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Graded multiplication modules and the graded ideal θg(M)

Shahabaddin Ebrahimi Atani and Reza Ebrahimi Atani

Abstract

Let G be a group and let R be a G -graded commutative ring. For a graded R -module M , the notion

of the associated graded ideal θg(M) of R is defined. It is proved that the graded ideal θg(M) is important

in the study of graded multiplication modules. Among various application given, the following results are

proved: if M is a graded faithful multiplication module, then θg(M) is an idempotent graded multiplication

ideal of R such that θg(θg(M)) = θg(M) , and every graded representable multiplication R -module is finitely

generated.
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1. Introduction

A grading on a ring and its modules usually aids computations by allowing one to focus on the homoge-
neous elements, which are presumably simpler or more controllable than random elements. However, for this
to work one needs to know that the constructions being studied are graded. One approach to this issue is to
redefine the constructions entirely in terms of the category of graded modules and thus avoid any consideration
of non-graded modules or non-homogeneous elements; Sharp gives such a treatment of attached primes in [12].
Unfortunately, while such an approach helps to understand the graded modules themselves, it will only help to
understand the original construction if the graded version of the concept happens to coincide with the original
one. Therefore, notably, the study of graded modules is very important.

In this paper we study the concepts of graded multiplication modules and graded representable modules
over a G -graded commutative ring. We study these concepts in analogous way to that done for graded modules
in [4, 5, 12]. However, if G is a finitely generated abelian group then G is isomorphic to the direct sums of

some copies of Zm and Zn and, for this case, the results are well-known [4, 5, 12]. Throughout this paper G

is a non-finitely generated abelian group. So, our work is a new direction in the study of graded multiplication
modules and related results.

A module M over a commutative ring R is called a multiplication module if for any submodule N of
M there exists an ideal I of R such that N = IM . Let M be a multiplication module. Anderson [1], defines

θ(M) =
∑

m∈M (Rm : M). In case M is faithful, it is proved in [2] that θ(M) is an idempotent multiplication
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ideal such that θ(θ(M)) = θ(M). Let G be a group. Graded modules over a commutative G -graded ring have

been studied by many authors (see [4], [8], [12], [13] and [14], for example). Here we study graded multiplication

R -modules (see Definition 1.1). In the present paper we show that the graded module structures of M and

θg(M) (see Remark 2.1) are closely related. The main aim of this paper is that of extending some results

obtained by [2, 10] to the theory of graded modules (see Section 2 and 3).

For the sake of completeness, we recall some definitions and notations used throughout. Let G be an
arbitrary group. A commutative ring R with non-zero identity is G -graded if it has a direct sum decomposition
(as an additive group) R = ⊕g∈GRg such that for all g, h ∈ G , RgRh ⊆ Rgh . If R is G -graded, then

an R -module M is said to be G -graded if it has a direct sum decomposition M = ⊕g∈GMg such that for

all g, h ∈ G , RgMh ⊆ Mgh . An element of some Rg or Mg is said to be a homogeneous element. A

submodule N ⊆ M , where M is G -graded, is called G -graded if N = ⊕g∈G(N ∩ Mg) or if, equivalently,

N is generated by homogeneous elements. Moreover, M/N becomes a G -graded module with g -component

(M/N)g = (Mg + N)/N for g ∈ G . Clearly, 0 is a graded submodule of M . We write h(R) = ∪g∈GRg and

h(M) = ∪g∈GMg .

Let R be a G -graded ring R . A graded ideal I of R is said to be a graded prime ideal if I �= R ; and
whenever ab ∈ I , we have a ∈ I or b ∈ I , where a, b ∈ h(R). The graded radical of I , denoted by Gr(I), is the

set of all x ∈ R such that for each g ∈ G there exists ng > 0 with x
ng
g ∈ I . A proper graded submodule N of

a graded R -module M is called graded prime if rm ∈ N , then m ∈ N or r ∈ (N : M) = {r ∈ R : rM ⊆ N} ,

where r ∈ h(R), m ∈ h(M). The set of all graded prime submodules of M is called the graded spectrum of

M and denoted by Specg(M). A graded R -module M is called graded finitely generated if M =
∑n

i=1 Rxgi ,

where xgi ∈ h(M) (1 ≤ i ≤ n). It is clear that a graded module is finitely generated if and only if it is graded

finitely generated.

Definition 1.1 Let R be a G-graded ring. A graded R -module M is defined to be a graded multiplication
module if for each graded submodule N of M , N = IM for some graded ideal I of R [9]. Graded multiplication
ring is defined in a similar way.

One can easily show that if N is a graded submodule of a graded multiplication module M , then
N = (N : M)M . It is clear that every graded module which is multiplication is a graded multiplication

module. Moreover, the class of graded multiplication domains has been characterized in [5] as the class of
graded Dedekind domains which is the class of graded domains in which every graded ideal is graded invertible
(a graded ideal I of a graded ring R is called graded invertible ideal if there exists a graded ideal J of R

such that IJ = R). In [14], we can see an example of a graded multiplication ring which is not multiplication.

Indeed, the group ring R[Z] , where R is a Dedekind domain is a graded Dedekind domain and so it is a graded

multiplication domain. On the other hand, if R is not a field, then R[Z] is not a Dedekind domain and so it
is not a multiplication domain. So a graded multiplication module need not be multiplication. We need the
following lemma proved in [9, Lemma 2.1 and Proposition 2.3].

Lemma 1.2 Let M be a graded module over a G-graded ring R . Then the following hold:

(i) If N is a graded submodule of M , a ∈ h(R) and m ∈ h(M) , then Rm, IN and aN are graded
submodules of M and Ra is a graded ideal of R .
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(i1) If {Ni}i∈Λ is a collection of graded submodules of M , then
∑

i∈Λ Ni and
⋂

i∈Λ Ni are graded

submodules of M .

(iii) M is graded multiplication if and only if for each m in h(M) there exists a graded ideal I of R

such that Rm = IM .

2. The graded ideal θg(M)

In this section we study the graded ideal θg(M) where R is a commutative G -graded ring with identity
and M is a graded multiplication R -module.

Remark 2.1 Let M be a graded module over a G-graded ring R .

(i) Assume that M is a finitely generated R -module and that I is be a graded ideal of R such that

IM = M . Then by standard determinant arguments, we have that(1 − t)M = 0 for some t ∈ I (note that

every graded finitely generated R -module is finitely generated), so R = I + (0 : M) . Moreover, if I is finitely
generated ideal of R , then IM is a finitely generated submodule of M .

(ii) Let m =
∑n

i=1 mgi ∈ M , where 0 �= mgi ∈ h(M) . Then m ∈ Rmg1 + · · · + Rmgn ⊆
∑

x∈h(M) Rx ;

hence M =
∑

x∈h(M) Rx .

(iii) If N is a graded submodule of M , then we define the subset θg(N) of R as θg(N) =
∑

x∈N∩h(M)(Rx :

M) . Therefore, by Lemma 1.2, θg(N) is a graded ideal of R . In particular, θg(M) =
∑

x∈h(M)(Rx : M) .

Lemma 2.2 Let N be a graded submodule of a graded multiplication module over a G-graded ring R . Then
M = θg(M)M and N = θg(M)N .

Proof. By Remark 2.1, M =
∑

m∈h(M) Rm =
∑

m∈h(M)(Rm : M)M = (
∑

m∈h(M)(Rm : M))M =

θg(M)M . Moreover, N = (N : M)M = (N : M)(θg(M)M) = θg(M)((N : M)M) = θg(M)N . �

Proposition 2.3 Let M be a graded multiplication module over a G-graded ring R . If I is a finitely generated
ideal of R with I ⊆ θg(M) , then IM is finitely generated. Conversely, if I is a graded ideal of R with IM

finitely generated, then I ⊆ θg(M) .

Proof. Let I =< a1, . . . , an > , where ai ∈ I ∩ h(R). Then there exist xi ∈ h(M) (1 ≤ i ≤ n) such

that ai ∈ (Rxi : M) (note that ai is a homogeneous element); hence I ⊆
∑n

i=1(Rxi : M). Therefore,

IM ⊆
∑n

i=1 Rxi = N . It follows from Remark 2.1 that θg(M)N = N , so R = θg(M) + (0 : N). There

are elements a ∈ θg(M) and b ∈ (0 : N) such that 1 = a + b . Hence there exist y1, . . . , ys ∈ h(M) such

that a ∈
∑s

j=1(Ryj : M); thus R = (0 : N) +
∑s

j=1(Ryi : M). It follows that IM = IRy1 + · · · + IRys

(since IM(0 : N) = 0); hence IM is finitely generated by Remark 2.1. Conversely, let I be a graded

ideal of R and suppose that IM is finitely generated. First we show that I(0 : IM) ⊆ (0 : M). It suf-

fices to show that for each a ∈ I ∩ h(R), b ∈ (0 : IM) ∩ h(R), abM = 0. As bIM = 0, we must

have abM = 0. Since IM is finitely generated and IM = θg(M)IM , so R = θg(M) + (0 : IM). Hence

I = Iθg(M) + I(0 : IM) ⊆ θg(M) + (0 : M) ⊆ θg(M) because (0 : M) ⊆ θg(M). �
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Theorem 2.4 Let R be a G-graded ring and M a graded multiplication R -module. Then the following
conditions are equivalent:

(i) M is finitely generated.

(ii) θg(M) = R .

(iii) θg(M) is finitely generated.

Proof. (i) → (ii). Apply the second part of Proposition 2.3. (ii) → (iii). Clear. (iii) → (i). Set

I = θg(M). Then by 2.3, M = θg(M)M is graded finitely generated. �

Theorem 2.5 Let R be a G-graded ring and M a graded multiplication R -module and I a graded ideal of R

with I ⊆ θg(M) . Then the following hold:

(i) I + (0 : M) = Iθg(M) + (0 : M) .

(ii) θg(M) = (θg(M))2 + (0 : M) . In particular, If M is faithful, then (θg(M))2 = θg(M) .

Proof. (i) Since the inclusion Iθg(M)+(0 : M) ⊆ I+(0 : M) is clear, we will prove the reverse inclusion. Let

r+a ∈ I +(0 : M) for some r ∈ I ⊆ θ(M) and a ∈ (0 : M). Assume that r =
∑n

i=1 rgi with 0 �= rgi ∈ I ∩h(R)

(1 ≤ i ≤ n) and let c ∈ {rgi, . . . , rgn} . Then Rc is a graded cyclic ideal of R and (Rc)M = cM is finitely

generated by Proposition 2.3. Hence θg(M)cM = cM gives θg(M) + (0 : cM) = R . Thus c θg(M) + c

(0 : M) = Rc . It follows from c (0 : cM) ⊆ (0 : M) that c θg(M) + (0 : M) = (0 : M) + Rc . Therefore, we

have Rr + (0 : M) ⊆ (Rrg1 + (0 : M)) + · · ·+ (Rrgn + (0 : M)) = (r1 θg(M) + (0 : M)) + . . . +(rgn θg(M)

+ (0 : M) = r θg(M) + (0 : M), so r + a ∈ rθg(M) + (0 : M), and we have equality.

(ii) By (i), setting I = θg(M) gives θg(M) = θg(M) + (0 : M) = (θg(M))2 + (0 : M), as required �

Given a graded R -module M , R a G -graded ring, there is a number of graded ideals associated with M

besides θg(M). By Lemma 1.2, Tg(M) =
⋂
{I + (0 : M) : I is a graded ideal of R with IM = M} is a graded

ideal of R . We next show that for M a graded faithful multiplication R -module, these two associated graded
ideals coincide: Tg(M) = θg(M).

Lemma 2.6 Let M be a graded faithful multiplication module over a G-graded ring R . Then the following
hold:

(i) m ∈ Tg(M)m for each m ∈ h(M) .

(ii) Tg(M) = (Tg(M))2 .

(iii) Tg(M) is a graded essential ideal of R .

(iv) M is a graded multiplication Tg(M)-module.

(v) M �= JM for each proper graded ideal J of Tg(M) .

Proof. (i) Let T = Tg(M). By [9, Theorem 2.11], TM = (
⋂

I)M =
⋂

(IM) = T . Then Rm = AM for

some graded ideal A of R . Thus Rm = ATM = Tm and hence m ∈ Tm .

(ii) M = TM = T (TM) = T 2M implies T = T 2 by the definition of T .
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(iii) Let K be a graded ideal of R such that K ∩ T = 0. Then KM = KM ∩ TM = (K ∩ T )M = 0, so
K = 0 since M is faithful.

(iv) Let N be a graded T -submodule of M . By (i), for each y ∈ h(N), we have y ∈ Ty , so N ⊆ TN ;
hence RN = RTN = N . Therefore, N is a graded R -submodule of M . So N = CM for some graded ideal
C of R and hence N = CM = CTM . But CT is a graded ideal of T , as needed.

(v) Let U be a graded ideal T such that M = UM . Then TM = M gives M = UTM and UT is a
graded ideal of R . It follows that T ⊆ UT ⊆ RU ⊆ T , that is U = T . �

Theorem 2.7 Let R be a G-graded ring and M a graded faithful multiplication R -module. Then the following
hold:

(i) θg(M) = Tg(M) .

(ii) θg(M) = θg(θg(M)) .

Proof. (i) Let M be a graded faithful multiplication R -module. Now θg(M)M = M , so Tg(M) ⊆ θg(M).

By Theorem 2.5, Tg(M) = Tg(M)θg(M). For each mg ∈ h(M) (g ∈ G), Tg(M)Rmg = Rmg by Lemma 2.6.

Hence Tg(M) + (0 : mg) = R . Now (Rmg : M)(0 : mg) ⊆ (0 : M) = 0, so Tg(M)(Rmg : M) = (Rmg : M).

Thus Tg(M)θg(M) = Tg(M)(
∑

m∈h(M)(Rm : M)) =
∑

m∈h(M) Tg(M)(Rm : M) =
∑

m∈h(M)(Rm : M) =

θg(M). Hence Tg(M) = θg(M).

(ii) Since M is faithful and θg(M)M = M , we must have θg(M) is faithful. Hence by Theorem 2.5, θg(M)

is a faithful idempotent multiplication graded ideal of R . Now (θg(M))2 = θg(M) gives Tg(θg(M)) ⊆ θg(M).

So θg(θg(M)) = Tg(θg(M)) ⊆ θg(M) ⊆ θg(θg(M)) and hence θg(θg(M)) = θg(M). �

3. Graded representable modules

The theory secondary representations and attached primes, dual to the more familiar theory of primary
decomposition and associated primes, is a useful tool for studying Artinian modules, and in particular for
studying the local cohomology H �

m(M) of finitely generated modules relative to the maximal ideal of a local

ring [11, 12]. In fact, the set of attached prime ideals of a module contains a lot of information about the module
itself. One approach to the graded case is simply to define all of the terminology to involve only homogeneous
elements and graded submodules. Let R be a G -graded ring. A non-zero graded module M is said to be graded
secondary if for each a ∈ h(R), the endomorphism ϕa,M (i.e., multiplication by a in M ) is either surjective

or nilpotent. It is immediate that Gr(annM) = P is a graded prime ideal of R , and M is said to be graded

P -secondary (see [12, Proposition 2.2]). A graded module M is said to be graded secondary representable if it
can be written as a sum M = M1 + · · ·+Mk with each Mi graded secondary, and if such a representation exists
(and is irredundant) then the graded attached primes of M are Attg(M) = {Gr(annM1), . . . , Gr(annMk)} .

Note that a graded secondary module, in general, is not secondary (see [12, 8]). So the graded secondary and

secondary modules are different concepts and these concepts do not always agree with the original ones (see the

beginning of the introduction).
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Let R be a G -graded ring. A graded R -module M is sum-irreducible if M �= 0 and the sum of any
two proper graded submodules of M is always a proper submodule. If M is a graded R -module, then M is
graded Noetherian (resp. Artinian) if any non-empty set of graded submodules of M has a maximal (resp.

minimal) member with respect to set inclusion. This definition is equivalent to the ascending chain condition

(resp. descending chain condition) on graded submodules of M . Graded Noetherian rings and graded Artinian
rings are defined in a similar way.

Proposition 3.1 If R is a G-graded Noetherian (resp. Artinian) ring, then any graded multiplication R -

module is graded Noetherian (resp. Artinian).

Proof. Consider a chain of graded submodules of M :

N1 ⊆ N2 ⊆ · · · ⊆ Nk ⊆ . . .

Then, there exist graded ideals (Ni : M) such that Ni = (Ni : M)M for each i . So we can have a chain
of graded ideals in R :

(N1 : M) ⊆ · · · ⊆ (Nk : M) ⊆ . . . .

Since R is graded Noetherian, there exists n such that (Nn : M) = (Nn+1 : M) = . . . . Therefore, Nn = Ni

for each ≥ n , as required. �

Lemma 3.2 Let R be a G-graded ring. Then a finite sum of graded P -secondary modules is graded P -
secondary.

Proof. Let M = M1 + · · ·+Mk , where for each i (1 ≤ i ≤ k ), Mi is graded P -secondary. Let a ∈ h(R). If

a ∈ P , then there is a positive integer n such that anMi = 0 for every i ; hence anM = 0. Similarly, if a /∈ P ,
then aM = M . Thus M is graded P -secondary. �

Theorem 3.3 Let R be a G-graded ring. Then every graded Artinian R -module M has a graded secondary
representation.

Proof. First, we show that if M is sum-irreducible, then M is graded secondary. Suppose M is not graded
secondary. Then there is an element r ∈ h(R) such that rM �= M and rnM �= 0 for every positive integer

n . By assumption, there exists a positive integer k such that rkM = rk+1M = . . . . Set M1 = Kerϕrk ,M

and M2 = rkM . Then M1 and M2 are proper graded submodules of M . Let x ∈ M . Then rkx = r2ky for

some y ∈ M ; hence x − rky ∈ M1 and therefore x ∈ M1 + M2 . Hence M = M1 + M2 , and therefore M

is not sum-irreducible. Next, suppose that M is not graded representable. Then the set of non-zero graded
submodules of M which are not graded representable has a minimal element N . Certainly N is not graded
secondary and N �= 0; hence N is the sum of two strictly smaller graded submodules N1 and N2 . By the
minimality of N , each N1, N2 is graded representable, and therefore so also is N , which is a contradiction. �

Let R be a G -graded ring and M, N graded R -modules. Let f : M → N be an R -module homomor-
phism. Then f is said to be graded homomorphism if f(Mg) ⊆ Ng for all g ∈ G . It is easy to see that Ker(f)
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is a graded submodule of M and Im(f) is a graded submodule of N . A graded R -module M is said to be
graded Hopfian if each graded R -epimorphism f : M → M is graded isomorphism.

Proposition 3.4 If M is a graded multiplication module over a G-graded ring R , then M is a graded Hopfian.

Proof. Let f : M → M be a graded epimorphism. By assumption, there exist a graded ideal I of R such
that N = Ker(f) = IM . Hence 0 = f(N) = If(M) = IM = N , as needed. �

Proposition 3.5 Let R be a G-graded ring, M a graded multiplication R -module and N a graded P -secondary
R -submodule of M . Then there exists a ∈ h(R) such that a ∈ θg(M) and a /∈ P . In particular, aM is a

finitely generated R -submodule of M .

Proof. Suppose not. Then θg(M) ⊆ P . Let x ∈ h(N). Then by Lemma 2.2, Rx = θg(M)Rx ⊆ Px ⊆ Rx ,

so x = px for some p ∈ P ∩ h(R). There is a positive integer m such that pmx = x = 0, which is a contradic-
tion. Finally, aM is graded finitely generated by Proposition 2.3. �

Theorem 3.6 Let R be a G-graded ring and let M be a graded representable multiplication R -module. Then
M is finitely generated.

Proof. Let M =
∑n

i=1 Mi be a minimal graded secondary representation of M with Attg(M) = {P1, P2, . . . , Pn} .

By Proposition 3.5, for each i (1 ≤ i ≤ n), there exists ai ∈ h(R) such that ai ∈ θg(M) and ai /∈ Pi . Then

for each i (1 ≤ i ≤ n), aiM = aiM1 + · · ·+ aiMi−1 + Mi + aiMi+1 + · · ·+ aiMn . Setting a =
∑n

i=1 ai gives

M = aM = a1M + · · ·+ anM is finitely generated by Proposition 2.3. �

Theorem 3.7 Let R be a G-graded ring and let M be a graded Artinian multiplication R -module. Then M

is finitely generated.

Proof. Apply Theorem 3.3 and Theorem 3.6. �

Theorem 3.8 Let R be a G-graded ring and let M be a graded representable multiplication R -module. Then
every graded submodule of M is representable.

Proof. Let M =
∑n

i=1 Mi be a minimal graded secondary representation of M with Attg(M) = {P1, P2, . . . , Pn} .

Then N = IM for some graded ideal I of R and N =
∑n

i=1 IMi . It suffices to show that for each i (1 ≤ i ≤ n),

IMi is graded Pi -secondary. Let a ∈ h(R). If a ∈ Pi , then am(IMi) = I(amMi) = 0 for some m . If a /∈ Pi ,

then a(IMi) = IMi , as required. �

Lemma 3.9 Let I and J be graded ideals of a G-graded ring R and M a graded finitely generated multipli-
cation R -module. Then IM ⊆ JM if and only if I ⊆ J + (0 : M) .
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Proof. Set K = (0 : M). Let R′ denote the graded ring R/K and note that M is a graded faithful

multiplication R′ -module such that I′M ⊆ J ′M , where I′ = (I + K)/K , J ′ = (J + K)/K and K = (0 : M).

By [9, Theorem 2.12], I′ ⊆ J ′ ; hence I ⊆ I + K ⊆ J + K , as needed. �

Lemma 3.10 If M is a graded finitely generated multiplication module over a G-graded ring R and I is a
graded ideal of R containing (0 : M) , then I = (IM : M) .

Proof. The proof will be completed by proving that (IM : M) ⊆ I . Clearly, (IM : M)M ⊆ IM . Now the
assertion follows from Lemma 3.9. �

Lemma 3.11 Let R be a G-graded ring. Then the following hold:

(i) A graded submodule N is a graded prime submodule of a graded R -module M If and only if whenever

IK ⊆ N implies that K ⊆ N or I ⊆ (N : M) , where I is a graded ideal of R and K a graded submodule of
M .

(ii) A graded ideal P is a graded prime ideal of R if and only if whenever IJ ⊆ P implies that I ⊆ P

or J ⊆ P , where I and J are graded ideals of R .

Proof. (i) Assume that N is a graded prime submodule of N and let x ∈ K ∩ h(M) − N ; we show that

I ⊆ (N : M). Let a =
∑n

i=1 agi ∈ I with 0 �= agi ∈ I ∩ h(R) (1 ≤ i ≤ n). By assumption, for each i ,

agix ∈ N , so N graded prime gives agiM ⊆ N ; hence aM ⊆ N . Conversely, suppose that cy ∈ N , where

c ∈ h(R) and y ∈ h(M). Take I = Rc and K = Ry . Then IK ⊆ N , so either c ∈ (N : M) or y ∈ N , and the

proof is complete. The proof of (ii) is similar to that (i). �

Proposition 3.12 If M is a graded finitely generated multiplication module over a G-graded ring R and P

is a graded prime ideal of R containing (0 : M) , then PM is a graded prime submodule of M .

Proof. Note that PM �= M . Otherwise (1 − p)M = 0 for some p ∈ P , which is a contradiction. Suppose
that I is a graded ideal of R and N is a graded submodule of M such that IN ⊆ PM . Since M is a graded
multiplication module, there exists a graded ideal J of R such that N = JN . Then IN = (IJ)N ⊆ PM . By

Lemma 3.10, IJ ⊆ P , so I ⊆ P or J ⊆ P ; hence I ⊆ P = (PM : M) by Lemma 3.9 or JM = N ⊆ PM . By
Lemma 3.11, PM is a graded submodule of M . �

Theorem 3.13 Let R be a G-graded ring and let M be a graded representable multiplication R -module with
Attg(M) = {P1, P2, . . . , Pn} . Then Specg(M) = {P1M, . . . , PnM} .

Proof. Let M =
∑n

i=1 Mi be a minimal graded secondary representation of M . Then (0 : M) =
⋂n

i=1(0 :

Mi) ⊆
⋂n

i=1 Pi ⊆ Pk for all k (1 ≤ k ≤ n). Since by Theorem 3.6, M is a finitely generated, we must have

PiM �= M for all i . It follows from Proposition 3.12 that PiM ∈ Specg(M) for all i , i = 1, . . . , n . Now let N

be a graded P -prime submodule of M . Then by [7, Theorem 2.10], M = N + M1 and so M/N ∼= M1/N ∩M1

is graded P1 -secondary R -module; hence P = P1 . Thus N = (N : M)M = P1M , as required. �
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