong q \text { if and only if } \mu(\operatorname{support}(p))=\mu(\operatorname{support}(q))
$$

It is easy to show that the previous relation is an equivalence relation. If $p \cong q$, then we say that p is equipotent to q. The equivalence class of p is denoted by $[p]$ (the notation $\left[\left(w_{[p]}\right)\right]$ is also used, where $w_{[p]}=\mu(\operatorname{support}(p))$ and called the weight of the class $[p]$), and the cardinal number of $[p]$ is denoted by $n_{[p]}$.

Definition 3.3 Let X be a compact space in $\left(\mathbb{R}, \tau_{u}\right)$.

1. For two distinct classes $[p],[q] \in \mathcal{P}(C(X)) / \cong$, we say that $[p]$ is a subclass of $[q]$, we write $[p] \prec[q]$, if there exist $p_{1} \in[p]$ and $q_{1} \in[q]$ such that $p_{1}<q_{1}$.
2. A subclass $[p]$ of $[q]$ is called maximal, denoted by $[p] \stackrel{\max }{\prec}[q]$, if there is no $[r] \in \mathcal{P}(C(X)) / \cong$ such that $[p] \prec[r] \prec[q]$.
3. For $[p] \prec[q]$, we denote by $m_{[p],[q]}$ the total number of subprojections of elements in $[q]$ which are equipotent to p. This number is called the multiplicity of $[p]$ in $[q]$.
4. A class $[r] \in \mathcal{P}(C(X)) / \cong$ is said to be minimal if $[0]$ is the only subclass of $[r]$.

In the following definition we introduce new concepts concerning projections of commutative C^{*}-algebra.

Definition 3.4 Let X be a compact space in $\left(\mathbb{R}, \tau_{u}\right)$. A projection p in the C^{*}-algebra $C(X)$ is said to be μ-infinite projection if p is equipotent to one of its proper subprojections. A projection that is not μ-infinite is called μ-finite projection. For $A \subseteq \mathcal{P}(C(X))$, we denote by $\mu F(A)$ the set of all μ-finite projections in A.

Remark 3.5 The concept of μ-finite will be essentially used in the studying of the projection's diagram of $C(X)$.

Let us now prove the following results.

Theorem 3.6 Let $\theta: \mathcal{P}(C(X)) \rightarrow \mathcal{P}(C(Y))$ be an order-isomorphism which preserves equipotence of projections. Then for any $p \in \mathcal{P}(C(X)), p$ is μ-finite if and only if $\theta(p)$ is μ-finite.

AL-RAWASHDEH, AL-SULEIMAN

Proof. Let p be a μ-finite projection of $C(X)$. Suppose that $\theta(p) \cong r$ with $r \leq \theta(p)$, for some $r \in \mathcal{P}(C(Y))$. As θ is a bijection, there exists a unique projection $q \in \mathcal{P}(C(X))$ such that $\theta(q)=r$. As θ preserves equipotence and order of projections, we have $p \cong q$ and $q \leq p$ which implies that $p=q$. Thus $\theta(p)=\theta(q)$, and hence $\theta(p)$ is μ-finite. Since θ^{-1} is an order-isomorphism and preserves equipotence, the converse holds.

Lemma 3.7 Let X be a locally connected compact space in $\left(\mathbb{R}, \tau_{u}\right)$. Then

1. every non-zero projection of $C(X)$ can be written uniquely as a sum of minimal projections,
2. the number of μ-finite projections of $C(X)$ in a class $[p]$ is $\frac{n_{[p]}}{n_{[0]}}$, for any $[p] \in \mathcal{P}(C(X)) / \cong$,
3. if $[p] \prec[q]$, then $m_{[p],[q]}=N n_{[0]}$, where N is the number of subprojections of elements of $\mu F([q])$ in $\mu F([p])$.

Proof.

1. By Theorem 3.2(2), the number of projections of $C(X)$ is finite. Let $\left\{p_{i}\right\}_{i=1}^{k}$ be the set of minimal projections of $C(X)$. Clearly it is a set of pair-wise orthogonal projections. We claim that every non-zero projection in $\mathcal{P}(C(X))$ can be written as a sum of such projections and this representation is unique. Let $p \in \mathcal{P}(C(X))$. If p is minimal, then the result holds. Otherwise, decompose p as $p=q+(p-q)$, for some projection $q<p$. Apply the argument on q and on $(p-q)$ then continue with this process. As the number of projections is finite, we shall attain that p can be written as a sum of minimal projections. To prove the uniqueness, suppose that $p=\sum_{j=1}^{s} q_{j}$ and $p=\sum_{t=1}^{m} r_{t}$, where q_{j} and r_{t} are minimal projections for all $j=1,2, \ldots, s$ and for all $t=1,2, \ldots, m$, we may assume that $s \leq m$. As $\sum_{j=1}^{s} q_{j}=\sum_{t=1}^{m} r_{t}$, then for every $1 \leq n \leq s, q_{n} \sum_{j=1}^{s} q_{j}=q_{n} \sum_{t=1}^{m} r_{t}$, which implies that $q_{n}=q_{n} \sum_{t=1}^{m} r_{t}$. As $r_{1}, r_{2}, \ldots, r_{m}$ are pair-wise orthogonal projections and q_{n} cannot be divided, then $q_{n}=r_{t_{n}}$, for some $1 \leq t_{n} \leq m$. To show that $s=m$, suppose on the contrary that $s<m$, then $\sum_{t=1}^{m} r_{t}-\sum_{j=1}^{s} q_{j}=\sum_{\substack{t \neq t_{n} \\ 1 \leq t \leq m}} r_{t}=0$. As $0<r_{t} \leq 1$, for every $1 \leq t \leq m$, we get a contradiction.
2. Let $[p] \in \mathcal{P}(C(X)) / \cong$. We claim that $[p]=\bigcup_{p_{s} \in \mu F([p])}\left(p_{s}+[0]\right)$. To this end, let $r \in[p]$. Then by (1), $r=\sum_{j=1}^{n} r_{j}$, where $r_{1}, r_{2}, \ldots, r_{n}$ are minimal projections. Let $r_{0}=\sum_{r_{j} \in[0]} r_{j}$ and $r_{s}=r-r_{0}$. Then $r_{s} \in \mu F([p])$ and $r=r_{s}+r_{0}$. So, $r \in r_{s}+[0]$ and hence $[p] \subseteq \bigcup_{p_{s} \in \mu F([p])}\left(p_{s}+[0]\right)$. The other direction is obvious. Our next claim is that $(q+[0]) \cap(r+[0])=\emptyset$, for any $q, r \in \mu F([p])$ with $q \neq r$. To prove this, let $q, r \in \mu F([p])$ with $q \neq r$, and suppose that $(q+[0]) \cap(r+[0]) \neq \emptyset$, then there exist $q_{0}, r_{0} \in[0]$ such that $q+q_{0}=r+r_{0}$. Clearly $\operatorname{support}(q) \cap \operatorname{support}\left(q_{0}\right)=\operatorname{support}(r) \cap \operatorname{support}\left(r_{0}\right)=\emptyset$. So, if $x \in \operatorname{support}(q)$, then either $x \in \operatorname{support}(r)$ or $x \in \operatorname{support}\left(r_{0}\right)$. If $x \in \operatorname{support}\left(r_{0}\right)$, then $q \cong\left(q-q r_{0}\right)<q$ which is impossible because q is μ-finite. Therefore, $x \in \operatorname{support}(r)$ and hence $\operatorname{support}(q) \subseteq \operatorname{support}(r)$. By the same $\operatorname{argument}$ we get that support $(r) \subseteq \operatorname{support}(q)$. Therefore, $\operatorname{support}(q)=\operatorname{support}(r)$ and thus $q=r$, which is a contradiction. Finally, since $\left|p_{s}+[0]\right|=|[0]|=n_{[0]}$, for any $p_{s} \in \mu F([p])$, then by the previous two claims $n_{[p]}=|\mu F([p])| n_{[0]}$, which implies that $|\mu F([p])|=\frac{n_{[p p]}}{n_{[0]}}$ and this is the desired result.
3. For $[p] \prec[q]$. Let $\mathcal{M}=\left\{p^{\prime} \in[p]: p^{\prime}<q^{\prime}\right.$, for some $\left.q^{\prime} \in[q]\right\}$, and let $\mathcal{N}=\left\{p_{s} \in \mu F([p]): p_{s}<\right.$ q_{s}, for some $\left.q_{s} \in \mu F([q])\right\}$, notice that $m_{[p],[q]}=|\mathcal{M}|$ and $N=|\mathcal{N}|$. We claim that $\mathcal{M}=\bigcup_{p_{s} \in \mathcal{N}}\left(p_{s}+[0]\right)$. Indeed, let $p^{\prime} \in \mathcal{M}$. Then $p^{\prime} \in[p]$ with $p^{\prime}<q^{\prime}$, for some $q^{\prime} \in[q]$. Now, p^{\prime} can be decomposed as $p^{\prime}=p_{s}^{\prime}+p_{0}^{\prime}$ where $p_{s}^{\prime} \in \mu F([p])$ and $p_{0}^{\prime} \in[0]$, also q^{\prime} can be decomposed as $q^{\prime}=q_{s}^{\prime}+q_{0}^{\prime}$ where $q_{s}^{\prime} \in \mu F([q])$ and $q_{0}^{\prime} \in[0]$. Therefore, $p_{s}^{\prime}<q_{s}^{\prime}$, and this implies that $p_{s}^{\prime} \in \mathcal{N}$, hence $p^{\prime} \in \bigcup_{p_{s} \in \mathcal{N}}\left(p_{s}+[0]\right)$. For the converse, let $p^{\prime} \in \bigcup_{p_{s} \in \mathcal{N}}\left(p_{s}+[0]\right)$. Then $p^{\prime}=p_{s}^{\prime}+r_{0}$, for some $p_{s}^{\prime} \in \mathcal{N}$ and $r_{0} \in[0]$. As $p_{s}^{\prime} \in \mathcal{N}$, then $p_{s}^{\prime} \in \mu F([p])$ and there exists $q_{s}^{\prime} \in \mu F([q])$ such that $p_{s}^{\prime}<q_{s}^{\prime}$. Let $q^{\prime}=q_{s}^{\prime}+r_{0}$. Then $p^{\prime}<q^{\prime}$ and hence $p^{\prime} \in \mathcal{M}$ and this completes the proof of the claim. Finally, by the same argument used in (2), we have $|\mathcal{M}|=|\mathcal{N}| n_{[0]}$ and hence $m_{[p],[q]}=N n_{[0]}$.

This completes the proof.
Let us introduce the following definition.

Definition 3.8 Consider the C^{*}-algebra $C(X)$. Represent each class $[p] \in \mathcal{P}(C(X)) / \cong$ by a rectangle which contains the weight of the class $[p]$ and contains a small sub-rectangle filled by the cardinal number of $[p]$. For $[p] \stackrel{\text { max }}{\prec}[q]$, draw an arrow from $[q]$ to $[p]$ merged with the multiplicity of $[p]$ in $[q]$. The sequence of these pictures shall be called the diagram of projection classes of $C(X)$ and denoted by $\mathfrak{D}(X)$.

We show a variety of diagrams by the following examples.

Example 3.9 Consider the C^{*}-algebra $C\left(X_{1}\right)$, where $X_{1}=\left([0,1] \cup[2,4], \tau_{u}\right)$. The set of projections of $C\left(X_{1}\right)$ is $\mathcal{P}\left(C\left(X_{1}\right)\right)=\left\{0, \chi_{[0,1]}, \chi_{[2,4]}, 1\right\}$ and the set of equivalence classes $\mathcal{P}\left(C\left(X_{1}\right)\right) / \cong=\left\{[0],\left[\chi_{[0,1]}\right],\left[\chi_{[2,4]}\right],[1]\right\}$. Clearly $n_{[p]}=1$, for every $[p] \in \mathcal{P}(C(X)) / \cong$, also

$$
\begin{aligned}
& {[0] \stackrel{\max }{\prec}\left[\chi_{[0,1]}\right] \stackrel{\max }{\prec}[1], \text { and }} \\
& {[0] \stackrel{\max }{\prec}\left[\chi_{[2,4]}\right] \stackrel{\max }{\prec}[1] .}
\end{aligned}
$$

The weights of the classes $[0],\left[\chi_{[0,1]}\right],\left[\chi_{[2,4]}\right]$, and $[1]$ are $0,1,2$, and 3 , respectively. Thus, we obtain the diagram $\mathfrak{D}\left(X_{1}\right)$ as shown in Figure 1.

Example 3.10 For $X_{2}=\left([0,0.5] \cup[1,2] \cup[3,4], \tau_{u}\right)$, the set of equivalence classes $\mathcal{P}\left(C\left(X_{2}\right)\right) / \cong=\{[(0)],[(0.5)]$, $[(1)],[(1.5)],[(2)],[(2.5)]\}$, and the corresponding diagram is $\mathfrak{D}\left(X_{2}\right)$, as shown in Figure 2.

Example 3.11 Let $X_{3}=\left([0,0.5] \cup[1,1.5] \cup[2,3], \tau_{u}\right)$. Then the set of equivalence classes $\mathcal{P}\left(C\left(X_{3}\right)\right) / \cong=$ $\{[(0)],[(0.5)],[(1)],[(1.5)],[(2)]\}$, and the corresponding diagram is $\mathfrak{D}\left(X_{3}\right)$, as shown in Figure 3.

The diagram $\mathfrak{D}(X)$ gives a good description of the projection classes of $C(X)$, in the following theorem we show that different quantities of $C(X)$ can be derived from the diagram $\mathfrak{D}(X)$.

Figure 1. $\mathfrak{D}\left(X_{1}\right)$.

Theorem 3.12 Let X be a locally connected compact space in $\left(\mathbb{R}, \tau_{u}\right)$, and let $\mathfrak{D}(X)$ be the corresponding diagram of $C(X)$. Then

1. the number of projections of $C(X)$ is $\sum_{[p]} n_{[p]}$;
2. the number of minimal projections of $C(X)$ is $\log _{2} \sum_{[p]} n_{[p]}$;
3. the number of μ-finite projections of $C(X)$ is $\frac{\sum_{[p p} n_{[p]}}{n_{[0]}}$;
4. the number of minimal μ-finite projections of $C(X)$ is $\log _{2} \frac{\sum_{[p]} n_{[p]}}{n_{[0]}}$;
5. the number of μ-infinite projections of $C(X)$ is $\frac{n_{[0]}-1}{n_{[0]}} \sum_{[p]} n_{[p]}$;
6. the number of minimal projections in [0] is $\log _{2} n_{[0]}$.

Proof.

1. As \cong is an equivalence relation, the equivalence classes form a partition of the set of projections and hence $|\mathcal{P}(C(X))|=\sum_{[p]} n_{[p]}$.

Figure 2. $\mathfrak{D}\left(X_{2}\right)$.

AL-RAWASHDEH, AL-SULEIMAN

Figure 3. $\mathfrak{D}\left(X_{3}\right)$
2. Assume that k is the number of minimal projections of $C(X)$. As the minimal projections are pair-wise orthogonal, then every sum of these projections is also a projection. Therefore, by Lemma 3.7(1),

$$
\begin{aligned}
|\mathcal{P}(C(X))| & =\binom{k}{0}+\binom{k}{1}+\binom{k}{2}+\cdots+\binom{k}{k} \\
& =2^{k}
\end{aligned}
$$

Thus, $k=\log _{2}|\mathcal{P}(C(X))|$ and by (1), $k=\log _{2} \sum_{[p]} n_{[p]}$.
3. As the set $\mathcal{P}(C(X)) / \cong$ forms a partition of $\mathcal{P}(C(X))$, the set $\{\mu F([p]):[p] \in \mathcal{P}(C(X)) / \cong\}$ also forms a partition of $\mu F(\mathcal{P}(C(X)))$. Therefore,

$$
\begin{aligned}
|\mu F(\mathcal{P}(C(X)))| & =\sum_{[p]}|\mu F([p])| \\
& =\sum_{[p]} \frac{n_{[p]}}{n_{[0]}}(\text { Lemma 3.7(2)) } \\
& =\frac{\sum_{[p]} n_{[p]}}{n_{[0]}}
\end{aligned}
$$

4. Clearly every sum of pair-wise orthogonal μ-finite projections is also μ-finite projection. On the other hand, by Lemma 3.7(1) any μ-finite projection can be written as a sum of minimal projections. It is easy to show that these projections are also μ-finite. By applying the argument used to prove (2) and by (3) above, we get that the number of minimal μ-finite projections is $\log _{2} \frac{\sum_{[p]} n_{[p]}}{n_{[0]}}$.
5. As $\mathcal{P}(C(X))=(\mu F(\mathcal{P}(C(X)))) \cup(\mu F(\mathcal{P}(C(X))))^{c}$,

$$
\begin{aligned}
\left|(\mu F(\mathcal{P}(C(X))))^{c}\right| & =|\mathcal{P}(C(X))|-|\mu F(\mathcal{P}(C(X)))| \\
& =\sum_{[p]} n_{[p]}-\frac{\sum_{[p]} n_{[p]}}{n_{[0]}} \quad(\text { by }(1) \text { and (3)) } \\
& =\frac{n_{[0]}-1}{n_{[0]}} \sum_{[p]} n_{[p]} .
\end{aligned}
$$

6. Assume that l is the number of minimal projections in [0]. By Lemma 3.7(1), any projection in [0] can be written uniquely as a sum of minimal projections, clearly these projections are equipotent to 0 . On the other hand, every sum of distinct minimal projections in [0] is a projection in [0]. Therefore

$$
\begin{aligned}
|[0]| & =\binom{l}{0}+\binom{l}{1}+\binom{l}{2}+\cdots+\binom{l}{l} \\
& =2^{l}
\end{aligned}
$$

Thus, $l=\log _{2}|[0]|=\log _{2} n_{[0]}$.
This completes the proof.
As a corollary we obtain a link between the diagrams and the topological invariants of X.

Corollary 3.13 Let X be a locally connected compact space in $\left(\mathbb{R}, \tau_{u}\right)$, and let $\mathfrak{D}(X)$ be the corresponding diagram of $C(X)$. Then

1. the number of clopen subsets of X is $\sum_{[p]} n_{[p]}$;
2. the number of components of X is $\log _{2} \sum_{[p]} n_{[p]}$;
3. the number of components of X of non-zero measure is $\log _{2} \frac{\sum_{[p]} n_{[p]}}{n_{[0]}}$;
4. the number of isolated points of X is $\log _{2} n_{[0]}$.

Proof.

1. Obvious.
2. We claim that B is a component of X if and only if χ_{B} is a minimal projection.

$$
\begin{array}{lll}
B \text { is a component of } X & \text { iff } B \text { is non-empty connected and clopen subset of } X \\
& \text { iff } \chi_{B} \text { is non-zero and has no proper subprojection } \\
& \text { iff } \chi_{B} \text { is minimal. }
\end{array}
$$

So by Theorem 3.12(2), the number of components of X is $\log _{2} \sum_{[p]} n_{[p]}$.

AL-RAWASHDEH, AL-SULEIMAN

3. By the argument used in (2), B is a component of non-zero measure if and only if χ_{B} is a minimal projection in $\mu F\left(\mathcal{P}(C(X))\right.$), hence by Theorem 3.12(4), the number of these components is $\log _{2} \frac{\sum_{\left[p n^{\prime}\right.} n_{[p]}}{n_{[0]}}$.
4. By the argument used in (2), a component B of X has the form $\{a\}$ if and only if χ_{B} is a minimal projection in [0], hence by Theorem 3.12(6) and Theorem 3.2(3), the number of isolated points of X is $\log _{2} n_{[0]}$.

This completes the proof.

4. Diagram Isomorphisms

Let us introduce the concept of diagram isomorphism as follows.

Definition 4.1 Let X and Y be two compact spaces in $\left(\mathbb{R}, \tau_{u}\right)$. A diagram isomorphism between $\mathfrak{D}(X)$ and $\mathfrak{D}(Y)$ is a one-to-one mapping φ from $\mathcal{P}(C(X)) / \cong$ onto $\mathcal{P}(C(Y)) / \cong$ such that:

1. $n_{[p]}=n_{\varphi([p])}$, for any $[p] \in \mathcal{P}(C(X)) / \cong$,
2. $[p] \stackrel{\max }{\prec}[q]$ if and only if $\varphi([p]) \stackrel{\max }{\prec} \varphi([q])$, for any $[p],[q] \in \mathcal{P}(C(X)) / \cong$,
3. $m_{[p],[q]}=m_{\varphi([p]), \varphi([q])}$, for any $[p],[q] \in \mathcal{P}(C(X)) / \cong$ with $[p] \stackrel{\max }{\prec}[q]$.

That is, φ preserves cardinal number of classes, maximal subclasses and preserves the multiplicity between maximal classes. If there is an isomorphism between $\mathfrak{D}(X)$ and $\mathfrak{D}(Y)$, then we say that $\mathfrak{D}(X)$ and $\mathfrak{D}(Y)$ are isomorphic and write $\mathfrak{D}(X) \simeq \mathfrak{D}(Y)$.

The following example discusses two different C^{*}-algebras whose diagrams are isomorphic.

Example 4.2 Let $X=\left([-20,-14] \cup[-10,-9] \cup[-6,-4], \tau_{u}\right)$ and $Y=\left([1,3.5] \cup[4.5,5] \cup[6.5,7.5], \tau_{u}\right)$ be two spaces such that their corresponding diagrams $\mathfrak{D}(X)$ and $\mathfrak{D}(Y)$ are as shown in Figure 4,
then $\mathfrak{D}(X)$ is isomorphic to $\mathfrak{D}(Y)$. Indeed, define $\varphi: \mathcal{P}(C(X)) / \cong \rightarrow \mathcal{P}(C(Y)) / \cong$ by: $\varphi=\{([(9)],[(5)]),([(8)]$, $[(4.5)]),([(7)],[(4)]),([(6)],[(3.5)]),([(3)],[(1.5)]),([(2)],[(0.5)]),([(1)],[(1)])$,
$([(0)],[(0)])\}$. It is easy to check that φ is a diagram isomorphism, hence the example is explained.

Example 4.3 The diagrams given in Figure 5 are not isomorphic.
Let $X=\left(\{1,2\}, \tau_{u}\right)$ and $Y=\left([1,2] \cup[3,4], \tau_{u}\right)$. Then

$$
\mathcal{P}(C(X))=\left\{0, \chi_{\{1\}}, \chi_{\{2\}}, 1\right\} \text { and } \mathcal{P}(C(Y))=\left\{0, \chi_{[1,2]}, \chi_{[3,4]}, 1\right\} .
$$

Define

$$
\theta: \mathcal{P}(C(X)) \rightarrow \mathcal{P}(C(Y))
$$

Figure 4. $\mathfrak{D}(X)$

$\mathfrak{D}(Y)$
by

$$
\theta=\left\{(0,0),\left(\chi_{\{1\}}, \chi_{[1,2]}\right),\left(\chi_{\{2\}}, \chi_{[3,4]}\right),(1,1)\right\}
$$

then θ is an order-isomorphism but $\mathfrak{D}(X)$ is not isomorphic to $\mathfrak{D}(Y)$. Let us prove the following theorem.

Theorem 4.4 Let X and Y be two compact spaces in $\left(\mathbb{R}, \tau_{u}\right)$. If there exists an order-isomorphism between $\mathcal{P}(C(X))$ and $\mathcal{P}(C(Y))$, which preserves equipotence of projections, then $\mathfrak{D}(X)$ is isomorphic to $\mathfrak{D}(Y)$.

Proof. Let $\theta: \mathcal{P}(C(X)) \rightarrow \mathcal{P}(C(Y))$ be an order-isomorphism which preserves equipotence of projections. For any $[p],[q] \in \mathcal{P}(C(X))$, we have

$$
\begin{array}{lll}
{[p]=[q]} & \text { iff } \quad p \cong q \\
& \text { iff } & \theta(p) \cong \theta(q) \\
& \text { iff } & {[\theta(p)]=[\theta(q)],}
\end{array}
$$

this allows us to define the map $\hat{\theta}: \mathcal{P}(C(X)) / \cong \rightarrow \mathcal{P}(C(Y)) / \cong$ by $\hat{\theta}([p])=[\theta(p)]$. We claim that $\hat{\theta}$ is a diagram isomorphism. To this end, we first show that $\hat{\theta}$ is a bijection. By the above construction, $\hat{\theta}$ is well-defined and is an injection. let $\left[r^{\prime}\right] \in \mathcal{P}(C(Y)) / \cong$. As θ is surjective, there exists $r \in \mathcal{P}(C(X))$ such that $r^{\prime}=\theta(r)$. So, we have an element, namely $[r] \in \mathcal{P}(C(X)) / \cong$, such that $\hat{\theta}([r])=[\theta(r)]=\left[r^{\prime}\right]$, hence $\hat{\theta}$ is a bijection.
Let $[p] \in \mathcal{P}(C(X)) / \cong$. As θ preserves the equipotence of projections and since θ is a bijection, we have

Figure 5. Non-isomorphic diagrams.
$n_{[p]}=n_{[\theta(p)]}$ and hence $n_{[p]}=n_{\hat{\theta}([p])}$, for any $[p] \in \mathcal{P}(C(X)) / \cong$.
To prove that $\hat{\theta}$ preserves subclasses, let $[p],[q] \in \mathcal{P}(C(X)) / \cong$ with $[p] \prec[q]$. Then there exist $p_{1} \in[p]$ and $q_{1} \in[q]$ such that $p_{1}<q_{1}$. As θ preserves the order, $\theta\left(p_{1}\right)<\theta\left(q_{1}\right)$. Since θ preserves the equipotence of projections, then $p_{1} \in[p]$ implies that $\theta\left(p_{1}\right) \in[\theta(p)]$ and hence $\theta(p) \in \hat{\theta}([p])$, also $q_{1} \in[q]$ implies that $\theta\left(q_{1}\right) \in[\theta(q)]$ and thus $\theta\left(q_{1}\right) \in \hat{\theta}([q])$. Therefore, $\hat{\theta}([p]) \prec \hat{\theta}([q])$. The converse is true as θ^{-1} is also an order-isomorphism and preserves equipotence of projections.

Now we claim that $\hat{\theta}$ preserves maximal subclasses. To show this, let $[p],[q] \in \mathcal{P}(C(X)) / \cong$ and suppose that $[p] \stackrel{\max }{\prec}[q]$. By the previous claim, $[p] \prec[q]$ implies that $\hat{\theta}([p]) \prec \hat{\theta}([q])$. Let $\left[r^{\prime}\right] \in \mathcal{P}(C(Y)) / \cong$ with $\hat{\theta}([p]) \prec\left[r^{\prime}\right] \prec \hat{\theta}([q])$. As $\hat{\theta}$ is surjective, there exists $[r] \in \mathcal{P}(C(X)) / \cong$ such that $\left[r^{\prime}\right]=\hat{\theta}([r])$. Then $\hat{\theta}([p]) \prec \hat{\theta}([r]) \prec \hat{\theta}([q])$, which implies that $[p] \prec[r] \prec[q]$, hence $[p]$ is not a maximal subclass of $[q]$ and this is a contradiction. The converse is true because $\hat{\theta}^{-1}$ is also surjective and preserves subclasses.
Finally, by the previous claim and since θ is a bijection which preserves the order, then for any $[p] \stackrel{\max }{\prec}[q]$ in $\mathcal{P}(C(X)) / \cong$, the number of subprojections of elements in $[q]$ whose equipotent to p is equal to the number of subprojections of elements in $\hat{\theta}([q])$ whose equipotent to $\theta(p)$, hence $m_{[p],[q]}=m_{\hat{\theta}([p]), \hat{\theta}([q])}$, and this completes the proof.

Remark 4.5 If $C(X)$ and $C(Y)$ are isomorphic as C^{*}-algebras, then the corresponding diagrams $\mathfrak{D}(X)$ and $\mathfrak{D}(Y)$ are not necessarily isomorphic in general. Indeed, take $X=\left([1,2] \cup[3,4], \tau_{u}\right)$ and $Y=\left([1,2] \cup[3,5], \tau_{u}\right)$.

Now let us prove the following theorem.
Theorem 4.6 Let X and Y be two locally connected compact spaces in $\left(\mathbb{R}, \tau_{u}\right)$. If $\mathfrak{D}(X)$ is isomorphic to $\mathfrak{D}(Y)$, then $C(X)$ and $C(Y)$ are isomorphic as C^{*}-algebras.
Proof. Suppose that $\mathfrak{D}(X)$ is isomorphic to $\mathfrak{D}(Y)$. By Corollary $3.13(3$ and 4$)$, we conclude that the number of components of X of non-zero measure is equal to the number of components of Y of non-zero measure, also the number of isolated points of X is equal to the number of isolated points of Y. By Theorem 3.1, the components of non-zero measure are of the form $[a, b]$ with $a<b$, and the components of measure zero are of the form $\{a\}$, where a is an isolated point of X. As the components form a partition, then X and Y can be written as a union of their components:

$$
\begin{aligned}
X & =\bigcup_{i=1}^{n}\left[a_{i}, b_{i}\right] \cup \bigcup_{j=1}^{m}\left\{x_{j}\right\}, a_{i}<b_{i}, \text { for all } i=1,2, \ldots, n, \text { and } \\
Y & =\bigcup_{i=1}^{n}\left[c_{i}, d_{i}\right] \cup \bigcup_{j=1}^{m}\left\{y_{j}\right\}, c_{i}<d_{i}, \text { for all } i=1,2, \ldots, n
\end{aligned}
$$

Define $f: X \rightarrow Y$ by

$$
f(x)= \begin{cases}\frac{d_{i}-c_{i}}{b_{i}-a_{i}}\left(x-a_{i}\right)+c_{i} & ; x \in\left[a_{i}, b_{i}\right], \text { for some } i, \\ y_{j} & ; x=x_{j}, \text { for some } j\end{cases}
$$

AL-RAWASHDEH, AL-SULEIMAN

Then f is a homeomorphism and hence by Theorem 1.6, $C(X)$ and $C(Y)$ are isomorphic as C^{*}-algebras.

Corollary 4.7 Let X and Y be two locally connected compact spaces in $\left(\mathbb{R}, \tau_{u}\right)$. If $\mathfrak{D}(X)$ is isomorphic to $\mathfrak{D}(Y)$, then there exists an order-isomorphism between $\mathcal{P}(C(X))$ and $\mathcal{P}(C(Y))$.

Proof. As $\mathfrak{D}(X)$ is isomorphic to $\mathfrak{D}(Y)$, then by Theorem 4.7, $C(X)$ and $C(Y)$ are isomorphic as C^{*} algebras. Let ψ be an isomorphism from $C(X)$ onto $C(Y)$. Then the restriction $\left.\psi\right|_{\mathcal{P}(C(X))}$ of ψ on the projections of $C(X)$ is an orthoisomorphism from $\mathcal{P}(C(X))$ onto $\mathcal{P}(C(Y))$, so by Theorem 2.3, $\left.\psi\right|_{\mathcal{P}(C(X))}$ is an order-isomorphism.

Combining Theorems 4.4 and 4.7, we obtain the following corollary.
Corollary 4.8 Let X and Y be two locally connected compact spaces in $\left(\mathbb{R}, \tau_{u}\right)$. If there exists an orderisomorphism between $\mathcal{P}(C(X))$ and $\mathcal{P}(C(Y))$, which preserves the equipotence of the projections, then $C(X)$ is isomorphic to $C(Y)$ as C^{*}-algebras.

References

[1] Al-Rawashdeh, A., Shatanawi, W.: Induced Mappings on Boolean Algebras of Clopen Sets and on Projections of the C^{*}-Algebra $C(X)$, Turkish J. Math, 31, 1-13 (2007).
[2] Al-Suleiman, S.: C^{*}-Algebras of Continuous Complex-Valued Functions on a Compact Set, Master Thesis, Jordan University of Scirence and Technology (2007).
[3] Conway, J.: A Course in Functional Analysis, New York, Springer-Verlag (1985).
[4] Davidson, K.: C^{*}-Algebras by Example, Fields Institute Monographs, Amer. Math. Soc. Providencs RI (1996).
[5] Dye, H.: On the Geometry of Projections in Certain Operator Algebras, Ann. of Math., Second Series, 61:73-89 (1955).
[6] de la Harpe, P. and Jones, V.F.R.: An Introduction to C^{*}-Algebras, Université de Genève (1995).
[7] Pedersen, G.: C^{*}-Algebras and Their Automorphism Groups, London, Academic Press (1979).
[8] Pedersen, G.: Analysis Now, Corrected Second Printing 1994, Springer-Verlag, Berlin (1988).

[^0]: 2000 AMS Mathematics Subject Classification: 46L05; 46L99.

