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Slant lightlike submanifolds of indefinite Kenmotsu manifolds

Ram Shankar Gupta and A. Sharfuddin

Abstract

In this paper, we introduce the notion of a slant lightlike submanifold of an indefinite Kenmotsu manifold.

We provide a non-trivial example and obtain necessary and sufficient conditions for the existence of a slant

lightlike submanifold. Also, we give an example of a minimal slant lightlike submanifold of R9
2 and prove

some characterization theorems.
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1. Introduction

In the theory of submanifolds of semi-Riemannian manifolds it is interesting to study the geometry of
lightlike submanifolds due to the fact that the intersection of normal vector bundle and the tangent bundle is
non-trivial. Thus, the study becomes more interesting and remarkably different from the study of non-degenerate
submanifolds. The geometry of lightlike submanifolds of indefinite Kaehler manifolds was presented in a book
by Duggal and Bejancu [5]. B. Y. Chen has introduced the notion of slant immersions by generalizing the

concept of holomorphic and totally real immersions [3, 4]. Later, it was A. Lotta [9] who introduced the concept
of slant immersion of a Riemannian manifold into an almost contact metric manifold. To define the notion of
slant submanifolds, one needs to consider the angle between two vector fields. A lightlike submanifold has two
(radical and screen) distributions. The radical distribution is totally lightlike and therefore it is not possible
to define angle between two vector fields of radical distribution. On the other hand, the screen distribution is
non-degenerate. Using these facts the notion of slant lightlike submanifold of an indefinite Hermitian manifold
was introduced by B. Sahin [10].

The purpose of the present paper is to introduce the notion of slant lightlike submanifold of an indefinite
Kenmotsu manifold.

In Section 2, we have collected the formulae and information which are useful in our subsequent sections.
In Section 3, we introduce the concept of slant lightlike submanifold of an indefinite Kenmotsu manifold
and provide a non-trivial example. We prove a characterization theorem for the existence of slant lightlike
submanifolds and show that co-isotropic CR -lightlike submanifolds are slant lightlike submanifolds. Finally, in
Section 4, we consider minimal slant lightlike submanifolds and give an example and prove two characterization
theorems.
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2. Preliminaries

An odd-dimensional semi-Riemannian manifold M is said to be an indefinite almost contact metric
manifold if there exist structure tensors {φ, V, η, g} , where φ is a (1,1) tensor field, V a vector field, η a 1-form

and g is the semi-Riemannian metric on M satisfying

{
φ2X = −X + η(X)V, η ◦ φ = 0, φV = 0, η(V ) = 1

g(φX, φY ) = g(X, Y ) − η(X)η(Y ), g(X, V ) = η(X) (2.1)

for X, Y ∈ TM , where TM denotes the Lie algebra of vector fields on M .

An indefinite almost contact metric manifold M is called an indefinite Kenmotsu manifold if [1, 8],

(∇Xφ)Y = −g(φX, Y )V + η(Y )φX, and ∇XV = −X + η(X)V. (2.2)

for any X, Y ∈ TM , where ∇ denote the Levi-Civita connection on M .

A submanifold Mm immersed in a semi-Riemannian manifold {Mm+n
, g} is called a lightlike submanifold

if it admits a degenerate metric g induced from g whose radical distribution of Rad(TM) is of rank r , where

1 ≤ r ≤ m . Now, Rad(TM) = TM
⋂

TM⊥ , where

TM⊥ =
⋃

x∈M

{u ∈ TxM : g(u, v) = 0, ∀v ∈ TxM} (2.3)

Let S(TM) be a screen distribution which is a semi-Riemannian complementary distribution of Rad(TM)

in TM , that is, TM = Rad(TM)⊥S(TM).

We consider a screen transversal vector bundle S(TM⊥), which is a semi-Riemannian complementary

vector bundle of Rad(TM) in TM⊥ . For any local basis {ξi} of Rad(TM), there exists a local frame {Ni}
of sections with values in the orthogonal complement of S(TM⊥) in [S(TM)]⊥ such that g(ξi, Nj) = δij and

g(Ni, Nj) = 0, and therefore, it follows that there exists a lightlike transversal vector bundle ltr(TM) locally

spanned by {Ni}(cf.[5], page 144). Let tr(TM ) is complementary (but not orthogonal) vector bundle to TM

in TM |M . Then {
tr(TM) = ltr(TM)⊥S(TM⊥)

TM |M = S(TM)⊥[Rad(TM)
⊕

ltr(TM)]⊥S(TM⊥).
(2.4)

A submanifold (M, g, S(TM), S(TM⊥)) of M is said to be

(i) r-lightlike if r < min{m, n} ;

(ii) Coisotropic if r = n < m, S(TM⊥) = {0} ;

(iii) Isotropic if r = m < n, S(TM) = {0} ;

(iv) Totally lightlike if r = m = n, S(TM) = {0} = S(TM⊥).

Let ∇ , ∇ and ∇t denote the linear connections on M , M and vector bundle tr(TM ), respectively.
Then the Gauss and Weingarten formulae are given by

∇XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM), (2.5)
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∇XU = −AUX + ∇t
XU, ∀ U ∈ Γ(tr(TM)), (2.6)

where {∇XY, AUX} and {h(X, Y ),∇t
XU} belong to Γ(TM) and Γ(tr(TM)), respectively and AU is the shape

operator of M with respect to U . Moreover, according to the decomposition (2.4), hl , hs are Γ(ltr(TM))-

valued and Γ(S(TM⊥))-valued lightlike second fundamental form and screen second fundamental form of M ,
respectively. Then

∇XY = ∇XY + hl(X, Y ) + hs(X, Y ), ∀X, Y ∈ Γ(TM), (2.7)

∇XN = −ANX + ∇l
X(N) + Ds(X, N), N ∈ Γ(ltr(TM)), (2.8)

∇XW = −AW X + ∇s
X(W ) + Dl(X, W ), W ∈ Γ(S(TM⊥)), (2.9)

where Dl(X, W ), Ds(X, N) are the projections of ∇t on Γ(ltr(TM)) and Γ(S(TM⊥)), respectively and ∇l ,

∇s are linear connections on Γ(ltr(TM)) and Γ(S(TM⊥)), respectively. We call ∇l , ∇s the lightlike and
screen transversal connections on M , and AN , AW are shape operators on M with respect to N and W ,
respectively. Using (2.5) and (2.7)∼(2.9), we obtain

g(hs(X, Y ), W ) + g(Y, Dl(X, W )) = g(AW X, Y ), (2.10)

g(Ds(X, N), W ) = g(N, AW X). (2.11)

Let P denote the projection of TM on S(TM) and let ∇∗ , ∇∗t denote the linear connections on S(TM)

and Rad (TM), respectively. Then from the decomposition of tangent bundle of lightlike submanifold, we have

∇XPY = ∇∗
XPY + h∗(X, PY ), (2.12)

∇Xξ = −A∗
ξX + ∇∗t

Xξ, (2.13)

for X , Y ∈ Γ(TM) and ξ ∈ Γ(Rad TM), where h∗ , A∗ are the second fundamental form and shape operator

of distributions S(TM) and Rad (TM), respectively.

From (2.12) and (2.13), we get

g(hl(X, PY ), ξ) = g(A∗
ξX, PY ), (2.14)

g(h∗(X, PY, N) = g(ANX, PY ), (2.15)

g(hl(X, ξ), ξ) = 0, A∗
ξξ = 0. (2.16)

In general, the induced connection ∇ on M is not a metric connection. Since ∇ is a metric connection,
from (2.7), we obtain

(∇Xg)(Y, Z) = g(hl(X, Y ), Z) + g(hl(X, Z), Y ). (2.17)

However, it is important to note that ∇∗ , ∇∗t are metric connections on S(TM) and Rad (TM), respectively.

A general notion of a minimal lightlike submanifold in a semi-Riemannian manifold, as introduced by
Bejan and Duggal [2], is as follows:
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Definition 2.1 A lightlike submanifold (M, g, S(TM)) isometrically immersed in a semi-Riemannian

manifold (M, g) is minimal if

(i) hs = 0 on Rad (TM);

(ii) trace h = 0, where trace is written with respect to g restricted to S(TM).

Similar to definition of contact CR-lightlike submanifolds, invariant submanifolds, screen real submani-
folds of Sasakian manifolds given by Duggal and Sahin [6], we state the following definitions [7]:

Definition 2.2 Let (M, g, S(TM), S(TM⊥)) be a lightlike submanifold, tangent to structure vector field V

and immersed in an indefinite Kenmotsu manifold (M, g). We say that M is a contact CR-lightlike submanifold

of M if the following conditions are satisfied:

(a) Rad TM is a distribution on M such that Rad TM
⋂

φ(Rad TM) = {0} ;

(b) there exist vector bundles D0 and D′ over M such that

{
S(TM) = {φ(Rad TM)

⊕
D′}⊥D0⊥{V },

φD0 = D0, φD′ = L1⊥ltr(TM) (2.18)

where D0 is nondegenerate and L1 is vector subbundle of S(TM⊥).

A contact CR-lightlike submanifold is proper if D0 	= {0} and L1 	= {0} .

Definition 2.3 A lightlike submanifold M , of an indefinite Kenmotsu manifold M , is screen real submanifold
if Rad (TM ) and S(TM) are, respectively, invariant and anti-invariant with respect to φ .

The following result is important for our subsequent use.

Proposition 2.1 [5] The lightlike second fundamental forms of a lightlike submanifold M do not depend on

S(TM) , S(TM⊥) and ltr(TM).

3. Slant lightlike submanifolds

We prove the following lemma.

Lemma 3.1 Let M be an r-lightlike submanifold of an indefinite Kenmotsu manifold M of index 2q with struc-
ture vector field tangent to M . Suppose that φRad TM is a distribution on M such that Rad TM

⋂
φRad TM =

{0} . Then φltr(TM) is a subbundle of the screen distribution S(TM) and φltr(TM)
⋂

φRad TM = {0} .

Proof. Given that φRad TM is a distribution on M such that Rad TM
⋂

φRad TM = {0} , and hence

φRad TM ∈ S(TM). We claim that ltr(TM) is not invariant with respect to φ .

Suppose that ltr(TM) is invariant with respect to φ . Choose ξ ∈ Rad TM and N ∈ Rad TM such

that g(N, ξ) = 1. Then from (2.1), we have

0 = g(φN, φξ) = g(N, ξ) − η(N)η(ξ) = g(N, ξ) = 1
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as φξ ∈ S(TM) and φN ∈ ltr(TM), and so ltr(TM) is not invariant with respect to φ .

Also, φN does not belong to S(TM⊥), and since S(TM⊥) is orthogonal to S(TM), it implies that

g(φN, φξ) must be zero. But from (2.1), we have that

g(φN, φξ) = g(N, ξ) − η(N)η(ξ) = g(N, ξ) = 1 	= 0

for some ξ ∈ ΓRad TM , which is again a contradiction and hence that φltr(TM) is a distribution on M .

Moreover, φN does not belong to Rad TM . Indeed, if φN ∈ ΓRad TM , we would have φ2N =
−N + η(N)V = −N ∈ ΓφRad TM , which is not possible. Similarly, φN does not belong to φRad TM . Thus,

we conclude that φltr(TM) ⊂ S(TM) and φltr(TM)
⋂

φRad TM = {0} . �

Next, we prove this lemma:

Lemma 3.2 Let M be q-lightlike submanifold of an indefinite Kenmotsu manifold M of index 2q with structure
vector field tangent to M . Suppose that φRad TM is a distribution on M such that Rad TM

⋂
φRad TM =

{0} . Then any complementary distribution to φltr(TM)
⊕

Rad TM in screen distribution S(TM) is Rieman-
nian.

Proof. Let D′ be the complementary distribution to φltr(TM)
⊕

φRad TM in S(TM) and dim(M ) = m

+ n and dim (M ) = m . We can choose a local quasi-orthonormal frame on M along M as

{ξi, Ni, φξi, φNi, Xα, V, Wa} , i ∈ {1, ..., q} , α ∈ {3q + 1, ..., m− 1} , a ∈ {q + 1, ..., n}, where {ξi} and

{Ni} are lightlike bases of Rad TM and ltr(TM), respectively, and {φξi, φNi, Xα, V } , is an orthonormal basis

of S(TM) and {Wa} is an orthonormal basis of S(TM⊥).

Now, we can construct the orthonormal basis {U1, U2, .., U2q, V1, V2, ..., V2q} as

U1 = 1√
2
{ξ1 + N1}, U2 = 1√

2
{ξ1 − N1},

U3 = 1√
2
{ξ2 + N2}, U4 = 1√

2
{ξ2 − N2},

· · · · · ·

· · · · · ·

U2q−1 = 1√
2
{ξq + Nq}, U2q = 1√

2
{ξq − Nq},

V1 = 1√
2
{φξ1 + φN1}, V2 = 1√

2
{φξ1 − φN1},

V3 = 1√
2
{φξ2 + φN2}, V2 = 1√

2
{φξ2 − φN2},

· · · · · ·

· · · · · ·

V2q−1 = 1√
2
{φξq + φNq}, V2q = 1√

2
{φξq − φNq}.

Hence, {ξi, Ni, φξi, φNi} gives a non-degenerate space of constant index 2q which imply that Rad TM
⊕

ltr(TM)⊕
φRad TM

⊕
φltr(TM) is non degenerate and of constant index 2q on M . As index(TM) = index(Rad TM
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⊕
ltr(TM))+ index(φRad TM

⊕
φltr(TM))+ index(D′⊥S(TM⊥)), we have 2q = 2q+ index(D′⊥S(TM⊥)),

which implies that index(D′⊥S(TM⊥)) = 0. Hence D′ is Riemannian. �

As mentioned in the introduction, the purpose of this paper is to define slant lightlike submanifolds of
indefinite Kenmotsu manifolds. To define this notion, one needs to consider angle between two vector fields. As
we can see from Section 2, a lightlike submanifold has two distributions viz. radical and screen.

The radical distribution is totally lightlike and, therefore, it is not possible to define angle between two
vector fields of radical distribution. The screen distribution is non-degenerate. Thus one way to define slant
lightlike submanifolds is to choose a Riemannian screen distribution on lightlike submanifolds, for which we use
Lemma 3.2.

Definition 3.1 Let M be a q-lightlike submanifold of an indefinite Kenmotsu manifold M of index 2q with

structure vector field tangent to M . Then we say that M is a slant lightlike submanifold of M if the following
conditions are satisfied:

(i) Rad TM is a distribution on M such that Rad TM
⋂

φRad TM = {0} .

(ii) For all x ∈ U ⊂ M and for each non zero vector field X tangent to D = D⊥{V } , if X and V

are linearly independent, then the angle θ(X) between φX and the vector space Dx is constant, where D is

complementary distribution to φltr(TM)
⊕

φRad TM in screen distribution S(TM) .

The constant angle θ(X) is called the slant angle of D . A slant lightlike submanifold M is said to be

proper if D 	= {0} , and θ 	= 0, π
2

.

The following result is an easy consequence of Definition 3.1.

Proposition 3.1 There exists no proper slant totally lightlike or isotropic submanifold M in indefinite Ken-

motsu manifold M with structure vector field tangent to M .

In what follows, (R2m+1
q , φ0, V, η, g) will denote the manifold R2m+1

q with its usual Kenmotsu structure

given by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

η = dz, V = ∂z,

g = η
⊗

η + e2z(−
∑q/2

i=1 dxi
⊗

dxi + dyi
⊗

dyi +
∑m

i=q+1 dxi
⊗

dxi + dyi
⊗

dyi),

φ0(
∑m

i=1(Xi∂xi + Yi∂yi) + Z∂z) =
∑m−1

i=1 (−Xi+1∂xi + Xi∂xi+1 − Yi+1∂yi + Yi∂yi+1)

where (xi, yi, z) are cartesian coordinates.

Example 3.1 Let M = (R9
2, g) be a semi-Euclidean space of signature (-, -, +, +, +, +, +, +, +) with respect

to the canonical basis {∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4, ∂z} .

Consider a submanifold M of R9
2 , defined by

X(u, v, θ1, θ2, s, t) = (u, v, sin θ1, cos θ1,−θ1 sin θ2,−θ1 cos θ2, u, s, t)
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Then a local frame of TM is given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z1 = e−z(∂x1 + ∂y3), Z2 = e−z∂x2,

Z3 = e−z(cos θ1∂x3 − sin θ1∂x4 − sin θ2∂y1 − cos θ2∂y2),

Z4 = e−z(−θ1 cos θ2∂y1 + θ1 sin θ2∂y2), Z5 = e−z∂y4,
Z6 = V = ∂z.

Hence, Rad TM = span{Z1}, φ0Rad TM = span{Z2 + Z5} , and Rad TM
⋂

φ0Rad TM = {0} . Next,

D = D⊥{V } = {Z3, Z4}⊥{V } is Riemannian.

Then M is slant lightlike with slant angle π
4 . By direct calculations, we get

S(TM⊥) = span

⎧⎪⎨
⎪⎩

W1 = e−z(cos θ1∂x3 − sin θ1∂x4 + sin θ2∂y1 + cos θ2∂y2),

W2 = e−z(sin θ1∂x3 + cos θ1∂x4)

and ltr(TM) is spanned by N = e−z

2 (−∂x1 + ∂y3), such that φ0(N) = −Z2 + Z5 ∈ S(TM). It is easy to see

that conditions (i) and (ii) of Definition 3.1 hold. Hence, M is a proper slant lightlike submanifold of R9
2 .

Proposition 3.3 Slant lightlike submanifolds M of an indefinite Kenmotsu manifold M with structure vector
field tangent to M do not include invariant and screen real lightlike submanifolds.

Proof. Let M be an invariant or screen real lightlike submanifold of an indefinite Kenmotsu manifold M .
Since φRad TM = Rad TM , the first condition of slant lightlike submanifold is not satisfied which proves our
assertion. �

The following result gives a relation between slant lightlike and contact CR - lightlike submanifolds of an
indefinite Kenmotsu manifold:

Proposition 3.2 Let M be a q-lightlike submanifold of an indefinite Kenmotsu manifold M of index 2q
with structure vector field tangent to M . Then any coisotropic CR-lightlike submanifold is a slant lightlike

submanifold with θ = 0 . In particular, a lightlike real hypersurface of an indefinite Kenmotsu manifold M

of index 2 is a slant lightlike submanifold with θ = 0 . Moreover, any CR-lightlike submanifold of M with
D0 = {0} , is a slant lightlike submanifold with θ = π

2 .

Proof. Let M be a q -lightlike CR -lightlike submanifold of an indefinite Kenmotsu manifold M . Then,
φRad TM is a distribution on M such that Rad TM

⋂
φRad TM = {0} . If M is coisotropic, then

S(TM⊥) = {0} . Then the complementary distribution to φltr(TM)
⊕

φRad TM in screen distribution

S(TM) is D = D0⊥{V } where D0 is Riemannian by Lemma 3.2. Since D0 is invariant with respect to

φ , it follows that θ = 0. Our second assertion is obvious as a lightlike real hypersurface of M is coisotropic.

Now, if M is CR-lightlike submanifold with D0 = {0} , then the complementary distribution to

φltr(TM)
⊕

φRad TM in screen distribution S(TM) is D = D′⊥{V } . Since D′ is anti-invariant with respect
to φ , it follows that θ = π

2 , whereby completing the proof. �
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We know that for any X ∈ Γ(TM) and W ∈ Γtr(TM), we have

φX = TX + FX, φW = BW + CW (3.1)

where TX and FX are the tangential and transversal components of φX , respectively, and BW and CW are
the tangential and transversal components of φW , respectively. Moreover, for a slant lightlike submanifold, we

denote by P1, P2, Q1, Q2 and Q2 the projections on the distributions Rad TM, φRad TM, φltr(TM), D and

D = D⊥{V } , respectively. Then for any X ∈ Γ(TM), we can write

X = P1X + P2X + Q1X + Q2X (3.2)

where Q2X = Q2X + η(X)V.

Using (3.1) in the above equation, we obtain

φX = φP1X + φP2X + TQ2X + FQ1X + FQ2X (3.3)

for any X ∈ Γ(TM). Then the tangential components are

TX = TP1X + TP2X + TQ2X. (3.4)

We now prove two characterization theorems for slant lightlike submanifolds.

Theorem 3.1 Let M be a q-lightlike submanifold of an indefinite Kenmotsu manifold M of index 2q with
structure vector field tangent to M . Then M is slant lightlike submanifold if and only if the following conditions
are satisfied:

(a) φltr(TM) is a distribution on M

(b) There exists a constant λ ∈ [−1, 0] such that

T 2Q2X = λ(Q2X − η(Q2X)V ) (3.5)

∀X ∈ Γ(TM) linearly independent of structure vector field V . Moreover, in such a case, λ = −cos2θ , where θ

is the slant angle of M .

Proof. Let M be a q -lightlike submanifold of an indefinite Kenmotsu manifold M of index 2q . If M is a

slant lightlike submanifold of M , then φRad TM is a distribution on S(TM), and hence from Lemma 3.1, it

follows that φltr(TM) is also a distribution on M and φltr(TM) ⊂ S(TM). Thus (a) is proved. �

For X ∈ Γ(TM), Q2X ∈ D − {V } , we have

cos θ(Q2X) =
g(φQ2X, TQ2X)
|φQ2X||TQ2X| = −g(Q2X, φTQ2X)

|φQ2X||TQ2X| = −g(Q2X, T 2Q2X)
|Q2X||TQ2X| . (3.6)

On the other hand, we get

cos θ(Q2X) =
|TQ2X|
|φQ2X| . (3.7)

Thus, from (3.6) and (3.7), we find
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cos2 θ(Q2X) = −g(Q2X,T 2Q2X)
|Q2X|2 .

Since θ(Q2X) is constant on D , we conclude that

T 2(Q2X) = λQ2X = λ(Q2X − η(Q2X)V ), λ ∈ (−1, 0). (3.8)

Moreover, in this case, λ = − cos2 θ . It is clear that equation (3.8) is valid for θ = 0 and θ = π
2

. Hence, for

Q2X ∈ D , we find

T 2(Q2X) = λ(Q2X − η(Q2X)V ), λ ∈ [−1, 0]. (3.9)

Conversely, suppose that (a) and (b) are satisfied. Then (a) implies that φRad TM is a distribution on M .

From Lemma 3.2, it follows that the complementary distribution to φltr(TM)
⊕

φRad TM is a Riemannian
distribution. The rest of the proof is obvious.

Using (2.1), (3.1) and Theorem 3.1, we have the following corollary.

Corollary 3.1 Let M be a slant lightlike submanifold of an indefinite Kenmotsu manifold M with structure
vector field tangent to M . Then we have

g(TQ2X, TQ2Y ) = cos2 θ[g(Q2X, Q2Y ) − η(Q2X)η(Q2Y )] (3.10)

g(FQ2X, FQ2Y ) = sin2 θ[g(Q2X, Q2Y ) − η(Q2X)η(Q2Y )]. (3.11)

for X, Y ∈ Γ(TM) .

Theorem 3.2 Let M be a q -lightlike submanifold of an indefinite Kenmotsu manifold M of index 2q with
structure vector field tangent to M . Then M is slant lightlike submanifold if and only if the following conditions
are satisfied:

(A) φltr(TM) is a distribution on M

(B) There exists a constant μ ∈ [−1, 0] such that

BFQ2X = μ(Q2X − η(Q2X)V ), ∀X ∈ Γ(TM).

Moreover, in such a case, μ = −sin2θ where θ is the slant angle of M .

Proof. It is easy to see that φRad TM
⋂

φltrTM = {0} and φRad TM is a subbundle of S(TM). Moreover,

the complementary distribution to φltr(TM)
⊕

φRad TM in S(TM) is Riemannian. Furthermore, from the

proof of Lemma 3.2, S(TM⊥) is also Riemannian. Thus condition (i) in the Definition 3.1 of slant lightlike

submanifold is satisfied. On the other hand, from (3.1) and (3.3), we obtain

−X = −P1X − P2X + T 2Q2X + FTQ2X + φFQ1X + BFQ2X + CFQ2X.

Since φFQ1X = −Q1X ∈ S(TM), taking the tangential parts, we have

−X + η(X)V = −P1X − P2X + T 2Q2X − Q1X + BFQ2X .

123



GUPTA, SHARFUDDIN

From (3.2), we find

−Q2X = −T 2Q2X + BFQ2X. (3.12)

Now, if M is slant lightlike then from Theorem 3.1, we have T 2Q2X = − cos2 θQ2X , and hence we get

BFQ2X = − sin2 θQ2X . Since FV = 0 and Q2X = Q2X + η(X)V , we have

BFQ2X = − sin2 θ(Q2X − η(Q2X)V ).

Conversely, suppose that BFQ2X = μQ2X . Then, from (3.12), we obtain

T 2Q2X = −(1 + μ)Q2X.

Thus, the proof follows from Theorem 3.1. �

4. Minimal slant lightlike submanifolds

In this section we study minimal slant lightlike submanifolds of indefinite Kenmotsu manifolds. We have the
following.

Example 4.1 Let M = (R9
2, g) be a semi-Euclidean space of signature (-, -, +, +, +, +, +, +, +) with respect

to the canonical basis {∂x1, ∂x2, ∂x3, ∂x4, ∂y1, ∂y2, ∂y3, ∂y4, ∂z).

Consider a submanifold M of R9
2 defind by

x1 = u1 cosh θ, x2 = u2 cosh θ ,
x3 = −u3 + u1 sinh θ, x4 = u1 + u3 sinh θ ,
y1 = cosu4 cosh u5, y2 = cos u4 sinh u5 ,
y3 = sin u4 sinh u5, y4 = sin u4 cosh u5 ,

z = t,

where u1 ∈ (0, π
2 ).

Then a local frame of TM is given by

⎧⎪⎪⎨
⎪⎪⎩

Z1 = e−z(cosh θ∂x1 + sinh θ∂x3 + ∂x4), Z2 = e−z cosh θ∂x2, Z3 = e−z(−∂x3 + sinh θ∂x4),
Z4 = e−z(− sin u4 cosh u5∂y1 − sin u4 sinh u5∂y2 + cos u4 sinh u5∂y3 + cos u4 cosh u5∂y4),
Z5 = e−z(cosu4 sinh u5∂y1 + cos u4 cosh u5∂y2 + sin u4 cosh u5∂y3 + sin u4 sinh u5∂y4),

Z6 = V = ∂z

We define an almost-contact structure φ1 as

φ1(x1, x2, x3, x4, y1, y2, y3, y4, z) = (−x2, x1,−x4, x3,−y3 cosα − y2 sinα,−y4

cosα + y1 sinα, y1 cos α + y4 sin α, y2 cos α − y3 sin α, 0),

where α ∈ (0, π
2 ). Hence, Rad TM = span{Z1}, φ1Rad TM = span{Z2 + Z3} and Rad TM

⋂
φ1Rad TM =

{0}.
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Next, D = D⊥{V } = {Z4 + Z5}⊥{V } is Riemannian. Then M is slant lightlike with slant angle

α with respect to φ1 . By direct calculation, we get S(TM⊥) = span{W1 = e−z(− cosh u5∂y1 + sinh u5∂y2 +

tan u4 sinhu5∂y3−tan u4 cosh u5∂y4), W2 = e−z(− tan u4 sinh u5∂y1+tan u4 cosh u5∂y2−cosh u5∂y3+sinh u5∂y4)}
and ltr(TM) is spanned by N = e−z(tanh θ sinh θ∂x1 + sinh θ∂x3 + ∂x4) such that φ1N = tanh2 θZ2 + Z3 ∈
S(TM). It is easy to see that condition, (i) and (ii) of Definition 3.1 hold. By direct calculation, and using the
Gauss formula, we get

⎧⎨
⎩

hs(X, Z1) = hs(X, φ1Z1) = 0 = hs(X, φ1N), hl = 0, ∀X ∈ Γ(TM)

hs(Z4, Z4) = e−z cos u4
(cosh2 u5+sinh2 u5)

W1, h
s(e2, e2) = − e−z cos u4

(cosh2 u5+sinh2 u5)
W1.

Thus M is a minimal slant lightlike submanifold of (R9
2, φ1).

In what follows, we prove two characterization results for minimal slant lightlike submanifolds.

We have the following lemma:

Lemma 4.1 Let M be a proper slant lightlike submanifold of an indefinite Kenmotsu manifold M such that

dim(D) = dim(S(TM⊥)) . If {e1, . . . , em} is a local orthonormal basis of Γ(D) , then {csc θFe1, ..., cscθFem}
is an orthonormal basis of S(TM⊥) .

Proof. Since {e1, ..., em} is a local orthonormal basis of D and D is Riemannian, from Corollary 3.1, we
find

g{csc θFei, csc θFej} = δij ,

where i, j = 1, 2, ..., m . This proves the result. �

Theorem 4.1 Let M be a proper slant lightlike submanifold of an indefinite Kenmotsu manifold M with
structure vector field tangent to M . Then M is minimal if and only if

trace AWj |S(TM) = 0, trace A∗
ξk |S(TM) = 0 , and g(Dl(X, W ), Y ) = 0 ,

for X, Y ∈ Γ(Rad TM) and W ∈ Γ(S(TM⊥)) , where {ξk}r
k=1 is a basis of Rad (TM) and {Wj}r

j=1 is a

basis of S(TM⊥) .

Proof. Since ∇V V = 0, from (2.7), we get hl(V, V ) = hs(V, V ) = 0. Now, take an orthonormal frame

{e1, ..., em} of D .

We know that hl = 0 on Rad (TM)(cf.[2]), Proposition 3.1). Thus M is minimal if and only if

∑r
k=1 h(φξk, φξk) +

∑r
k=1 h(φNk, φNk) +

∑m
i=1 h(ei, ei) = 0.

Using (2.10) and (2.14), we obtain

r∑
k=1

h(φξk, φξk) =
r∑

k=1

1
r

r∑
a=1

g(A∗
ξa

φξk, φξk)Na +
1
m

m∑
j=1

g(AWj φξk, φξk)Wj . (4.1)
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Similarly, we have

h(φNk, φNk) =
r∑

k=1

1
r

r∑
a=1

g(A∗
ξa

Nk, φNk)Na +
1
m

m∑
j=1

g(AWj φNk, φNk)Wj. (4.2)

and
m∑

i=1

h(ei, ei) =
m∑

i=1

1
r

r∑
a=1

g(A∗
ξa

ei, ei)Na +
1
m

m∑
j=1

g(AWj ei, ei)Wj . (4.3)

Thus our assertion follows from (4.1)∼(4.3). �

Theorem 4.2 Let M be a proper slant lightlike submanifold of an indefinite Kenmotsu manifold M with

structure vector field tangent to M such that dim(D) = dim(S(TM⊥)) . Then M is minimal if and only if

trace AFej |S(TM) = 0, trace A∗
ξk|S(TM) = 0 , and g(Dl(X, Fej), Y ) = 0 ,

for X, Y ∈ Γ(Rad TM) , where {ξk}r
k=1 is a basis of Rad TM and {ej}m

j=1 is a basis of D .

Proof. Since ∇V V = 0, from (2.7), we get hl(V, V ) = hs(V, V ) = 0. We know that hl = 0 on

Rad (TM)(cf.[2] , Proposition 3.1). Also, from Lemma 4.1, {csc θFe1, . . . , csc θFem} is an orthonormal basis

of S(TM⊥). Thus

hs(X, X) =
m∑

i=1

csc θg(AFeiX, X)Fei

for X ∈ Γ(φRad TM
⊕

φltrTM⊥D). Thus the proof follows from Theorem 4.1. �

Remarks
(a) It is known that a proper slant submanifold of a Kenmotsu manifold is odd dimensional, but this is

not true in case of our definition of slant lightlike submanifold. For instance, see the two examples given in this
paper.

(b) We notice that the second fundamental forms and their shape operators of a non-degenerate sub-

manifold are related by means of the metric tensor field. Contrary to this we see from (2.7)–(2.11) that in case
of lightlike submanifolds there are interrelations between these geometric objects and those of its screen distri-

butions. Thus, the geometry of lightlike submanifolds depends on the triplet (S(TM), S(TM⊥), ltr (TM)).
However, it is important to highlight that, as per Proposition 2.1 of this paper; our results are stable with
respect to any change in the above triplet.
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