

Generalized derivations on Lie ideals in prime rings

Öznur Gölbaşı and Emine Koç

Abstract

Let R be a prime ring with characteristic different from two, U a nonzero Lie ideal of R and f be a generalized derivation associated with d. We prove the following results: (i) If $[u, f(u)] \in Z$, for all $u \in U$, then $U \subset Z$. (ii) (f,d) and (g,h) be two generalized derivations of R such that f(u)v = ug(v), for all $u, v \in U$, then $U \subset Z$. (iii) $f([u,v]) = \pm [u,v]$, for all $u, v \in U$, then $U \subset Z$.

Key Words: Derivations, Lie ideals, generalized derivations, centralizing mappings, prime rings.

1. Introduction

Throughout R will represent an associative ring with center Z. Recall that a ring R is prime if $xRy = \{0\}$ implies x = 0 or y = 0. For any $x, y \in R$, the symbol [x, y] stands for the commutator xy - yx. An additive subgroup U of R is said to be a Lie ideal of R if $[u, r] \in U$, for all $u \in U, r \in R$. An additive mapping $d : R \to R$ is called a derivation if d(xy) = d(x)y + xd(y) holds for all $x, y \in R$. For a fixed $a \in R$, the mapping $I_a : R \to R$ given by $I_a(x) = [a, x]$ is a derivation which is said to be an inner derivation. Let S be a nonempty subset of R. A mapping F from R to R is called centralizing on S if $[F(x), x] \in Z$, for all $x \in S$ and is called commuting on S if [F(x), x] = 0, for all $x \in S$. In [11], Posner showed that if a prime ring has a nontrivial derivation which is centralizing on the entire ring, then the ring must be commutative. In [3], Awtar considered centralizing derivations on Lie and Jordan ideals. For prime rings Awtar showed that a nontrivial derivation which is centralizing on Lie ideal implies that the ideal is contained in the center if the ring is not of characteristic two or three. In [10], Lee and Lee obtained the same result while removing the restriction of characteristic not three.

In the year 1991, Bresar [5], defined the following concept. An additive mapping $f : R \to R$ is called a generalized derivation if there exists a derivation $d : R \to R$ such that

$$f(xy) = f(x)y + xd(y)$$
 for all $x, y \in R$.

One may observe that the concept of generalized derivation includes the concept of derivations, also of left multipliers when d = 0. Hence it should be interesting to extend some results concerning these notions to generalized derivations. In [2], Argaç and Albaş extended a well known result of Posner for generalized

²⁰⁰⁰ AMS Mathematics Subject Classification: 16W25, 16W10, 16U80.

GÖLBAŞI, KOÇ

derivations of prime rings. Our first objective in this paper is to prove corresponding results for generalized derivations on Lie ideals.

On the other hand, in [6] Daif and Bell showed that if a semiprime ring R has a derivation d satisfying the following condition, then I is a central ideal; there exists a nonzero ideal I of R such that either d([x, y]) = [x, y] for all $x, y \in I$ or d([x, y]) = -[x, y] for all $x, y \in I$.

These results are extended for semiprime rings in [1]. Our second objective of this note is to show the same conditions imposed on Lie ideals of a prime ring with generalized derivation.

Throughout the present paper, R will denote a prime ring of characteristic not two and U will denote a nonzero Lie ideal of R. We make some extensive use of the basic commutator identities:

$$\begin{split} & [x, yz] = y[x, z] + [x, y]z \\ & [xy, z] = [x, z]y + x[y, z] \\ & [[x, y], z] = [[x, z], y] + [x, [y, z]]. \end{split}$$

We denote a generalized derivation $f: R \to R$ determined by derivation d of R by (f, d). If d = 0 then f(xy) = f(x)y for all $x, y \in R$ and there exists $q \in Q_r(R_C)$ (a right Martindale ring of quotients) such that f(x) = qx, for all $x \in R$ by [9, Lemma 2]. So, we assume that $d \neq 0$.

2. Preliminaries

We shall require the following lemmas.

Lemma 2.1 [10, Theorem 5] Let R be a prime ring with $charR \neq 2$, d be a nonzero derivation of R and U be a Lie ideal of R. If $[u, d(u)] \in Z$ for all $u \in U$, then $U \subset Z$.

Lemma 2.2 [4, Theorem 1] Let R be a prime ring with char $R \neq 2$, d be a nonzero derivation of R and U be Lie ideal of R. If $d^2(U) = 0$, then $U \subset Z$.

Lemma 2.3 [4, Lemma 6] Let R be a prime ring with char $R \neq 2$, d be a nonzero derivation of R and U be Lie ideal of R. If $d(U) \subseteq Z$, then $U \subset Z$.

Lemma 2.4 [4, Lemma 1] Let R be a prime ring with char $R \neq 2$. If $U \not\subseteq Z$ is a Lie ideal of R, then there exists an ideal M of R such that $[M, R] \subset U$, but $[M, R] \not\subseteq Z$.

Lemma 2.5 [8, Lemma 1] Let R be a semiprime 2-torsion free ring and U be a Lie ideal of R. Suppose that $[U, U] \subset Z$, then $U \subset Z$.

Lemma 2.6 [10, Theorem 2] Let R be a prime ring with $charR \neq 2$, d be a nonzero derivation of R, U be a Lie ideal of R and $a \in R$ such that $[a, d(U)] \subset Z$. Then either $a \in Z$ or $U \subset Z$.

3. Results

Definition 3.1 [7, Definition] Let R be a ring, d a derivation of R. An additive mapping $f : R \to R$ is said to be right generalized derivation of R associated with d if

$$f(xy) = f(x)y + xd(y)$$
 for all $x, y \in R$

and f is said to be left generalized derivation of R associated with d if

$$f(xy) = d(x)y + xf(y)$$
 for all $x, y \in R$.

f is said to be a generalized derivation of R associated with d if it is both a left and right generalized derivation of R associated with d.

Remark 3.2 For all $x, y \in R$,

$$f([x, y]) = f(xy - yx) = f(x)y + xd(y) - d(y)x - yf(x) = [f(x), y] + [x, d(y)]$$

Theorem 3.3 If $[u, f(u)] \in Z$ for all $u \in U$, then $U \subset Z$.

Proof. Writing u by $u + v, v \in U$ in the hypothesis, we have

$$[u, f(v)] + [v, f(u)] \in \mathbb{Z}, \text{ for all } u, v \in U.$$

Replacing v by $[u, r], r \in R$ in this equation, we get

$$[u, [f(u), r]] + [u, [u, d(r)]] + [[u, r], f(u)] \in \mathbb{Z}, \text{ for all } u \in U, r \in \mathbb{R}.$$

Using Jacobi identity and the hypothesis in this equation, we obtain

$$[u, [u, d(r)]] \in \mathbb{Z}$$
, for all $u \in U, r \in \mathbb{R}$.

This yields that $[u, I_{d(r)}(u)] \in Z$, for all $u \in U$, where $I_{d(r)} : R \to R$, $I_{d(r)} = [x, d(r)]$ is an inner derivation of R. We have $d(R) \subset Z$ or $U \subset Z$ by Lemma 2.1. If $d(R) \subset Z$, then R is commutative and so, $U \subset Z$. \Box

Theorem 3.4 Let (f, d) and (g, h) be two generalized derivations of R. If f(u)v = ug(v) for all $u, v \in U$, then $U \subset Z$.

Proof. Assume that $U \not\subseteq Z$. Then there exists a nonzero ideal M of R such that $[R, M] \not\subseteq Z$, but $[R, M] \subset U$ by Lemma 2.4. For any $x \in R$ and $m \in M$, $m[x, m] = [mx, m] \in U$. If we take m[x, m] instead of u in the hypothesis, we have

$$\begin{array}{l} f(m[x,m])v = m[x,m]g(v) \\ d(m)[x,m]v + mf([x,m])v = m[x,m]g(v). \end{array}$$

Using the hypothesis in the above relation, we get

$$d(m)[x,m]v + m[x,m]g(v) = m[x,m]g(v)$$

and so

$$d(m)[x,m]v = 0$$
, for all $m \in M, v \in U, x \in R$

Replacing v by [v, r], $r \in R$ in above equation and using this, we have

$$d(m)[x,m]rv = 0$$
, for all $m \in M, v \in U, x, r \in R$.

and so

$$d(m)[x,m]RU = \{0\}, \text{ for all } m \in M, x \in R.$$

Since R is prime ring and $U \neq \{0\}$, it follows that

$$d(m)[x,m] = 0$$
, for all $m \in M, x \in R$.

Writing x by $xy, y \in R$ in the last equation and using this, we obtain that

$$d(m)R[y,m] = \{0\}, \text{ for all } m \in M, y \in R.$$

Primeness of R yields that for a fixed $m \in M$,

$$m \in Z \text{ or } d(m) = 0.$$

Let $L = \{m \in M \mid m \in Z\}$ and $K = \{m \in M \mid d(m) = 0\}$. Clearly each of L and K is additive subgroup of M such that $M = L \cup K$. But, a group can not be the set-theoretic union of its two proper subgroups. Hence L = M or K = M. In the former case, $M \subset Z$, which forces R to be commutative. This is impossible because of $U \not\subseteq Z$. In the latter case, d(M) = 0. Since R is prime ring M a nonzero ideal of R, we get d = 0, which is a contradiction. This completes the proof. \Box

Corollary 3.5 Let (f,d) and (g,h) be two generalized derivations of R. If f(u)u = ug(u), for all $u \in U$, then $U \subset Z$.

Theorem 3.6 If (f, d) satisfies one of the following conditions then $U \subset Z$.

(i)
$$f([u, v]) = [u, v]$$
, for all $u, v \in U$.
(ii) $f([u, v]) = -[u, v]$, for all $u, v \in U$.
(iii) For each $u, v \in U$, either $f([u, v]) = [u, v]$ or $f([u, v]) = -[u, v]$.

Proof. (i) For any $u, v \in U$, we have f([u, v]) = [u, v], which gives

$$f([u, v]) = [f(u), v] + [u, d(v)] = [u, v].$$

Replacing u by [u, w], $w \in U$, we get

$$[f([u,w]),v] + [[u,w],d(v)] = [[u,w],v].$$

Using the hypothesis, we obtain

$$[[u, w], v] + [[u, w], d(v)] = [[u, w], v]$$

26

and so

$$[[u, w], d(v)] = 0, \text{ for all } u, v, w \in U.$$

That is

[[U, U], d(U)] = 0.

By Lemma 2.6, we have $[U, U] \subset Z$ or $U \subset Z$. If $[U, U] \subset Z$, then again $U \subset Z$ by Lemma 2.5. This completes the proof.

- (ii) can be proved by using the same techniques.
- (iii) For each $w \in U$, we put

 $U_w = \{ v \in U \mid f([w, v]) = [w, v] \} \text{ and } U_w^* = \{ v \in U \mid f([w, v]) = -[w, v] \}.$

Then $(U, +) = U_w \cup U_w^*$, but a group cannot be the union of its two proper subgroups, hence $U = U_w$ or $U = U_w^*$. By the same method in (i) or (ii), we complete the proof.

Corollary 3.7 If (f, d) satisfies one of the following conditions then $U \subset Z$.

- (i) f(uv) = uv, for all $u, v \in U$.
- (ii)f(uv) = -uv, for all $u, v \in U$.
- (iii) For each $u, v \in U$, either f(uv) = uv or f(uv) = -uv.

Proof. (i) Assume that f(uv) = uv for all $u, v \in U$. Then we have

$$f(uv - vu) = f(uv) - f(vu) = uv - vu.$$

Hence f([u, v]) = [u, v], for all $u, v \in U$. By Theorem 3.6 (i), we obtain that $U \subset Z$.

- (ii) can be proved similarly.
- (iii) can be proved by using the similar arguments in Theorem 3.6 (iii).

References

- [1] Argaç, N.: On prime and semiprime rings with derivations, Algebra Coll., 13(3), 371-380, (2006).
- [2] Argaç, N., Albaş, E.: Generalized derivations of prime rings, Algebra Coll., 11(3), 399-410, (2004).
- [3] Awtar, R.: Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc., 41, 67-74, (1973).
- [4] Bergen, J., Herstein, I. N., Kerr, J. W.: Lie ideals and derivation of prime rings, J. of Algebra, 71, 259-267, (1981).
- [5] Bresar, M.: On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33, 89-93, (1991).
- [6] Daif, M. N., Bell, H. E.: Remarks on derivations on semiprime rings, Internat J. Math. and Math. Sci., 15(1), 205-206, (1992).
- [7] Gölbaşı, O., Kaya, K.: On Lie ideals with generalized derivations, Siberian Math. J., 47(5), 862-866, (2006).

GÖLBAŞI, KOÇ

- [8] Herstein, I. N.: On the Lie structure of an assosiative ring, Journal of Algebra, 14, 561-571, (1970).
- [9] Hvala, B.: Generalized derivations in rings, Comm. Algebra, 26(4), 1147-1166, (1998).
- [10] Lee, P. H., Lee, T. K.: Lie ideals of prime rings with derivations, Bull. Institute of Math. Acedemia Sinica, 11, 75-79, (1983).
- [11] Posner, E. C.: Derivations in prime rings, Proc. Amer. Soc., 8, 1093-1100, (1957).

Received 09.07.2008

Öznur GÖLBAŞI and Emine KOÇ Cumhuriyet University, Department of Mathematics 58140, Sivas-TURKEY e-mail: ogolbasi@cumhuriyet.edu.tr e-mail: eminekoc@cumhuriyet.edu.tr