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Existence of three solutions to a non-homogeneous multi-point BVP
of second order differential equations

Yuji Liu

Abstract

This paper is concerned with a non-homogeneous multi-point boundary value problem of second order
differential equation with one-dimensional p-Laplacian. Using multiple fixed point theorems, sufficient
conditions to guarantee the existence of at least three solutions of this kind of BVP are established. Two

examples are presented to illustrate the main results.

Key word and phrases: Second order differential equation with p-Laplacian, generalized Sturm-Liouville

boundary value problem, fixed point theorem in cone.

1. Introduction

In recent years, the solvability of multi-point boundary-value problems (BVPs for short) for second order
differential equations or higher order differential equations on finite intervals have been studied by different
authors, see papers [1-29]. The methods used in above mentioned papers, are the Guo-Krasnoselskii fixed point
theorem, the fixed-point theorem due to Avery and Peterson, the Leggett-Williams fixed point theorem, the
five functional fixed point theorem, the monotone iterative techniques and Mawhin coincidence degree theory,

et cetera.
Ma in [21, 22] studied the following more generalized BVP

[p(t)x' ()] — q(t)=(t) + f(t,=(t)) =0, te(0,1),
azx(0) — Bp(0)z’(0) = 327 aix(&), (1)
yr(l) +dp(L)z’ (1) = 300 biw(&),

where 0 < & < -+ < & < 1, a,08,7,0 > 0,a;,b; > 0 with p = v+ ay+ ad > 0. By using Green’s
functions (which complicate the studies of BVP(1)) and Guo-Krasnoselskii fixed point theorem, the existence
and multiplicity of positive solutions for BVP(1) were given.

There has been a large number of papers in which many exciting results concerned with the existence of
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multiple positive solutions of the following BVPs of second order differential equations with p-Laplacian

[p(2'(1)]" + f(t,x(t),2'(t)) =0, te(0,1),
2(0) = 3., a(&), (2)
z(l) = ZZ’LI Biz(&i),

or

are obtained. To see these interesting results, one may see the text book [6].

In paper [8], the authors studied the existence of three positive solutions of the boundary value problem

of the form

[p(z’ ()] + e(t) f(t, (1)) =0, te€(0,1),
2(0) — By(2/(0)) = 0, (4)
z(1) + By (#/(1)) = 0,

where By, B; : R — R are continuous, increasing on R and 0 < zB;(z)(i = 0,1) for all  # 0, e and f are
continuous and nonnegative.

The boundary conditions in BVP(1), BVP(2), BVP(3) and BVP(4) are homogeneous cases. In many
applications, BVPs consist of differential equations coupled with nonhomogeneous BCs, see [16, 17].

In papers [10-12], using lower and upper solutions methods, Kong and Kong established existence results

for solutions and positive solutions of the following two problems

2(0) + F(t2lt), (1) =0, e (0,1),
2'(0) = >0 o’ (&) = Ai, (5)
x(1) =307 Biw(&) = Ao,

and

(1)) + f(t,2(t),2'(t)) =0, t€(0,1),
2(0) = 3o e (&) = M, (6)
( ) Zz 151 ( z) )\2;

respectively. These papers may be the first papers concerned with the BVPs with two parameter multi-point
non-homogeneous BCs. In Kong's results, the existence of lower and upper solutions with certain relations are
supposed.

A problem appears, under what conditions BVP(5) and BVP(6) have at least three solutions?

To address above problem, in recent paper [17], the author established existence results for three solutions
of the following BVP,

[o(2'(1)) + f(t, x(t),2'(t)) =0, t€(0,1),
x(0) —ax(0) = A,
x(l) - ;11 bzx(fi) =B,

by using a three functionals fixed point theorem.
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Motivated by paper [10-12, 17, 21, 22] and the problem, the purpose of this paper is to investigate the

BVP
o' (O)) + f(¢,2(t),2"(t)) =0, ¢ €(0,1),
2(0) = Bo(2'(0)) = 22—y aiw(&) + A, (7)
z(1) + By(2' (1)) = Y00 biw (&) + B,
where
e By, B; : R— R are continuous, increasing on R;
e U<y < <<, ABER, a; >20,b;>0foralli=1,--- ,m;

e [ defined on [0,1] x R x R is continuous, p defined on [0, 1] continuous differentiable;

e ¢: R — R with ¢ € C}(R) and ¢/(x) > 0 for all z € R, and there exists its inverse function denoted
by ¢~!. It is easy to see that p— Laplacian function ¢(x) = |z|P~2x with p > 1 is such a function.

A function z : [0,1] — R is called a solution of BVP(7) if z € C1[0,1], pp(z’) € C*[0, 1] and all equations
in (7) are satisfied.

Sufficient conditions for the existence of at least three solutions of BVP(7) are established by using the
five functional fixed point theorem [1]. The Green’s functions are not used in the proofs of the main results.

Applying the result to the special case

a(t) + [t x(t), 2'(1)) = 0, te(0,1),
2(0) = 32,0 aiw(&) + A, (8)
z(1) =320 bix(&) + B,

our result is different from those in [10-12] since we get three solutions of BVP(8). It is easy to see that BVP(7)
is the precise nature of combinations of multi-points, p-Laplacian and non-homogeneity. Let us point out that
although the idea was used before for other problems, the adaptation to the procedure to our problem is not

trivial at all.
The remainder of this paper is organized as follows: the preliminary results are given in Section 2, the

main results and their proofs are presented in Section 3, and some examples are given in Section 4.

2. Preliminary results

To the reader’s convenience, some background definitions in Banach spaces and an important three fixed
point theorem are presented.

As usual, let X be a real Banach space. The nonempty convex closed subset P of X is called a cone
in X ifar € Pand x+y € P forall z,y € P and a >0, and z € X and —x € X imply z = 0. A map
¥ : P — [0,400) is a nonnegative continuous concave (or convex) functional map provided v is nonnegative,

continuous and satisfies
P(te + (1 —=t)y) > (or <) t(x) 4+ (1 —t)y(y) for all z,y € P,t € [0,1].

An operator T': X — X is completely continuous if it is continuous and maps bounded sets into pre-compact

sets.
Let ¢, ¢o,c3,cq,c5 > 0 be positive constants, a1, s be two nonnegative continuous concave functionals

on the cone P, (31, 32, 3 be three nonnegative continuous convex functionals on the cone P. Define the convex
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sets as

P..={xeP:||lz|]| <cs},

P(Br,on;c2,05) ={x € P:ou(x) = c2, f1(w) < 5},

P(By, Bs, a5 c2,¢4,05) ={x € P ay(x) = ¢z, f3(x) < cu, fr(w) < st
Q(B1, P23, c1,05) ={z € P: fo(x) < a1, Bi(z) < ¢},
(

Q(B1, B2, az5c3,¢1,¢5) = {x € P ag(w) > 3, fo(x) <1, fi(x) <cs).

Theorem 2.1 [1] Let X be a real Banach space, P a cone in X. ai,as be two nonnegative continuous
concave functionals on the cone P, (1,02, be three nonnegative continuous convex functionals on the cone
P. Then T has at least three fized points y1, yo and ys such that

Ba(y1) < c1, ar(ye) > ca, Ba(yz) > c1, a1(ys) < co

(A1) T: X — X is a completely continuous operator;
(A2) there exist a constant M > 0 such that

a1(x) < Ba(z), ||z|] < M By () for all x € P

(A3) there exist positive numbers ci,ca, 3, Ca,c5 with ¢1 < ca such that
(i) TP., C P;
(i) {y € P(B1, B3, a1;c2,cq,05)|a1(x) > ca} # 0 and

al(Tx) > C2 fO?" every X € P(ﬂlaﬂ?nal;CQ;Cﬁl;CS);
(iii) {y € Q(B1, P2, a5 ¢c3,¢1,¢5)|02(x) < 1} # 0 and
Ba(Tx) < c1 for every x € Q(B1, P2, a2; €3, €1, C5);

(iv) a1(Ty) > ca for y € P(B1,a1;ca,c5) with B3(Ty) > ca;
(v) B2(Tz) < 1 for each x € Q(B1, B2; 1, ¢5) with az(Tx) < cs.

Lemma 2.1 Suppose that p : [0,1] — (0,4+00) with p € C0,1], x € C[0,1] with [pp(z")] € C°[0,1],
x(t) >0 for all t € [0,1] and [p(t)p(2'(t))] <0 on [0,1]. Then x is concave and

z(t) > min{t,1 —t} tren[guﬁ] z(t), t€]0,1]. 9)

Proof.  Since z € C'[0,1], suppose z(tg) = maxepo,1j2(t). If to < 1, for ¢ € (to,1), since 2/ (ty) < 0, we
have p(to)d(z’'(to)) < 0. Then p(t)p(2’(t)) < 0 for all ¢t € (to,1]. It follows that z'(t) < 0 for all ¢t € [to, 1].
Thus z(to) > z(t) > z(1) > 0. Let
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Since
a7 (o)
dt ftt ¢! (p(s)) ds

we get 7 € C'([t, 1], [0, 1]) and is increasing on [tg, 1] with 7(t9) = 0 and 7(1) = 1. Thus

>0,

dv  dedr dx 97 ()
N Y SR

implies that
1

(o™ (56

mwwm—%“)<

1))

Hence

&' (m) i - <?) Lo _ (/tl o1 (L> ds) [p(t)qs(x'(t))}' <0 for all t € [to, 1].

(o)

It follows ¢'(x) > 0 that 32795 < 0. Together with z”(7) < 0(7 € [0,1]). It follows that = is concave on [0,1].
Now z(t) > 0(t € [to, 1]), we get that there exist tg <n <t < ¢ <1 such that

w(to) —a(l) a@) —2z1) _ (= Dfz(to) —=(t)] + (o — D[z(1) — z(?)]
to— 1 t—1 (t—1)(to — 1)
_ (=1t — )’ (n) + (to — )(1 — t)ta’(§)
(t—=1)(to— 1)
_ (= 1)t — 1)a"(€) + (to — )1 — )t2"(E) _
- (t =1)t — 1) '

It follows for ¢ € (to,1) that

o) > a(1) + (¢ — ) =2 (1 o1t ) + 2T ) > (1= Balto).

to—1 1—t 11—t
If to > 0, for t € (0, 1), similarly to above discussion, we can get that
x(t) > tx(to), t € (0,tp).

Then one gets that x(t) > min{t,1 — t} max,c[o,1)2(t) for all ¢ € [0,1]. The proof is complete. O

Suppose that
(B1) 1-3" a; #0, f:[0,1] x [h1,+00) x R — [0, +00), where h; = Em , 1s continuous with
f(t,0,0) # 0 on each sub-interval of [0,1];
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(B1)! 1-=5"" b #0, f:[0,1] X [he, +00) x R — [0, +00), where hy = #ﬁ‘ilbi’ is continuous with
f(t,0,0) # 0 on each sub-interval of [0,1];

(B2) p:[0,1] — (0,+00) with p € C1[0,1];

(B3) a;>0,b;>0foralli=1,--- ,m;

B4) YMiai<l, Yt bi<1and

A B .
i i v e v

(B4)" Yiliai<l, 3L b <1and = 1'?';1 @ = 172]?';1 5

(B5) o:[0,1] — [0,400) is a continuous function and o(t) # 0 on each subinterval of [0,1];

(B6) there exist nonnegative numbers 3, 3,6, 6" such that 322 < xBy(z) < Br? and &z < xBj(x) <
§2% for all z € R.

Let X = C'[0,1] be with the norm ||z|| = max {max;e[o,1] |z(t)|, maxiepo,1|2'(t)|}. Then X is a Banach

space. For z,y € X, we call z <y for z,y € X if z(t) < y(¢t) for all ¢t € [0,1]. It is easy to see that X isa
semi-ordered real Banach space.

Lemma 2.2 Suppose that (B2)-(B6) hold. If y is a solution of the BVP

PO D) +0(t) =0, t€(0,1)
y(0) = Boy (0)) = X7 auy(€s), (10)

y(1) + Ba(y' (1) = S, buy(6) + (B - =55 4)

i=

then y is concave and positive on (0,1).
Proof.  Suppose y satisfies (10). Then (B5) implies that [p(t)o(y/ (t))]’ < 0 for all t € [0,1]. Suppose that
y(to) = maxye(o,1]¥(t). Then either to >0 or to < 1.

If to > 0, for t € [0, 0], let

Lo () s

T(t) JO o1 (p(ls)) ds.

It is easy to see that 7 € C([0, o], [0,1]) and

dr ¢! (ﬁ)

t
o () ds

Thus

dy dydr dy ¢ ()
@A (Y

(o () ) voe () =<(3).

1
p(s)

It follows that
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Hence

AL G ]+ ()58

Since [p(t)o(y'(t))) <0, ¢'(x) >0, we get that 4 < 0. Then y is concave on [0,1].

If ty < 1, we can get that 2% <0 similarly. It follows that y is concave on [0, 1].

d‘r2

Now, we prove that 3/(0) > 0. If 4/(0) < 0, we get that y'(¢) < 0 for all ¢ € [0,1]. (B6) implies that
By(y'(0)) <0 and Bi(y'(1)) < 0. Then the BCs in (10) and the assumptions (B3), (B4) imply that

y(0) — Bo(y/'(0)) = Z ay(&) < Z a;y(0)

and
)+ B () = S bnte) + (B - E ) 2 Y b

It follows that
<1 -3 ) y(0) — Bo(y' (0)) <0, <1 -y bi) y(1) + Bi(y/ (1)) > 0.

Then (B3) and (B4) imply that y(0) < 0 and y(1) > 0. It follows that y(f) = 0 on [0,1]. We get that
o(t) = [p(t)o(y'(t))] =0, a contradiction to (B5).

It follows from above discussion that ¢'(0) > 0. Since y(t) is concave on [0,1], we get that y(t) >
min{y(0),y(1)} for ¢ € [0,1]. Then

y(0) — Bo(y'(0)) = Z a;y(&) > Z a; min{y(0), y(1)}

and

y(1) + B(y szyfz (s g%iz) mem{y s},

Case 1. If min{y(0),y(1)} = y(0), then (1 -3, a;)y(0) — Bo(y/(0)) > 0. We get y(0) > 0 since

y'(0) > 0 and xBy(z) > 0 for all z # 0. Then min{y(0),y(1)} > 0. Hence y(¢) > min{y(0),y(1)} > 0 for
€ [0,1].
Case 2. If min{y(0),y(1)} =y(1), then (1 —>" b;)y(1) + Bi(y'(1)) > 0.
If 4/(1) > 0, then
2

implies that y/(t) > 0 for all ¢ € [0, 1]. It follows that min{y(0),y(1)} = y(0), a contradiction. Then /(1) <0,
we get from (1 — Y% b;)y(1) + B1(y'(1)) > 0, that y(1) > 0. Hence y(t) > min{y(0),y(1)} >0 for ¢ € [0, 1]
From cases 1 and 2, we get that y(t) > 0 for ¢t € (0,1). The proof is complete. O
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Define

L= %(mia /0%1 (ﬁpm))ds),

=1

m 1 1
lh = S 1 ds,
: <1 2 >/ o () @

1 " ! 1
Is = 8¢~ [ —=p(0 b; L[ ——p(0) | ds,
3 ¢ (p(l)p( ))Jr; /&_(ﬁ (p(s)p( )) s

*Ei’él i
. B - e

Lh+l+1s

and

=1
lo= oo (ip<0>)+ibi /1¢>1 (ipm)) ds,
o) 2% ) 0 o
1-300%, bi
g - PorEaA

lllJrlQJrlé

Lemma 2.3 Suppose that (B2)-(B6) hold. If y is a solution of BVP(10), then there exists an unique constant
A, such that
1 1

o = B. + e (5000 - = [ oty as, te o)

where Ay, € [a, ot <¢((%/))

p

+ ﬁ fol a(u)du)] satisfies

% <Bo<Aa>+iai / s (ﬁp(owmg) -/ SJ(u)du) ds>
= - /0 o (ﬁp(owmg) ﬁ /0 SJ(u)du) as

B (w (ﬁp(owmg) - ﬁ /0 1 o(u)du))

£ / T (ﬁp(owmg) - 5 J(u)du) s

i=1

+ Bfilfzz,flbm :
1=30a
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and B, satisfies

B, = ﬁ( +Zaz/ (% )¢(Ag)]%/osa(u)du> ds>.

Proof. Since y is solution of (10), we get

Then

The BCs in (10) imply that

m m &, s
y(0) = Boy/ (0)) = 9(0) 3_ai + > i /0 o7 (ﬁp(om’(o» - ﬁ /0 o(u)du) ds

and

N N U PR
= O h+ Yok [ 07 (50 @) - oo [t a

=1 =1
1-5" b
+ (B - Z:n:l
1= a

It follows that

(o7 (spseo) - - 01 o))
+ibz [ o (e o) - - [ o) o
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+/01¢> (}%p(O)d)(c)}%/ja(u)du) ds

s (67 (S0l - s | 1 o))

m

e <Bo(a) 3 [0 (oot s [ o) ds>

=1

+ <1 - ibl> /01 ot (ﬁp(O)d)(a) - ]% /05 a(u)du) ds
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Lo,
= (41 U')— | B—- —&i=17" 4 = 9.
S+ 4+ 1) ( 1271%) 0

Hence we get that there exists unique constant A, € [a, ot (i((%/)) e J: ! a(u)du)} such that
1— Znil bz s &i _ 1 1 s
et (B + Yo [ 67 (sp006n) -~ [ olulan) as
1= ai < ; 0 p(s) p(s) Jo

+ <1 — ibl> /01 ot (}%p(O)qS(AJ) — }% /08 a(u)du) ds

B, (w (ﬁp(owma) - [ 1 o(u)du))

+_fj by /6 1 o1 (ﬁp(owma) - /0 ) 0(u)du> ds—p - Lo 2imbiy

Then A, =y (0) and

B, = ﬁ <BO<AJ) + ia /0 Cpm (ﬁp(owma) - ﬁ /0 5 o(u)du) ds) .

i=1
The proof is completed. O
Note h; = 172% Let z(t) = y(t) + hi. Then BVP(7) is transformed into the following BVP
i=1 """
ey (@) + £ (8, y(t) +hy, /(1)) =0, t€(0,1),
y(0) = Bo(y'(0)) = X5y aiy(&), (11)
m 1-5>°7 b;
y() + Biy' (1) = S0 biy(&) + (B - 2R A).

Let
Pr={yeX: y(t)>0forallte[0,1], y/(t) is decreasing on [0,1], }.

Then P; is a nonempty cone in X since z(t) = t> € P; for example. Choose o9 € (0,1/2). Define the

functionals on P, — R by

_ /

Bily) = nax [y (t)], y € Py,

fa2(y) = max [y(t)|, y € P,
t€[0,1]

Bs(y) = max |y(t)], y € Py,

t€loo,1—o0]

ar(y) = min [y(t)|, y € P,
t€log,1—00)

as(y) = min  |y(t)|, y € P1.
t€log,1—00)
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Define the nonlinear operator 17 : Py — X by

(Tiy)(t) = By+ / = (ﬁpm)w&y)% /Osf@,y(uth,yf(u))du) ds, ye Py,

where A, € [a, ot (i((%/)) + p—lo) fol flu,y(u) + h, y’(u))du)] such that

172:21 a;
3 / o (i 0)6(4) — = [ fwy(w) + '<u)>du) s
i=1 Jo p(s)p Y p(s) Jo Y LY
m 1 . 1 1 s /
+<1;bi>/o 6 (@p(ow(fly)@/o f(u,y(u)Jrhl,y(u))du) ds

s (67 (S0 - o5 [ syl + i, o)y

+ ibi /; ¢! (LP(OM(A;,) - ﬁ /0 flu,y(u) + ha, y’(u))du) ds

and B, satisfies

R A (5552(006(Ay) = 5 fi S, () + B,y (u))du) ds
o 1-30 a .

Then

Bo(Ay) + Xy ai [y 67 (BG0(A,) = 55 fi Flusy(w) + b,y (w))du ) ds
(Tiy)(t) = S,

1
g 1 L r u, y(u "(u))du | ds
[0t (Sip0etan - 5 [ st + e yia) ds, ye P

Remark 2.1 The operator 17 defined relies on the constant A, which changes with each y, Lemma 2.3 implies

that A, is unique, so 17 is well defined.

Lemma 2.4 Suppose that (B1)-(B4),(B6) hold. It is easy to show that
(i) Thy satisfies the equalities
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(ii) Tvy € P, for each y € Py ;

(iii) =« is a solution of BVP(7) if and only if © = y+ h1 and y is a solution of the operator equation
y="Ty in Pr;

(iv) Ty is completely continuous.
Proof. The proofs of (i), (ii) and (iii) are simple. To prove (iv), it suffices to prove that T; is continuous on
P and T is relative compact. We divide the proof into two steps:

Step 1. For each bounded subset D C P, and each z¢ € D, since f(t,u,v) is continuous in wu,v, we
can prove that T) is continuous at y(t).

Step 2. For each bounded subset D C X, prove that 7T} is relatively compact on D.

It is similar to that of the proof of Lemmas in [16, 23] and are omitted. o

Lemma 2.5 Suppose that (B2),(B3),(B4), (B5) and (B6) hold. If y is a solution of the BVP

) W)) + o) =0, t € (0,1),
(v (0) = 2y aiy(&) + (A - SR B) (12)
1)+ Ba(y' (1)) = X0, biy(&s).

then y is concave and positive on (0,1).

Proof. The proof is similar to that of the proof of Lemma 2.3 and is omitted. O

Define

me = <1f;a> /01(;51 (}%p(l))ds,
ma = 0 (g ))+§;ai /j’w (5570 as.
, _ A-TEREB

and

e
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Lemma 2.6 Suppose that (B2),(B3),(B4)", (B5) and (B6) hold. If y is a solution of BVP(12), then

y(t) = B, — /t1 ot (ﬁp(l)qﬁ(/lg) + ]% /51 J(U)du) ds, t€0,1],

where Ay € [7(;5*1 <¢(b/) + = fo o(u )du) b] satisfies

p(1) ' p(1)
% <Bl(Aa) +;bi / ¢! (ﬁp(l)tb(fla) + ]%/ a(u)du> ds)

- / e (ﬁpawma) + ]% / ot )du) ds

+By (qsl (ﬁp(l)qﬁ(flg) + ﬁ /01 J(u)du))

B, satisfies

B, = ﬁ <Bl(Ag) +§;bi /; 6! (}%p(l)(b(/lg) + }%/ﬁla(u)dzo ds) .

Proof. The proof is similar to that of the proof of Lemma 2.4.

Note hg = %. Let x(t) = y(t) + ha. Then BVP(7) is transformed into the BVP

[Py ) + f (t,y(t) + h2,/(8) =0, t € (0,1),
= Bo(y'(0) = X%y ay(&) + (Af = %,LIZIB)
1)+ Bi(y' (1)) = 3202, biy(&)-
Let
={yeX: y(t)>0forallte0,1], y/(t) is decreasing on [0, 1], }.

Then P, is a nonempty cone in X . Choose o € (0,1/2). Define the functionals on P, — R by

Gily) = nax, ly' ()], y € P,

P2(y) = max [y(t)|, y € P,
t€[0,1]

Bs(y) = max |y(t)], y € P,

t€loo,1—o0]

ar(y) = min |y@t)], y € P2,
t€log,1—00)

as(y) = min  |y(t)|, y € Ps.
t€log,1—00)

(13)
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Define the nonlinear operator 15 : P, — X by

Ty = B~ [ o (@wxmi / f(u,y(U)+h2,y’(U))dU> ds, ye P,

p(s) o(5)
where
Ay ot (2004 [ unta) + hano/ ) =
satisfies
TR (B4
3 [ (ot + oL [ st b))
_ <1i) [ (ﬁpawmwﬁ / f(u,y<u)+h2,y'<u>>du) ds

< (o7 (o) + o | fluyla) + b, ) )
+i ai /0& ¢! (ﬁp(l)(b(fly) + ]% /: fu,y(u) + ho, y’(u))du) ds
(e

B, satisfies

Bi(Ay) + S0 b & 07 (F5p(100(Ay) + 555 1), y(w) + ha,yf (w)du) ds

V=it bi
Then
(Tay)(t) = 121:”1@(31“‘@/)
. Lol 1t .
+;bi /5 ¢ (@p(l)zzb(Ay)Jr@/s f(u,y(u)Jth,y(u))du) ds)

- /¢ (%Wm +os . yta) +h2,y’(u))du> is, y € Py

Lemma 2.7 Suppose that (B1)',(B2),(B3) and (B4)" and (B6) hold. It is easy to show that
(i) Thy satisfies the following equalities:

[p(t)(p(T2y)"))'(t) + f (t
(T2y)(0) — Bo((T2y)' (0
(Toy)(1) + Bi((T2y) (1

) +ha,y/ (1)) =0, t€(0,1),
e (4~ FERB).
Z bi(Toy) (&)

y(t

)
)=

vv

Toy
Toy
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(i) Ty € Py for each y € P ;
(iii) =« is a solution of BVP(7) if and only if © =y + ha and y is a solution of the operator equation

y="Toy in Po;
(iv) Ty : Py — P» is completely continuous
The proof is similar to that of Lemma 2.4 and is omitted

Proof.
3. Main results
In this section, we given the main results and their proofs. Let ( is defined in (B6) and
M = 1+ B+ a;&; |,
el Qo)
25 1 1 2—s
L = —— ¢1(—>+/ (;51( )ds
1= a p(0) 0 p(s)
( ) ds.

e

Suppose that (B1)-(B4) and (B6) hold. Let ey, eq, ¢ be positive numbers

Theorem 3.1 Choose oo € (0,1/2)
and Q,W and E given by
@ = wn{o(5). 22O senm}:
es
w = ¢ 1 1 1 )
oo mm{ffo P! (g(;)s) ds, f;fao P! (p?f)) ds}
B = wnfo(), 22O )
Let o’ be defined in Section 2. If
mintee 2 {2 1o, o () o 0 (575) o)
eo > 6—1 >e; >0
o0
—C, C] ;
—C, C] ;

and
(B7) f(t,u,v) <Q forallt €[0,1],u € [h1, Mc+ hq],v €|
—c, c];

(B8) f(t,u,v) > W forall t € [00,1 — 0], u € [e2 + hi1,ez/00 + hi1],v € |

(B9) f(t,u,v) <E foralltel0,1],u€ [h,e1+ ], ve]
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then BVP(7) has at least three solutions x1,x2,x3 such that

max z1(t) < eq + hq, min  x9(t) > ea + hq,
t€[0,1] t€loo,1—o0]

and

max x3(t) > e1 + hi, min  x3(t) < ea + hq.
t€[0,1] t€loo,1—o0]

Proof. To apply Theorem 2.1, we prove that all conditions in Theorem 2.1 are satisfied.

By the definitions, it is easy to see that «;, s are nonnegative continuous concave functional on the
cone P, [31, 32, O3 nonnegative continuous convex functional on the cone P, and «a;(z) < fB2(x) for all x € P.
Lemma 2.4 implies that « = z(t) is a positive solution of BVP(7) if and only if z(t) = y(t) + h1 and y(t) is a
solution of the operator equation y = Ty in P;. Ty is completely continuous.

Since y € P; implies that

y(0) = By (0) = 3 aiy(&) <0, y(0) = F'y/(0) = > _aiy(&) >0

we get that
o y(0) —y(0) X a
y(0) = 1*Z£ﬂ;
o BYO) +3E aiy(&) —y(0) 3L, ai
a 1- Z:il @
= #anaz <ﬂy’(0) + ; (lifiy’(ni)) where 7; € [0, &
= # (“Z%) max [y (1)
and

o = 1T

i=1 @i

ﬂ’y’(O) + Z:n 1 zy(fl) - (0) Zz 1%
1- Zz 1%

- # <ﬂ/y/(0) + Z%‘fi?/(?h)) where 7; € [0, &)
i—1

Y

i=1 @i

< B+ ai& max ly' (t)]-
]‘ - Zz 1 ai < Z )
It follows that

'”'—vz Z(mzazgz) ma [y (1)
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Then

It follows that there exist constants M; > 0 such that ||y|| < Mi16:1(y) for all y € Py.

LIU

()] < Jy(0) — y(O)] + ly(0)] < (1 o Z(mzazgz))gw ol

ltren[(z)aulc]ly()lé <1+1 s <ﬂ+z @)) max |y()|—MtI€n[g>1€ Y ()]

of Theorem 2.1 are satisfied. Now we prove that (A3) holds.

Corresponding to Theorem 2.1,

€2
C1 = €1, C2 = €2, C3 = 0¢€1, 6420—, Cs = C.
0

Hence (Al) and (A2)

Now, we prove that (A3) of Theorem 2.1 are satisfied. One sees that ¢; < co since e; < e3. The remainder is

divided into five steps.

Step 1. Prove that T\ P,., C P..;

For y € P.,, we have ||y|| < c. Then

0<y(t) <e, —c<y'(t) <cforalltel0,1].

So (B7) implies that

fty(t) +h,y' (1) < Q, t €0,1].

Then Lemma 2.3 implies

Since

we get that

Ay € [a, ot (&‘8’)) + ]ﬁ /01 fu, y(u) + hl,y’(u))du>] :

6_2 ’ —1 L / -1 L !
chaX{UO; La’, ¢ (p(0)>a, ¢ (MU)G}’
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(Thy)(t)

IN

IN

IN

IN

<

LIU

B, + /0 6! (ﬁpm)my) - /Osf(u,y(u) T hl,y/(u))du> ds
o (B
+ iai /Ogi ot (Z%p(O)d)(Ay) — Z% /05 flu,y(u) + hq, y/(u))du> ds)

b [ ot (Sop04,) — = [ Fuytu) + by )i ds
0 p(s) p(s) Jo

(
Jrf:ai /0& 51 (ﬁp(o)(;)(/xy) _ ]%/0 Fu, y(u) +h1,y’(u))du> ds>

+/01t ¢! (ﬁp((wmy) - }% /Osf(u,y(u) + hl,y/(u))du> ds

(24 [ o) + oo/
T (z oo [0 ()4 L [ gyt + oy ) ds)
w [ o (B [ o)+ ) s
12?%(1’ (5 (<a))+ ())
T < oRden )>d"”>
+/o o (S + Q(p@)s))d’”

g () T (S (55

On the other hand, similarly to above discussion, since (Thy)'(t) is decreasing and (Tyy)'(0) > 0, (T1y)'(1) <0,

we have from Lemma 2.3 that
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! oL b t w, y(u (w))du
@) = o (00l - o [yt + i),
mac (1) ()] = max{|(T9) )], (T) (1]}

t€[0,1]

= {07 (— 0004 + 1 lf(u,y(U)+h1,y’(U))dU>}

p(1) p(1) Jo
1 (¢d) 1 /1
< max ¢1< +— | flu,y(u) +hy,y (u))du ),
1 (50 7 |, s+ )
o (=00 + s [ syt + o jan)
- — u, y(u Y (w))du
p)P T ) fy Y
(o) 1 ) _ 1 1
< max 1( +—=Q), ¢ ' ——=p0)p(4,) + —
o (55 m@) o (e + 50
(20 a1 @
< oo (555) o (i)
{ p(0) p(1)
< ¢
It follows that
I
= < .
7] = o { e (7i0) O, s (T 0} <
Then T(P.,) C P.,. This completes the proof of (A3)(i) of Theorem 2.1.
Step 2. Prove that {y € P(31, 33, a1;ca, cq, c5)|ar(x) > ca} # D and
a1(Tiz) > ¢y for every © € P(fh, B3, a1; Ca, €4, C5);
It is easy to give a function y such that y € P and
€2 €2 €2
= — = << = = .
oy) =55 > e 0y) = 5= < =, (y) =0 <c
It follows that {y € Pi(v, 0, a;a,b,c)|a(y) > a} # 0.
For y € P(fh, B3, a1; ¢a, ca, ¢5), one has that
. e
ai(y) = min  y(t) > e, Bay) =  max  y(t) < =, fi(y) = max [y ()| <c.
tG[O'Q,lfo'o] t€[0’0,1*0’0] oo tG[O,l]

Then
e
ex < y(t) < O__Za te [O—Oa 1 *0'0]; |y/(t)| <ec

Thus (B8) implies that
fty(t) + ha,y' (1) 2 W, n € [o0,1 = 00l
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Since Thy € P, we get

a1(Thy) =  min  (Tyy)(t) > oo max (T1y)(t).
t€[0’0,1*0’0] tG[O,l]

It follows from Lemma 2.2 that (Thy)'(0) > 0 and (T1y)’(1) < 0. Then there exists £ € [0,1] such that
(Thy)' (§) = 0. Then the definition of T} implies that

+h1a ( ))dua tZE;
+h1a ( ))dua t<£~

o((Tiy) (1) = { ftfé

Then

Hence

I
—~
—
=
<
~
—~

o

Jé“{a‘?i](TIW) = (le)(l)+/§1 ¢! (2% /;f(u,y(U)+h1,y’(U))dU> ds
J

¢
-t <$/ J(u,y(u) +h1,y’(U))dU) ds.

Then (Ty)(0) >0 and (Ty)(1) > 0 imply that

T > Tiy)(t
ar(Try) > Uotren[gﬁ]( 19)(t)

oo { | e (575 700wt .y ) s

Y

It is easy to see that

/5 e (2% /5 s y(w) + b,y (u ))du) ds > / e <2% / " y(u) + hl,y%u))du) ds

iffg%and
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if £€> % We get that

o (Ty) > Uomin{ Ty (% 8 y<u>+h1,y'<u>>du)ds,

/ ( /fuy Ml,())du)ds}
e [ (e [ (i)

2

It follows that «y(Tix) > co for every © € P(f1, (s, a1;c2,cq,c5). This completes the proof of (A3)(ii) of
Theorem 2.1.
Step 3. Prove that {y € Q(831, B2, a2; c3,c1,¢5)|B2(x) < c1} # D and
Ba(Thx) < 1 for every x € Q(01, B2, ar2; 3, €1, C5);

It is easy to give a function y such that y € P and

a2(y) > c3, f2(y) <c1, Bi(y) < cs.

It follows that {z € P(B1, B2, a2; c3,¢1,¢5) : aa(x) < c1} # 0.
For y € Q(B1, B2, ; ¢, ¢1, c5), one has that

as(y) = min  y(t) >c3, fa(y) = max y(t) < ¢ fi(y) = max |y (t)| < cs.
né€loo,1—o0] t€[0,1] t€[0,1]

Then

Ogy(t) Sela |y,(t)| SC; te [Oa 1]

Thus (B9) implies that

f(ty(t) +hy, 9 (1) < E, te[0,1].

Since

we get

7



So

(Thy)(t) =

IN

IN

IN

IN

<

LIU

Byt [ o7 (000~ = [ st + iy ) d
1— 5?1 ai <BO(Ay)
30 [0 (oot - o [ st + b ())du>d>

+/01t ¢t (ﬁp((wmy) - }% /Osf(u,y(u) + hl,y/(u))du> ds

s (04

+Zaz/ (% (0)p(A4y) — ]%/0 f(u,y(u)+h1,y’(u))du> ds>

+/0t ¢! (ﬁP(OW(Ay) - —/ f(u,y(u) +h1,y’(u))du> ds
o (S [ )+

e <i o& o (S0 L [ ) + /)i d)
+/01t ¢ (i((z;) + }%/:f(u,y(w +h1,y’(u))du) ds

ﬂ d)fl (d)( ' i
1721 10’1 p

0 " p<o>>
s (B o (560 25 o)

oo Gl -5
e () o (e o () )

o) | g (i(sf) s

€1 = C1.

Hence max;c(o,1)(T1y)(t) < c1. it follows that B2(T1y) < c1. This completes the proof of (A3)(iii) of Theorem

2.1.

Step 4. Prove that a1(Thy) > co for y € P(01, a1;¢a, ¢5) with B3(T1y) > cq;
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For y € P(f1, a1;¢a,¢5) with B5(T1y) > ¢4, we have that

ai1(y) = min  y(t) > co = e
t€loo,1—00]

Bi(y) = max [y (t)] < cs

t€[0,1]
and
e
Bs(Try) = max (Tiy)(t) > = = cy4.
t€loo,1—00] 00
Then
. e
ai(Try) = min  (Tyy)(t) > oofBe(Try) > o0—= = ey = 3.
t€loo,1—00] oo

This completes the proof of (A3)(iv) of Theorem 2.1.
Step 5. Prove that G2(Thx) < ¢1 for each x € Q(f1, B2; 1, ¢5) with as(T1z) < cs3;
For y € Q(f1, B2;c1,¢5) with as(T1y) < c3, we have that

f2(y) = min  y(t) <ex
tE[O’O,l*O’O]
and
A
= <
Pri(y) nax [y’ (t) < es
and
az(Tiy) = min  (Thy)(t) < c3 = opey.

t€loo,1—o0]

Using (B) and the methods in Step 3, we get

Ba(Try) = 1tIen[(é)%’l](le)(t) < 1.

This completes the proof of (A3)(v) of Theorem 2.1.
Then Theorem 2.1 implies that 77 has at least three fixed points 41, y2 and y3 such that

B2(y1) < e1, ar(y2) > e, Ba(ys) > e1, ar(ys) < ea.
Hence BVP(7) has three decreasing positive solutions z1, 22 and xg such that

t) < h i t) > h
tren[gflc}yl() er+ ha, te[ar?,lflao]m() ez + ha,

and

t) > h i t) < hy.
tren[gflc}yg() e1 + ha, te[ar?,lflao]y?’() ez + hy

The proof of Theorem 3.1 is completed.
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Let ¢ is defined in (B6) and
1 m
M = 14+ ——m— 5+ bi(1-&) ],
1- Zi:l bi < ; ( )
26 1 1 1+s
e Gm) o () e
1= b p(1) 0 p(s)

s o o (5 )

Theorem 3.2 Choose og € (0,1/2). Suppose that (B1)',(B2),(B3),(B4) and (B6) hold. Let ey,eqz,c be
positive numbers and Q,W and E given by

@ = wn{o(5). 22O senm}:

~
|

W:

=

o) = F— — ;
(aomm{f P! ( )ds f% ¢1<T8§)ds})

Let b be defined in Section 2. If

/ e af 2 (L
MC>CZmaX{UO;Lba¢ (p(1)>b’¢ (P(0)>b}

€1
es>—>e; >0
oo

and
(B10) f(t,u,v) <@ forall t€[0,1],u € [ho, M'c+ ho],v € [—¢,(];
(B11) f(t,u,v) > W for all t € [09,1 — 00, u € [e2 + ha,ea/00 + ha],v € [—¢, ¢];
(B12) f(t,u,v) < E forall t€[0,1],u€ [ha,e1/00+ ho],v € [—c,¢];
then BVP(7) has at least three solutions x1,x2,x3 such that
max x1(t) < eq + ho, min  x9(t) > ea + ha,
tG[O,l] t€[0’0,1*0’0]
and
max x3(t) > e1 + ho, min  x3(t) < ea + ho.
tG[O,l] t€[0’0,1*0’0]
Proof. The proof is similar to that of the proof of Theorem 3.1 and is omitted. O

Remark 3.1 Counsider the corresponding difference equation related to BVP(7),

Alp(n)p(Az(n))] + f(n, x(n), Az(n)) = 0, n € [0, N]),
2(0) = Bo(Az(0)) = 3777, aiz(ns) + A,
2(N +2)+ Bi(Az(N + 1)) = 3277, biz(ni) + B,
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where A,B€ R, 0 < np <ng <---<ny, are integers, a;,b; € R for i = 1,2,---,m, By,B; : R — R are
continuous functions, f: [0, N] x R? — R is continuous. It is interesting to work on this kind of BVP by using

these types of techniques.

Remark 3.2 It is interesting to apply our methods to establish three solutions of the following BVPs

[p(1)e(z' (1)) + f(t,z(t),2'(t)) =0, t€(0,1),
2(0) = Bo(2'(0)) = 3_;% aia’ (&) + A,
z(1) + Bi(2'(1)) = 220%, bix(&) + B,

[p()o(z' ()] + f(t,z(t),2'(t)) =0, te€(0,1)

2(0) = Bo(2'(0)) = 327" aia’ (&) + A,

z(1) + Bi(2'(1)) = 227%, bz’ (&) + B,

and

[p(1)(z' ()] + f(t,z(t),2'(t)) =0, t€(0,1),

2(0) = Bo(2'(0)) = 3277 aix (&) + A,

x(1) + Bi(a'(1)) = 220%, bia' (&) + B

Since the methods are similar, we omit the details. The readers should try it.

4. Examples
Now, we present two examples to illustrate the main results.

Example 4.1 Consider the following BVP of second order differential equation with nonlinear boundary con-
ditions
" + f(t,x(t),2'(t)) =0, t€(0,1),
z(0) — Bo(2'(0)) = %ﬂf(l/2)+2, (14)
z(1) + Bi(2'(1) = z2(1/4) + 72(1/2) +8

where By (x) = 2By(x),

—L— forx >0
— 1+e )
Bo(ac){ s forz <0

tv]
t = _
J(tus0) = Folw) + 3550000
and
5] u € [0,4],
Ly u e [4,12],
564000 -+ 241900—z¢ (,, — 1004) € [12,1004]
fo(u) = T004—12 U ’ u , :
564000, u € [1004, 4004],
564000, u € [4004, 7000004],
564000~ 7000004 u > 7000004

Corresponding to BVP(7), one sees that ¢(x) =z, p(t) =1, & = 1/4,& = 1/2, a1 = 0,a0 = 1/2,
by =1/4,b0=1/4, A=2,B=28. It is easy to see that 1721/2 < 171/371/4.
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Use Theorem 3.1 [t is easy to see that
xBy(z) < 2%, #Bi(z) < 22?, =€ R.

One sees that (B1)-(B4) hold,(B6) hold with ' = 0,6’ =0, =1 and 6 = 2, hy = —27 = 4. Choose

1—1/2
constants 00:%, e; = 2,es = 1000, ¢ = 2000000, then
130 b . s 1( 1 ) 5
i, = &=t ; — ds | = =,
SR > <ﬂ+2/ VIO A A
I = (1-) b 1 —p(0) ) ds = =,
: < 2 >/¢’ (s0)

1 “ ! 1 37
ls = 6 [ —p(0 b; 1 ==p(0) ) ds = —,
3 ¢ (p(l)p( ))Jr; /&_(ﬁ (p(s)p( )) s=1¢

B B - =& %;':12/1_96
“ 1+l + 13 7%’
_ 20 1( 1 ) ! 1(2s>
L = — 2 — d
= Gw) ) G
1 “ S (25 51
> ds = =,
*122”1%;“/0 ’ (p<s)> TR
M = 1+ 1721 a; <ﬂ+z z£z>__a
Q = min{d)(%), M, qS(c)p(l)}-lOOOOOO;
e
W o= ¢ . = 128000;
aomm{f P! ( )ds f%1700¢*1<ﬁ)ds}
_ er) _ 16
E = d’(f)*m

It is easy to see that

€1
es>—>e >0
oo

and
f(t,u,v) < 1000000 for all t € [0,1],u € [4,7000004],v € [—2000000, 2000000 ;
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F(t,u,v) > 128000 for all t € [1/4,3/4], u € [1004, 4004], v € [~2000000, 2000000] ;
ftu,v) < % for all t € 0,1],u € [4,12],v € [—2000000, 2000000] ;

Hence (BT),(B8),(B9) hold. Then applying Theorem 3.1 BVP(1}) has at least three solutions x1, x2, 3
such that

max z1(t) <6, min z(f) > 1004,
t€[0,1] te[1/4,3/4]

and

max xg(t) > 6, min z3(f) < 1004.
t€[0,1] te[1/4,3/4]

Example 4.2 Consider the following BVP of second order differential equation with nonlinear boundary con-

ditions
|2 (t) 2" (1)) + f(t,2(t),2'(t)) = 0, te(0,1),
z(0) — Bo(2'(0)) = 4, (15)
z(1) + Bi(2'(1)) = 2,
where By (x) = 2By(x),
—L— forx >0
— 1+e )
Bo(w) = { T4 forz <0
t|v]
t = _
f( ,’LL,U) fo(u)+255><108
and
%Su u € [0,2],
28, u € [2,10],
4 x 1018 4 DO Z5E (1002 10,1002
fo(u) = x + —Tooz=1g (U ); u € [10, J;
4% 1018, u € [1002, 40022],
4 % 108, u € [4002,6000002],
4 x 1018gu—60000042 u > 6000002.

Corresponding to BVP(7), one sees that ¢(x) = |z|?r with p = 4 is a one-dimensional p— laplacian,
p(t) =1, m=0 ora;=0,b,=0 forall i, A=4,B=2. It is easy to see that A > B, (B2), (B3) and (B4)’
hold and

(B1) 1->" b;=1%#0, ho= % =2, f:]0,1] x [2,400) X R — [0,400) is continuous with

f(t,0,0) £ 0 on each sub-interval of [0,1];

(B6) there exist nonnegative numbers § =1, = %, §=2,0' =1 such that #'2*> < xBy(v) < pz? and

§'x? < xBy(x) < 0z? for all x € R.
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To use Theorem 3.2, one sees

! _ ]‘ - ) €. —_
M = 1+m<5+2b1(1 &))3,

and

=1
m 1 1
— _ . e ds = =
ms <1 ;az>/0 ¢ (p(s)P(1)> 5=,
P )m.&l(l )d—
. ASTERRB 4
a mi + mo + ms 9

Choose e; = 2, e5 = 1000, ¢ = 2000000 and og = 1 and Q,W and E given by

4
Q = min{qﬁ(%), d)(c)2p(0)’ qS(c)p(l)}—leOlS;
_ e _ 640004
U e e () e ()Y )

Let b be defined in Section 2. If

/ c2 B 2 - 1
MC>CZH1&X{U_O; Lb, ¢~} (@) b, 47 (W) b}

e > 6—1 >e; >0
2]
and
(BlO) f(t, U, v) < 8 x 1018 forall t € [0, 1], ue [2, 6000002], v E [72000000, 2000000] ;

(B11) f(t,u,v) > S0V gy g1 ¢ € [L 3] u e [1002,4002], v € [~2000000, 2000000] ;
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and
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(B12) f(t,u,v) < % for all t € [0,1],u € [2,10],v € [-2000000, 2000000] ;
By Theorem 3.2, BVP(15) has at least three solutions x1,xs,x3 such that

max z1(t) <4, min_z9(t) > 1002,
relod el

max z3(t) >4, min_ z3(t) < 1002.
t€[0,1] te[1,2]

Remark 4.1 One can not get three solutions of BVPs in Examples 4.1-4.2 by using the theorems obtained in
papers [1-6, 8, 10-13, 18, 16, 24-29].
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