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Jackknife and bootstrap with cycling blocks for the estimation of
fractional parameter in ARFIMA model
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Abstract

One of most important problems concerning the ARFIMA time series model is the estimation of fractional

parameter d . Various methods have been used to solve this problem, such as the log-periodogram regression

of a process. In this article we propose two jackknife and bootstrap methods, which aid in the estimation

of fractional parameter d . These methods involve non-overlapping blocks and moving blocks with random

starting point and length. We have conducted several simulations and the results show that the estimations

obtained are very close to the real parameter value.
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1. Introduction

Over the last couple decades, there has been much special interest in the application of long memory
time series to various fields such as economy, finance, hydrology and geology. Of particular focus has been
estimation of ARFIMA model parameters, especially that of fractional parameter d . For this, Granger and
Joueux [10] approximated the ARFIMA model by a high-order autoregressive process and estimated d by

comparing variances for different choices of d . Geweke and Porter-Hudak [9] and Kashyap and Eom [12] used

a regression procedure for the logarithm of the periodogram to estimate d . Hassler [11] considered tests based

on the asymptotic results of Kashyap and Eom [12], of the periodogram regression estimator of d . He showed
that this test is valid only if the series are generated from a fractional white noise process.

In Section 2 we give the classical method [9] for the estimation of unknown parameter d , and in Section
3 given is a short expose of the contribution to jackknife and bootstrap for time series.

In Section 4 we propose two jackknife and bootstrap methods for the estimation of parameter d . We
subtract the arithmetic mean from the data corresponding the time series, obtaining thus a numeric sequence
having groups made entirely of non negative terms and similar groups made of negative terms. The non negative
and negative groups alternate with each other. Each non negative group followed by a negative group consists
of what we call a cycle. Also, we define a block constructed of a fixed number of consecutive cycles. Such blocks
will be the units of future samples. In the first jackknife and bootstrap method, blocks do not overlap one as
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other, while in the later methods we allow blocks to initiate with any term which is the start of a cycle. We
call these moving blocks.

In Section 5 we have constructed a simulation with ARFIMA models in order to estimate the fractional
parameter for different values by methods proposed in Section 4. The corresponding results are given in Tables
1 and 2 at the end of the paper. The results of the relative bias for the estimations show a surprising fit of the
estimation with the real values. In Section 6 we give some conclusions.

Table 1. Jackknife and bootstrap with non overlapping blocks.

d T g No. of cycles d̂J Relative bias
0.4 300 40 10 0.4263 0.06
0.3 300 40 10 0.2774 -0.07
0.2 300 40 10 0.2196 0.09
0.1 300 40 10 0.1017 0.01
-0.1 300 40 10 -0.0953 -0.04
-0.2 300 40 10 -0.1987 0.00
-0.3 300 40 10 -0.3067 0.02
-0.4 300 40 10 -0.4073 0.01

d T g No. of cycles d̂B Relative bias
0.4 300 60 10 0.3627 -0.09
0.3 300 60 10 0.2954 -0.01
0.2 300 60 10 0.1966 -0.01
0.1 300 60 10 0.0807 -0.19
-0.1 300 60 10 -0.1074 0.07
-0.2 300 60 10 -0.1980 -0.01
-0.3 300 60 10 -0.2654 -0.11
-0.4 300 60 10 -0.3469 -0.13

2. Regression estimators of d

The autoregressive integrated moving average process ARFIMA(p, d, q) is defined as

φ (B) (1 − B)d
Yt = θ (B)Zt, (1)

where B is the back-shift operator, Zt is a white process with mean zero and variance σ2 and φ (B) =

1 − φ1B − ... − φpB
p and θ (B) = 1 − θ1B − ... − θqB

q are stationary autoregressive and invertible moving

operators of order p and q, respectively, and d takes fractional values in the range ] − 0.5, 0.5[ .

Let us show the estimation of the periodogram of d by [9]. The spectral density of ARFIMA(p, d, q)
process is

f (w) = fu (w)
[
2 sin

(w

2

)]−2d

, w ∈] − π, π[, (2)
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Table 2. Jackknife and bootstrap with moving blocks.

d T g No. of cycles d̂J Relative bias
0.4 300 23 2 0.4213 0.05
0.3 300 23 2 0.3201 0.07
0.2 300 23 2 0.2066 0.03
0.1 300 23 2 0.1059 0.06
-0.1 300 23 2 -0.1022 0.02
-0.2 300 23 2 -0.2127 0.06
-0.3 300 23 2 -0.3199 0.06
-0.4 300 23 2 -0.4259 0.06

d T g No. of cycles d̂J Relative bias
0.4 300 50 8 0.4156 0.03
0.3 300 50 8 0.2970 -0.01
0.2 300 50 8 0.1984 0.00
0.1 300 50 8 0.0916 -0.08
-0.1 300 50 8 –0.1001 0.00
-0.2 300 50 8 -0.2100 0.05
-0.3 300 50 8 -0.3095 0.03
-0.4 300 50 8 -0.4198 0.05

d T g No. of cycles d̂J Relative bias
0.4 300 50 9 0.4126 0.03
0.3 300 50 9 0.3014 0.00
0.2 300 50 9 0.1859 -0.07
0.1 300 50 9 0.0944 -0.05
-0.1 300 50 9 -0.1066 0.06
-0.2 300 50 9 -0.2069 0.03
-0.3 300 50 9 -0.3233 0.07
-0.4 300 50 9 -0.4293 0.07

d T g No. of cycles d̂B Relative bias
0.4 300 50 10 0.4169 0.04
0.3 300 50 10 0.3058 0.02
0.2 300 50 10 0.1970 -0.01
0.1 300 50 10 0.1021 0.02
-0.1 300 50 10 -0.0903 -0.09
-0.2 300 50 10 -0.1834 -0.08
-0.3 300 50 10 -0.2666 -0.11
-0.4 300 50 10 -0.3341 -0.16

where fu (w) is the spectral density of the ARMA(p, q) process. If the time series has T terms, than

wj = 2πj
T , j = 1, 2, ..., T

2 is a set of harmonic frequencies. After some transformations this may be written
as

lnf (wj) = ln fu (0) − d ln
[
2 sin

(wj

2

)]2

+ ln
fu (wj)
fu (0)

. (3)
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For a given series y1 , y2 , ..., yT the periodogram is given by

I (w) =
1
2π

[
R (0) + 2

T−1∑
k=1

R (k) cos (kw)

]
, w ∈]− π, π[. (4)

Adding ln I (wj) to both sides of (3), equation (3) can be written as a simple regression equation,

uj = a + bvj + ej , j = 1, 2, ..., g, (5)

where uj = ln I (wj) , vj = 2 ln
[
2 sin

(wj

2

)]
, ej = ln I(wj)

fu(wj)
+ c, b = −d, a = lnfu (0) − c, c = E

[
− ln I(wj)

fu(wj)

]
and

g is chosen so that g
T → 0 when T → ∞ .

The estimator of d is then −b̂ , where b̂ is the least squares estimate of the slope of the regression equation
(5), that is

d̂ = −b̂ = −

g∑
j=1

(vj − v)uj

g∑
j=1

(vj − v)2
, (6)

where v = 1
g

g∑
j=1

vj .

It is shown [9, 12] that the periodogram regression estimator of d is asymptotically normally distributed
with mean d .

3. Jackknife and bootstrap in time series

The jackknife [23] and the bootstrap [5] have become well established as nonparametric estimators of
the variance of a statistic. However, the assumption of independence of the observations is crucial. It is easily
seen that they give incorrect answers if dependence is neglected [22]. Recently the two methods have been

extended to ARMA models by reducing to innovations that which are i.i.d. [4, 8, 6]. Still, ARMA processes

are not able to model essential features of many observed time series [20]. Fitting models which go beyond
ARMA is, however, an extremely difficult task and it seems impossible to take into account effects of parameter
estimation or incorrect specification of the model. Moreover, a variance estimator can be unreliable even if
the true distribution differs only slightly from the model and the statistic is robust [13]. For these reasons
there has been proposed an extension to the standard jackknife and bootstrap which does not require one to
first fit a parametric or semi parametric model [13]. It works for arbitrary stationary processes with short-
range dependence expressed, for instance, with mixing conditions. For the jackknife we deleted each block of l

consecutive observations once and calculate the sample variance of the values of the statistic obtained in this
way. Moreover we make a smooth transition between observations left out and observations with full weight,
similar to tapering in time series analysis. For the bootstrap we choose n

l
blocks of length l with replacement

from the n − l + 1 blocks of observed data. If the statistic is not a symmetric function of the observations,
leaving out observations in the middle or joining randomly selected blocks causes problems.
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Carlstein [2] proposed a variance estimator which selects non-overlapping blocks. So, there were proposed

bootstrap methods with moving blocks [15] which randomly chose blocks with fixed length. This bootstrap was

biased in the finite sets, but asymptotically unbiased for the mean. Another version was stationary bootstrap [19]
where the blocks were chosen from a starting point and with randomly lengths. This estimation was unbiased
for the mean, even in the finite sets. Furthermore, even the variance estimate for the mean was consistent.

But, the problem was that the extremes of blocks, during the formation of the bootstrap samples,
destroyed the structure of the dependency among the observations of time series. In order to eliminate this, we
can use bootstrap with linked blocks [14] and with matched blocks [3].

Phillips and Yu [17] proposed the use of jackknife techniques to reduce the bias for pricing bond options
in a financial time series. Suppose a sample of n observations is decomposed into m consecutive sub-samples,
each with of l observations (n = m × l) . The jackknife estimator of a parameter θ in the model is defined by

θ̂J = m
m−1 θ̂n − 1

m2−m

n∑
i=1

θ̂li where θ̂n and θ̂li are the extreme estimates of θ based on the entire sample and

the i-s sub-sample, respectively, and θ can be a coefficient in the diffusion process, such as the mean reversion
parameter, or a much more complex function of the parameters of the diffusion process and the data, such as
an asset price or derivative price [18].

Bootstrap with blocks was used for the estimation of parameters of ARFIMA model [7, 16], but local

bootstrap was used for estimation of parameter d in ARFIMA model [21].

In the next section we will propose a jackknife and a bootstrap method which estimates parameter d

in ARFIMA model. This will be bootstrap with blocks that have no fixed length, the starting point of every
block is random and the block with its starting point is defined according to a certain criteria. Let us take in
consideration two cases. In the first case jackknife and the bootstrap will be constructed with non-overlapping
blocks, while in the second case the blocks will be moving with a starting point at the beginning of a cycle.

4. Jackknife and bootstrap estimation with blocks compounded by cycle

Let us suppose an ARFIMA(p, d, q) time series process with terms y1 , y2 , ..., yT . We shall show how the
blocks will be formed on the basis of which the bootstrap sample will be constructed.

If we subtract from the series terms their mean, the time series sequence will exhibit consecutive groups

with continuously alternating positive and negative signs. Let us write this adapted series as y
′

1
, y

′

2
, ..., y

′

T
.

Every two consecutive groups of positive and then negative values, we will call a cycle. Let C1 , C2 , ..., Ck

denote the created cycles and that each cycle Ci has ni values for i = 1, 2, ..., k . We have
k∑

i=1
ni = T . The

form of the cycles will be C1 =
{
y

′

1
, ..., y

′

n1

}
, C2 =

{
y

′

n1+1, ..., y
′

n1+n2

}
, ..., Ck =

{
y

′

n1+···+nk−1+1, ..., y
′

T

}
, with

y
′

n1+···+ni
< 0, y

′

n1+···+ni+1 > 0 for i = 1, 2, ..., k. It is clear enough that the length of each cycle and their

number are random.
We describe two different ways of forming of blocks. In the first case the blocks are not overlapping and, if

the block is compounded by s consecutive cycles, the starting point will be the observations y1 , yn1+···+ns+1 , ... .
For the jackknife estimation we delete consecutively each of the blocks and with the remaining observations we
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estimate parameter d by (6). If d̂(i) is the estimation when the block of i-s is deleted, and we have deleted in

total m blocks, then the jackknife estimation for parameter d will be

d̂J = md̂ − m − 1
m

m∑
i=1

d̂(i). (7)

For bootstrap estimation we randomly choose blocks until we have a subset of T values from the time
series. Let us denote the chosen values by y∗

1
, y∗

2
, ..., y∗

T
. Using the procedures described in Section 2, we take

the estimation for the parameter d , that we call bootstrap estimation, and sign it with d̂∗ . We repeat this

process M times forming a set d̂∗
1, d̂

∗
2, ..., d̂

∗
M of bootstrap estimations. Then, the estimation for parameter d

will be

d̂B =
1
M

M∑
i=1

d̂∗
i . (8)

In the second case we have moving blocks and the starting point of a block will be the observations
y1 , yn1+1, ..., yn1+···+nk−1+1 . The estimation procedures for bootstrap and jackknife for d parameter will be the

same as in the first case.

5. Simulations

We construct a programme for the simulation of the ARFIMA process and calculate an estimation of
parameter d . At first we simulate the ARFIMA (0, d, 0) process for different known values of d ∈] − 0.5, 0.5[ ,

generating the terms of the time series for t = 1, 2, ..., T. For this, as it appears from [9], expression (1) is
transformed into

yt =
∞∑

k=0

βkεt−k, (9)

where εt−k is the white noise term with mean zero, and coefficient βk computed via the recurrent relation

βk+1 = βk
d + k

k + 1
. (10)

To determine of the values of T, g and the number of the cycles that constitute the block, we carry out
different calculations until we find a suitable combination. This is a problem that is mentioned in most of the
cases in the literature of this field. There are different ideas for the determination of these numbers, but in all
cases the suitable values are determined by simulations [3, 7, 14, 19, 21].

We estimate R (k) for k = 0, 1, ..., T − 1, which appears in (4), applying the formula R (k) =

1
T

T∑
i=k+1

(yi − y) (yi−k − y) where y = 1
T

T∑
i=1

yi , then I (wj) , uj = ln I (wj) and vj = 2 ln
[
2 sin

(wj

2

)]
for

j = 1, 2, ..., g .
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In Tables 1 and 2 one find some of the best results achieved. In the tables, is presented relative bias, which
is given in many cases in the research articles [24], as a ratio of the estimated difference from the true value
to the absolute value of the true parameter value. It is worth mentioning that the number of the cycles which
form the block is nearly to 10. Judging from the simulation results, it is generally noticed a better estimation of
the jackknife than that of the bootstrap. On the other hand, taking into account the calculations, the jackknife
and bootstrap exhibit better behavior for moving blocks, than with non overlapping b locks. For the jackknife,
this is linked with the greater number of the realized estimations, something that influences richness of the
estimation histogram.

6. Conclusions

The simulation results show clearly that the jackknife and bootstrap are very good alternatives for the
estimation of time series, in particular for the estimation of fractional parameter via the ARFIMA model. It is
important to stress that the units of samples have to be block-constructed in such a way that they preserve the
structure and dependence between terms of the time series. From the simulation it is observed that estimation
with moving blocks give smaller values of relative bias. On the other hand, the optimal number of cycles which
appear in a block is determined from the result of the simulation. We do not have yet any theoretical argument
about what is the correlation between the number of terms of the series and the number of cycles which appear
in the block in order to get optimal results from the estimation. We hope this will be a topic of future study.
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