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On the stability of basisness in Lp (1 < p < +∞) of cosines and sines

Ali A. Huseynli

Abstract

We study the basis properties in Lp(0, π) (1 < p < ∞) of the solution system of Sturm–Liouville

equations with different types of initial conditions. We first establish some results on the stability of the

basis property of cosines and sines in Lp(0, π) (1 < p < ∞) and then show that the solution system above

forms a basis in Lp(0, π) if and only if certain cosine system (or sine system, depending on type of initial

conditions) forms a basis in Lp(0, π) .
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Denote by u (x, λ) and v (x, λ) the solutions of Sturm–Liouville equation

−y′′ + q (x)y = λ2y

satisfying the initial conditions

y (a) = 1, y′ (a) = σ

and
y (a) = 0, y′ (a) = λ,

respectively.

The problem of finding complex sequences {λn} for which the systems {u (x, λn)} and {v (x, λn)} form a

basis in some functional space is very important. In [1] it was proved that the system {u (x, λn)} (respectively,

{v (x, λn)}) forms a Riesz basis in L2 (0, π) if and only if the system {cos λnx} (respectively, {sin λnx}) forms

a Riesz basis in L2 (0, π). In this paper we present a generalization of this result for Lp (0, π) (1 ≤ p < +∞)

spaces. More precisely, we prove that the system {u (x, λn)} (respectively, {v (x, λn)}) forms a basis in Lp (0, π)

(1 ≤ p < +∞) if and only if the system {cosλnx} (respectively, {sin λnx}) forms a basis in Lp (0, π). We also

present an elementary proof based on transformation operators from the spectral theory of differential operators
(see, e.g., [6]).

The structure (e.g. completeness, basis or frame properties) of the systems {cos λnx} or {sin λnx} in

Lp (0, π) is closely related with the structure of exponential systems
{
e±iλnx

}
in Lp (−π, π) . The study of
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exponential systems, often referred to as the theory of nonharmonic Fourier series (see [4, 7, 9, 10, 11]), has its

origins in the classical works of R. Paley and N. Wiener [7] and N. Levinson [4]. One of the famous early

results in the theory is that the basis property of the trigonometric system
{
einx

}+∞
−∞ is stable in L2 (−π, π)

in the sense that the system
{
eiλnx

}+∞
−∞ will always form a Riesz basis for L2 (−π, π) if |λn − n| ≤ L < 1/4.

M.I. Kadec [2] , and R. M. Redheffer and R. M. Young [8] have shown 1/4 to be optimal.

The theory for sequences of cosines and sines appears to be less complete. Therefore, we first investigate
such sequences in Section 2. We prove a theorem on the stability of the basis property of cosines and sines in
Lp (0, π) (1 < p < +∞), which is a generalization of the corresponding theorem in [1] , where only L2 (0, π)

case was considered. At the same time we present an elementary proof.

1. Necessary notations, definitions and facts

By ‖·‖p we denote the norm in the space Lp . Let E = {en}∞n=1 be a basis in the space Lp . We denote by

Kp (E) the set of coefficients of the basis E , i.e., the set of all sequences {cn}∞n=1 of complex numbers, for which

the series
∞∑

n=1
cnen is convergent in Lp . It is well known that, if we define linear operations coordinate-wise in

Kp (E) and for {cn}∞n=1 ∈ Kp (E) we take by definition ‖{cn}∞n=1‖
def= sup

N

∥∥∥∥ N∑
n=1

cnen

∥∥∥∥
p

, then Kp (E) becomes a

Banach space (see, e.g., [5]).

Definition 1 Let {λn}∞n=1 be a sequence of real numbers. The sequence {λn}∞n=1 is called separated if there

exists ε > 0 such that inf
n,k∈N

n �=k

|λn − λk| ≥ ε.

Definition 2 A system {fn (x)}∞n=1 , fn ∈ Lp (a, b) is called q –Hilbert system in the space Lp (a, b) if there

exists m > 0 , such that for every finite system {cn} of complex numbers

(∑
n

|cn|q
)1/q

≤ m ·
∥∥∥∥∥
∑

n

cnfn

∥∥∥∥∥
p

,

where 1
p + 1

q = 1.

It follows from the theorem of Riesz that, in case 1 < p ≤ 2 every uniformly bounded and orthonormal
system of functions in Lp (a, b) is q –Hilbert system in the space Lp (a, b) [12].

Lemma 1 Let {λn}∞n=1 be a sequence of real numbers. If the system {cosλnx}∞n=1 is q –Hilbert system in the

space Lp (0, π) , 1 < p < ∞ , then the sequence {λn}∞n=1 is separated.

Proof. Since |cos λnx − cos λkx| ≤ π · |λn − λk| and the system {cosλnx}∞n=1 is q –Hilbert system, we have
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(for n �= k )

21/q ≤ m ·

⎛
⎝ π∫

0

|cos λnx − cos λkx|p dx

⎞
⎠

1/p

≤

≤ m ·

⎛
⎝ π∫

0

πp |λn − λk|p dx

⎞
⎠

1/p

= m · π1+1/p |λn − λk|

which demonstrates that {λn} is separated. �

For the proof of our main theorem (Theorem 4) we will need the following results.

Lemma 2 Let {ei}∞i=1 be a basis of the Banach space B. If an arbitrary finite number of elements are replaced

by other elements of the space B, then the new system is either basis of B, or is neither complete, nor minimal
in B.

Theorem 1 ([3], [4], [10]) If the system
{
eiλkx

}
is complete in Lp (−a, a) or in C [−a, a], and if an arbitrary

number n of functions are removed from this system and replaced by n other functions eiμjx (j = 1, 2, ..., n)
where μ1, μ2, ..., μn are arbitrary different complex numbers not equal to any λk , then the new system will be
complete in the same sense as the original system.

Theorem 2 ([10]) Let {λn}∞n=1 be an arbitrary sequence of complex numbers, such that λn �= 0, λn �= λm for

n �= m and −λm /∈ {λn}∞n=1 for all m. The system 1 ∪ {cos λnt}∞n=1 (respectively {cos λnt}∞n=1 ) is complete

in Lp (0, a) (1 ≤ p < +∞) if and only if the system e±iμt ∪
{
e±iλnt

}∞
n=1

, μ �= 0, ±μ /∈ {λn}∞n=1 (respectively,{
e±iλnt

}∞
n=1

) is complete in Lp (−a, a) .

Theorem 3 ([10]) Let {λn}∞n=1 be an arbitrary sequence of complex numbers, such that λn �= 0, λn �= λm

for n �= m and −λm /∈ {λn}∞n=1 for all m. The system {sin λnt}∞n=1 is complete in Lp (0, a) (1 ≤ p < +∞)

if and only if the system 1 ∪
{
e±iλnt

}∞
n=1

is complete in Lp (−a, a).

Theorems 1 and 2 imply the following result.

Corollary 1 If the system {cosλkx} is complete in Lp (0, π) or in C [0, π], and if an arbitrary number n

of functions are removed from this system and replaced by n other functions cosμjx (j = 1, 2, ..., n), where

μ1, μ2, ..., μn are arbitrary complex numbers such that μi �= ±μj for i �= j , i, j = 1, 2, ...n and μi are not equal

to any ±λk , then the new system will be complete in the same sense as the original system.

Theorems 1 and 3 imply that Corollary 1 is also true for the system {sin λkx} .
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2. Stability of basisness of cosines and sines

Theorem 4 Let {λn}∞n=0 and {μn}∞n=0 be sequences of nonnegative real numbers with λi �= λj , μi �= μj , for

i �= j and assume that, for some 1 < p < ∞ the inequality

∞∑
n=0

|λn − μn|α < ∞

holds, where α = min (p, q) ,
1
p

+
1
q

= 1 . If {cos λnx}∞n=0 is a basis in the space Lp (0, π) isomorphic to the basis

{cos nx}∞n=0 , then the system {cos μnx}∞n=0 is also a basis in Lp (0, π) , isomorphic to the basis {cosλnx}∞n=0 .

Proof. First consider the case 1 < p ≤ 2. Then q ≥ 2 and α = p . Denote ϕn (x) = cosλnx ,

ψn (x) = cos μnx, n = 0, 1, 2, ... .

Since
|ϕn (x) − ψn (x)| = |cos λnx − cos μnx| ≤ π · |λn − μn| (1)

then

‖ϕn − ψn‖p
p ≤

π∫
0

πp |λn − μn|p dx = πp+1 · |λn − μn|p .

Due to the condition of the theorem, the series
∞∑

n=0
|λn − μn|p is convergent, hence the series

∞∑
n=0

‖ϕn − ψn‖p
p

is also convergent.

Since the system {ϕn}∞n=0 is a basis, isomorphic to the basis {cosnx}∞n=0 in the space Lp (0, π), then

the set Kp ({ϕn}∞n=0) coincides with the set Kp ({cosnx}∞n=0) :

Kp ({ϕn}∞n=0) ≡ Kp ({cosnx}∞n=0)
def
= Kp.

According to the Hausdorf-Young theorem (see, e.g. [12]) we have

∃Mp > 0, ∀c = (c0, c1, ..., cn, ...) ∈ Kp :

( ∞∑
n=0

|cn|q
)1/q

≤ Mp ·
∥∥∥∥∥

∞∑
n=0

cn cos nx

∥∥∥∥∥
p

. (2)

Since the bases {ϕn}∞n=0 and {cosnx}∞n=0 are isomorphic, then

∃K > 0, ∀c = (c0, c1, ..., cn, ...) ∈ Kp :

∥∥∥∥∥
∞∑

n=0

cn cos nx

∥∥∥∥∥
p

≤ K ·
∥∥∥∥∥

∞∑
n=0

cnϕn

∥∥∥∥∥
p

. (3)
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We fix a natural number m satisfying the condition

∞∑
n=m

‖ϕn − ψn‖p
p < (2MpK)−p

. (4)

Consider the system {fn}∞n=0 ⊂ Lp (0, π):

fn =
{

ϕn, n = 0, 1, ...,m− 1,
ψn, n = m, m + 1, ... .

Inequalities (2), (3) and (4) imply that for any finite sequence (c0, c1, ..., ck), k ≥ m

∥∥∥∥ k∑
n=0

cn (fn − ϕn)
∥∥∥∥

p

≤
k∑

n=0
|cn| · ‖fn − ϕn‖p ≤

≤
(

k∑
n=0

|cn|q
)1/q

·
(

k∑
n=0

‖fn − ϕn‖p
p

)1/p

≤

≤ Mp · K ·
(

k∑
n=m

‖ψn − ϕn‖p
p

)1/p

·
∥∥∥∥ k∑

n=0
cnϕn

∥∥∥∥
p

≤ 1
2 ·

∥∥∥∥ k∑
n=0

cnϕn

∥∥∥∥
p

.

For k < m the truth of this inequality is obvious, since in this case
k∑

n=0
cn (fn − ϕn) = 0. According to

Paley-Wiener theorem [11] the system {fn}∞n=0 forms a basis in the space Lp (0, π), isomorphic to the basis

{ϕn}∞n=0 .

Now, replacing the functions f0, f1, ..., fm−1 by the functions ψ0, ψ1, ..., ψm−1 and taking into account

that μi �= μj for i �= j , from Corollary 1 and Lemma 2 we obtain that the system {ψn}∞n=0 is a basis in the

space Lp (0, π), isomorphic to the basis {ϕn}∞n=0 .

Now, consider the case p > 2. In this case q < 2 and α = q . Then it is known that Lp ⊂ Lq and there

exists a constant Cp , such that for all x ∈ Lp

‖x‖q ≤ Cp · ‖x‖p . (5)

We fix a natural number m , satisfying the inequality

∞∑
n=m

‖ϕn − ψn‖q
p < (2Mq · K · Cp)

−q (4∗)

(the inequality (1) and the condition of the theorem imply that in this case the series
∞∑

n=1
‖ϕn − ψn‖q converges).

As we did above, consider the system {fn}∞n=0 ⊂ Lp (0, π) :

fn =
{

ϕn, n = 0, 1, ...,m− 1,
ψn, n = m, m + 1, ... .
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From (2) , (3) , (5) and (4∗) we have

∥∥∥∥ k∑
n=0

cn (fn − ϕn)
∥∥∥∥

p

≤
k∑

n=0
|cn| · ‖fn − ϕn‖p ≤

(
k∑

n=0
|cn|p

)1/p

×
(

k∑
n=0

‖fn − ϕn‖q
p

)1/q

≤ Mq ·
(

k∑
n=m

‖ψn − ϕn‖q
p

)1/q

·
∥∥∥∥ k∑

n=0
cn cosnx

∥∥∥∥
q

≤ Mq · Cp ·
(

k∑
n=m

‖ψn − ϕn‖q
p

)1/q

×
∥∥∥∥ k∑

n=0
cn cosnx

∥∥∥∥
p

≤ Mq ·Cp · K ·
(

k∑
n=m

‖ψn − ϕn‖q
p

)1/q

·
∥∥∥∥ k∑

n=0
cnϕn

∥∥∥∥
p

≤ Mq ·K · Cp ·
1

2 · Mq · K · Cp
·
∥∥∥∥ k∑

n=0
cnϕn

∥∥∥∥
p

=
1
2
·
∥∥∥∥ k∑

n=0
cnϕn

∥∥∥∥
p

.

For k < m the truth of this inequality is obvious. Now applying the same arguments, that we have done for

the case p ≤ 2, we obtain that, the system {ψn}∞n=0 is a basis in Lp (0, π), isomorphic to the basis {ϕn}∞n=0 .

This completes the proof. �

In particular, for p = 2 we obtain that, if the system {cos λnx}∞n=0 is a Riesz basis in L2 (0, π) and the

condition
∞∑

n=1
|λn − μn|2 < ∞ holds, then the system {cos μnx}∞n=0 also forms a Riesz basis in L2 (0, π). This

result was obtained in [1] by other methods.

Lemma 1 and Theorem 4 are true with {sin λnx} in place of {cosλnx} if, in Theorem 4 we replace
“nonnegative” by “positive”. We omit the details.

3. Stability of bases of solutions to Sturm–Liouville equations

3.1. The case of initial conditions y(0) = 1 , y′(0) = σ

We consider the following Cauchy problem:

−y′′ + q (x) y = λ2y, 0 ≤ x ≤ π, (6)

y (0) = 1, y′ (0) = σ, (7)

where q (x) is an integrable function on [0, π] and σ is a constant. We denote by y (x, λ) the solution of the

problem (6) – (7). We are interested in the question: for which sequences {λn}∞n=1 the system of functions

{y (x, λn)}∞n=1 forms a basis in Lp (0, π), 1 < p < ∞? The answer to this question is given by the following

theorem.

Theorem 5 The system of functions {y (x, λn)}∞n=1 forms a basis in the space Lp (0, π) if and only if the

system {cos λnx}∞n=1 forms a basis in the space Lp (0, π).
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Proof. It is well known that the following representations are true:

y (x, λ) = cos λx +

x∫
0

K (x, t) cos λt dt, (8)

cos λx = y (x, λ) +

x∫
0

L (x, t)y (t, λ) dt, (9)

where K (x, t) and L (x, t) are continuous functions (see, e.g. [6]). If we denote by I + K and I + L the

operators defined by the right hand sides of the equality (8) and (9) respectively, then it is clear that, the

operator I +K is continuously invertible and (I + K)−1 = I +L . Now the validity of the theorem follows from

the equality y (x, λ) = (I + K) cos λx . �

In particular, when p = 2 we have that the system {y (x, λn)}∞n=1 forms a Riesz basis in L2 (0, π) if

and only if the system {cosλnx}∞n=1 forms a Riesz basis in L2 (0, π). This result was obtained in [1] by other

methods.

3.2. The case of initial conditions y(0) = 1 , y′(0) = λ

Let y(x) = y(x, λ) be the solution of the Sturm–Liouville equation (6) with the initial conditions

y (0) = 0, y′ (0) = λ.

where q (x) is an integrable function on [0, π] .

Theorem 6 The system of functions {y (x, λn)}∞n=1 forms a basis in the space Lp (0, π) if and only if the

system {sin λnx}∞n=1 forms a basis in the space Lp (0, π) .

Proof. The following representations are true:

y (x, λ) = sin λx +

x∫
0

K (x, t) sin λtdt, (10)

sin λx = y (x, λ) +

x∫
0

L (x, t)y (t, λ) dt, (11)

where K (x, t) and L (x, t) are continuous functions (see, e.g. [6]). If we denote by I + K and I + L the

operators defined by the right hand sides of the equality (10) and (11) respectively, then it is clear that, the

operator I +K is continuously invertible and (I + K)−1 = I +L . Now the validity of the theorem follows from

the equality y (x, λ) = (I + K) sin λx . �

In particular, when p = 2 we have that the system {y (x, λn)}∞n=1 forms a Riesz basis in L2 (0, π) if and

only if the system {sinλnx}∞n=1 forms a Riesz basis in L2 (0, π). This result was obtained in [1].
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