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Blow-up time for a semilinear parabolic equation with variable
reaction

Théodore Kouassi Boni and Remi Kouadio Kouakou

Abstract

In this paper, we address the solution of a semilinear heat equation with variable reaction subject to

Dirichlet boundary conditions and nonnegative initial datum. Under some assumptions, we show that the

solution of the above problem blows up in a finite time, and its blow-up time goes to that of the solution of

a certain differential equation. Finally, we give some numerical results to illustrate our analysis.
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1. Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω. Consider the initial-boundary value

problem for a semilinear parabolic equation with variable reaction subject to Dirichlet boundary conditions of
the form

ut(x, t) = εΔu(x, t) + ep(x)u(x,t) in Ω × (0, T ), (1.1)

u(x, t) = 0 on ∂Ω × (0, T ), (1.2)

u(x, 0) = u0(x) ≥ 0 in Ω, (1.3)

where p ∈ C1(Ω), supx∈Ω p(x) = p0 > 0, Δ is the Laplacian and ε a positive parameter. The initial datum

u0 ∈ C1(Ω) and u0(x) is nonnegative in Ω. Here, (0, T ) is the maximal time interval on which the solution u

exists. The time T may be finite or infinite. When T is infinite, then we say that the solution u exists globally.
When T is finite, then the solution u develops a singularity in a finite time, namely,

lim
t→T

‖u(·, t)‖∞ = ∞,

where ‖u(·, t)‖∞ = supx∈Ω |u(x, t)| . In this last case, we say that the solution u blows up in a finite time, and

the time T is called the blow-up time of the solution u .
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Throughout this paper, we suppose that there exists a ∈ Ω such that

M = sup
x∈Ω

u0(x) = u0(a) and p0 = sup
x∈Ω

p(x) = p(a).

For our problem described in (1.1)–(1.3), it is well known that the local in time existence and uniqueness of a

classical solution have been proved (see [9], [13], [19]). Solutions of semilinear parabolic equations which blow

up in a finite time have been the subject of investigations by many authors (see, [4], [6]–[8], [10]–[12], [14], [18],

[19], and the references cited therein). In particular, in the case where p(x) = q , q being a positive constant,

the phenomenon of blow-up has been studied for the problem considered in (1.1)–(1.3) (see, [6]–[8], [14]). The

particularity of our problem is that the potential p(x) can take negative values. Due to this fact, to the best
of our knowledge, the phenomenon of blow-up regarding small diffusions and large initial datum for the above
problem has not been treated. Our work was motivated by the paper of Friedman and Lacey in [8], where they
considered the initial-boundary value problem

ut = εΔu + f(u) in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x) ≥ 0 in Ω.

Here, f(s) is a positive, increasing, convex function for nonnegative values of s ,
∫ ∞
0

ds
f(s) < ∞, ε is a positive

parameter, and the initial datum u0(x) is a continuous function in Ω. Under some additional conditions on the
initial datum, they proved that the solution u of the above problem blows up in a finite time, and its blow-up
time goes to that of the solution of the differential equation

α
′
(t) = f(α(t)), α(0) = M, (1.4)

as ε goes to zero. In the same way, in [16], Nabongo and Boni obtained a result as the one found by Friedman

and Lacey for solutions which quench in a finite time (we say that a solution quenches in a finite time if it

reaches a singular value in a finite time). Let us notice that for this kind of problems, other parameters have

been taken such that the L∞ norm of the initial datum (see for instance [10]). One may also consult the paper

of Boni and Diby in [5] for an analogous problem where the L∞ norm of the initial datum has been taken as
parameter within the framework of the phenomenon of quenching. In the present paper, we take either the
L∞ norm of the initial datum or ε as parameter, and obtain analogous results using both a modification of
Kaplan’s method (see, [12]) and a method based on the construction of upper solutions.

The remainder of the paper is organized as follows. In the next section, under some assumptions, we
show that when ε = 1, the solution u of (1.1)–(1.3) blows up in a finite time and its blow-up time tends to that
of the solution of a certain differential equation when the L∞ norm of the initial datum is large enough. We
then obtain an analogous result for small diffusions. Finally, in the last section, we give some numerical results
to illustrate our analysis.
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2. Blow-up solutions

In this section, under some assumptions, we show that the solution u of (1.1)–(1.3) blows up in a finite
time, and its blow-up time tends to that of the solution of a certain differential equation. Our first result
concerns the case where ε = 1 and the L∞ norm of the initial datum is large enough, and our second result
handles the case where the diffusion is small enough. In the introduction of the paper, we mentioned that there
exists a ∈ Ω such that

M = sup
x∈Ω

u0(x) = u0(a) and p0 = sup
x∈Ω

p(x) = p(a).

Consider the following eigenvalue problem

−Δϕ = λδϕ in B(a, δ), (2.1)

ϕ = 0 on ∂B(a, δ), (2.2)

ϕ > 0 in B(a, δ), (2.3)

where δ > 0, such that, B(a, δ) = {x ∈ R
N ; ‖x − a‖ < δ} ⊂ Ω. It is well known that the above eigenvalue

problem admits a solution (ϕ, λδ) such that 0 < λδ = D
δ2 , where D is a positive constant which depends only

on the dimension N , and we can normalize ϕ so that
∫
B(a,δ)

ϕ(x)dx = 1.

Now, we are in a position to state the main result of this paper in the case where ε = 1 and the L∞

norm of the initial datum is large enough.

Theorem 2.1 Let K be an upper bound of the first derivatives of u0 and p . Assume that

M > max{(p0/2)−1/2, 21/3, A, (Kdist(a, ∂Ω))−1/2},

where A = 4DK2855!
p6
0

. Then the solution u of (1.1)–(1.3) blows up in a finite time, and its blow-up time T

satisfies the following estimates

0 ≤ T − TM ≤
(
1 + p0 + A)M−1TM + o(M−1TM ),

where TM = e−p0M

p0
is the blow-up time of the solution α(t) of the differential equation defined as

α
′
(t) = ep0α(t), t > 0, α(0) = M. (2.4)

Proof. Since (0, T ) is the maximal time interval of existence of the solution u , our aim is to show that T is
finite and satisfies the above inequalities. Due to the fact that the initial datum u0 is nonnegative in Ω, owing
to the maximum principle, we see that u is also nonnegative in Ω × (0, T ). Applying the mean value theorem
and the triangle inequality, we find that

u0(x) ≥ M − M−2 for x ∈ B(a, δ), (2.5)

p(x) ≥ p0 − M−2 for x ∈ B(a, δ), (2.6)
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where δ = M−2

K . Introduce the function v(t) defined as follows

v(t) =
∫

B(a,δ)

u(x, t)ϕ(x)dx for t ∈ [0, T ).

Take the derivative of v in t and use (1.1) to obtain

v′(t) =
∫

B(a,δ)

Δu(x, t)ϕ(x)dx +
∫

B(a,δ)

ep(x)u(x,t)ϕ(x)dx for t ∈ (0, T ).

Applying Green’s formula, we arrive at

v′(t) =
∫

B(a,δ)

u(x, t)Δϕ(x)dx +
∫

∂B(a,δ)

ϕ(x)
∂u(x, t)

∂ν
ds

−
∫

∂B(a,δ)

u(x, t)
∂ϕ(x)

∂ν
ds +

∫
B(a,δ)

ep(x)u(x,t)ϕ(x)dx for t ∈ (0, T ),

ν being the exterior normal unit vector to ∂Ω. It is well known that ∂ϕ(x)
∂ν < 0 for x ∈ ∂B(a, δ). In view of

the above inequality, and using (2.1)–(2.2), we deduce that

v′(t) ≥ −λδv(t) +
∫

B(a,δ)

ep(x)u(x,t)ϕ(x)dx for t ∈ (0, T ). (2.7)

Since the function x �−→ ex is nondecreasing, then taking into account (2.6) and (2.7), we find that

v′(t) ≥ −λδv(t) +
∫

B(a,δ)

e(p0−M−2)u(x,t)ϕ(x)dx for t ∈ (0, T ). (2.8)

Apply Jensen’s inequality to arrive at

v′(t) ≥ −λδv(t) + e(p0−M−2)v(t) for t ∈ (0, T ), (2.9)

which implies that

v′(t) ≥ e(p0−M−2)v(t)
(
1 − DK2M4v(t)e(−p0+M−2)v(t)

)
for t ∈ (0, T ), (2.10)

because λδ = D
δ2 = DK2M4 . It is easy to see that 0 ≤ v(t) ≤ 4

p0
e(p0/4)v(t) for t ∈ (0, T ), and e(−p0+M−2)v(t) ≤

e−(p0/2)v(t) for t ∈ (0, T ). It follows from (2.10) that

v′(t) ≥ e(p0−M−2)v(t)

(
1 − 4DK2M4

p0
e−(p0/4)v(t)

)
for t ∈ (0, T ). (2.11)

We observe that e
p0M

8 ≥ p5
0M5

855!
, which implies that 4DK2M4

p0
e−p0M/8 ≤ AM−1. In view of the above inequality,

and using the fact that v(0) ≥ M/2, we observe that v′(0) > 0, and we claim that v′(t) > 0 for t ∈ (0, T ).
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To prove the claim, we argue by contradiction. Let t0 ∈ (0, T ) be the first t such that v′(t) > 0 for

t ∈ [0, t0) but v′(t0) = 0. This implies that v(t0) ≥ v(0) ≥ M/2, and

0 = v′(t0) ≥ e(p0−M−2)v(0)(1 − AM−1) > 0,

which is a contradiction. Consequently, we have v(t) ≥ v(0) ≥ M/2 for t ∈ (0, T ), which leads us to

v′(t) ≥ e(p0−M−2)v(t)
(
1−AM−1

)
for t ∈ (0, T ), or equivalently, e(−p0+M−2)vdv ≥

(
1−AM−1

)
dt for t ∈ (0, T ).

Integrate the above inequality over (0, T ) to obtain e(−p0+M−2)v(0)

p0−M−2 ≥ (1 − AM−1)T, which implies that

T ≤ e−p0M

p0

e(1+p0)M
−1

(1 − AM−1)(1 − M−2

p0
)
. (2.12)

We deduce that the solution u blows up in a finite time because the quantity on the right hand side of the
above inequality is finite. Apply Taylor’s expansion to obtain

e(1+p0)M
−1

(1 − AM−1)(1 − M−2

p0
)

= 1 + (1 + p0 + A)M−1 + o(M−1).

Using (2.12) and the above relation, we find that

T ≤ TM + (1 + p0 + A)M−1TM + o(M−1TM ),

and the second estimate of the theorem is shown. In order to prove the first one, we proceed in the following
manner. We recall that α(t) is the solution of the Cauchy problem below

α′(t) = ep0α(t), t > 0, α(0) = M.

Since p(x) ≤ p0 in Ω, we see that

ut(x, t) ≤ Δu(x, t) + ep0u(x,t) in Ω × (0, T ).

Also, it is not hard to check that α(0) ≥ u(x, 0) in Ω. We deduce from the comparison theorem that

α(t) ≥ u(x, t) in Ω × (0, T∗), (2.13)

where T∗ = min{T, TM}. We claim that

T ≥ TM . (2.14)

To prove the claim, we argue by contradiction. Suppose that T < TM . Taking into account (2.13), we discover

that ‖u(·, T )‖∞ ≤ α(T ) < ∞, which contradicts the fact that (0, T ) is the maximal time interval of existence
of the solution u . This ends the proof. �
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Remark 2.1 It is important to point out that the estimates obtained in Theorem 2.1 about the blow-up time
can be rewritten as

0 ≤ T

TM
− 1 ≤ (1 + p0 + A)M−1 + o(M−1).

This implies that limM→∞
T

TM
= 1 .

To end this section, let us give our second result which concerns the case of small diffusions. It is stated in the
following theorem.

Theorem 2.2 Let K be an upper bound of the first derivatives of u0 and p . Assume that

ε < min{(p0/2)3, A−3, (Kdist(a, ∂Ω))3},

where A = 2DK2

p0
. Then the solution u of (1.1)–(1.3) blows up in a finite time, and its blow-up time T satisfies

the following estimates

0 ≤ T − TM ≤
(
M + p0 +

1
p0

+ A)TM ε1/3 + o(TMε1/3),

where TM = e−p0M

p0
is the blow-up time of the solution α(t) of the differential equation defined as

α
′
(t) = ep0α(t), t > 0, α(0) = M. (2.15)

Proof. Since (0, T ) is the maximal time interval of existence of the solution u , our aim is to show that T is
finite and satisfies the above inequality. Due to the fact that the initial datum u0 is nonnegative in Ω, owing
to the maximum principle, we see that u is also nonnegative in Ω × (0, T ). Applying the mean value theorem
and the triangle inequality, we find that

u0(x) ≥ M − ε1/3 for x ∈ B(a, δ), (2.16)

p(x) ≥ p0 − ε1/3 for x ∈ B(a, δ), (2.17)

where δ = ε1/3

K . Introduce the function v(t) defined as

v(t) =
∫

B(a,δ)

u(x, t)ϕ(x)dx for t ∈ [0, T ). (2.18)

Reasoning as in the proof of Theorem 2.1, we find that

v′(t) ≥ e(p0−ε1/3)v(t)
(
1 − DK2ε1/3v(t)e(−p0+ε1/3)v(t)

)
for t ∈ (0, T ), (2.19)

because λδ = D
δ2 = DK2

ε2/3 . It is easy to see that e(−p0+ε1/3)v(t) ≤ e(−p0/2)v(t) for t ∈ (0, T ). Consequently, in

view of (2.19), we arrive at

v′(t) ≥ e(p0−ε1/3)v(t)
(
1 − DK2ε1/3v(t)e−(p0/2)v(t)

)
for t ∈ (0, T ). (2.20)
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We observe that 2
p0

=
∫ ∞
0

e−(p0/2)σdσ ≥ supt≥0

∫ t

0
e−(p0/2)σdσ ≥ supt≥0 te−(p0/2)t. In view of the above

inequalities and making use of (2.20), we deduce that v′(t) ≥ e(p0−ε1/3)v(t)(1 − Aε1/3) for t ∈ (0, T ), or
equivalently

e(−p0+ε1/3)vdv ≥ (1 − Aε1/3)dt for t ∈ (0, T ).

Integrating the above inequality over (0, T ) to obtain

e(−p0+ε1/3)v(0)

p0 − ε1/3
≥ (1 − Aε1/3)T.

Since v(0) ≥ M − ε1/3, we deduce that T ≤ e(−p0+ε1/3)(M−ε1/3 )

(p0−ε1/3)(1−Aε1/3)
, which implies that

T ≤ e−p0M

p0

e(p0+M)ε1/3

(1 − ε1/3

p0
)(1 − Aε1/3)

. (2.21)

We conclude that the solution u blows up in a finite time because the quantity on the right hand side of the
above inequality is finite. Apply Taylor’s expansion to obtain

e(p0+M)ε1/3

(1 − ε1/3

p0
)(1 − Aε1/3)

= 1 + (p0 + M +
1
p0

+ A)ε1/3 + o(ε1/3).

It follows from (2.21) that

T ≤ TM + (p0 + M +
1
p0

+ A)TM ε1/3 + o(ε1/3)TM ,

and the second estimate of the theorem is proved. In order to demonstrate the first one, it suffices to argue as
in the proof of Theorem 2.1. This finishes the proof. �

Remark 2.2 Let us notice that the estimates obtained in Theorem 2.2 may be rewritten in the form

0 ≤ T

TM
− 1 ≤ (M + p0 +

1
p0

+ A)ε1/3 + o(ε1/3).

We deduce that limε−→0
T

TM
= 1.

3. Numerical results

In this section, we give some computational results to illustrate the theory developed in the earlier section.
For this fact, we consider the radial symmetric solution of the following initial-boundary value problem

ut(x, t) = εΔu(x, t) + ep(x)u(x,t) in B × (0, T ),

u(x, t) = 0 on S × (0, T ),

u(x, 0) = u0(x) in B,
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where B = {x ∈ R
N ; ‖x‖ < 1}, S = {x ∈ R

N ; ‖x‖ = 1}, u0(x) = M cos(π
2 (1 − 2‖x‖)) with M ∈ (0,∞), and

p(x) = 16‖x‖(1−‖x‖)−1
3

. Thus, the above problem may be rewritten in the form

ut(r, t) = ε

(
urr(r, t) +

N − 1
r

ur(r, t)
)

+ eψ(r)u(r,t), (3.1)

r ∈ (0, 1), t ∈ (0, T ),

ur(0, t) = 0, u(1, t) = 0, t ∈ (0, T ), (3.2)

u(r, 0) = ϕ(r), r ∈ (0, 1), (3.3)

where ϕ(r) = M cos(π
2
(1−2r)) and ψ(r) = 16r(1−r)−1

3
. We start by the construction of some adaptive schemes

as follows.
Let I be a positive integer and let h = 1/I . Define the grid xi = ih, 0 ≤ i ≤ I, and approximate the

solution u of (3.1)–(3.3) by the solution U
(n)
h = (U (n)

0 , ..., U
(n)
I )T of the following explicit scheme

U
(n+1)
0 − U

(n)
0

Δtn
= εN

2U
(n)
1 − 2U

(n)
0

h2
+ eψ0u

(n)
0 ,

U
(n+1)
i − U

(n)
i

Δtn
= ε

(
U

(n)
i+1 − 2U

(n)
i + U

(n)
i−1

h2
+

(N − 1)
ih

U
(n)
i+1 − U

(n)
i−1

2h

)

+eψiu
(n)
i , 1 ≤ i ≤ I − 1,

U
(n)
I = 0,

U
(0)
i = ϕi, 0 ≤ i ≤ I,

where n ≥ 0, ϕi = M cos(π
2 (1 − 2ih)) and ψi = 16ih(1−ih)−1

3 . In order to permit the discrete solution to

reproduce the properties of the continuous one when the time t approaches the blow-up time T , we need to
adapt the size of the time step so that we take

Δtn = min{ h
2

2N
, h2e(−‖ψh‖∞‖U

(n)
h ‖∞)},

where ‖ψh‖∞ = sup0≤i≤I |ψi| and ‖U (n)
h ‖∞ = sup0≤i≤I |U

(n)
i |. We also approximate the solution u of (3.1)–

(3.3) by the solution U
(n)
h of the implicit scheme below

U
(n+1)
0 − U

(n)
0

Δtn
= εN

2U
(n+1)
1 − 2U

(n+1)
0

h2
+ eψ0u

(n)
0 ,

U
(n+1)
i − U

(n)
i

Δtn
= ε

(
U

(n+1)
i+1 − 2U

(n+1)
i + U

(n+1)
i−1

h2
+

(N − 1)
ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h

)

+eψiu
(n)
i , 1 ≤ i ≤ I − 1,

U
(n+1)
I = 0,

U
(0)
i = ϕi, 0 ≤ i ≤ I,
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where n ≥ 0. As in the case of the explicit scheme, here, we also choose

Δtn = h2e(−‖ψh‖∞‖U
(n)
h ‖∞)

for the implicit scheme. We remark that limr−→0
ur(r,t)

r = urr(0, t). Hence, if r → 0, then we have

ut(0, t) = εNurr(0, t) + eψ(0)u(0,t) for t ∈ (0, T ).

This remark has been used in the construction of our schemes at the first node. Let us notice that in the ex-
plicit scheme, the restriction on the time step ensures the nonnegativity of the discrete solution. For the implicit
scheme, existence and nonnegativity of the discrete solution are also guaranteed using standard methods (see,

for instance [3]).

We need the following definition.

Definition 3.1 We say that the discrete solution U
(n)
h of the explicit scheme or the implicit scheme blows up

in a finite time if limn→∞ ‖U (n)
h ‖ = ∞ , and the series

∑∞
n=0 Δtn converges. The quantity

∑∞
n=0 Δtn is called

the numerical blow-up time of the solution U
(n)
h .

In the following tables we present some numerical results for meshes 16, 32, 64 and 128.

(1) In Tables 1 and 2, we present the numerical blow-up times, the numbers of iterations, the CPU times

(seconds) and the orders of the approximations obtained with the explicit and implicit Euler method,

respectively, for M = 0 and ε = 1/10.

(2) In Tables 3 and 4, we present the numerical blow-up times, the numbers of iterations, the CPU times

(seconds) and the orders of the approximations obtained with the explicit and implicit Euler method,

respectively, for M = 0 and ε = 1/100.

(3) In Tables 5 and 6, we present the numerical blow-up times, the numbers of iterations, the CPU times

(seconds) and the orders of the approximations obtained with the explicit and implicit Euler method,

respectively, for M = 0 and ε = 1/1000.

(4) In Tables 7 and 8, we present the numerical blow-up times, the numbers of iterations, the CPU times

(seconds) and the orders of the approximations obtained with the explicit and implicit Euler method,

respectively, for M = 1 and ε = 1/10.

(5) In Tables 9 and 10, we present the numerical blow-up times, the numbers of iterations, the CPU times

(seconds) and the orders of the approximations obtained with the explicit and implicit Euler method,

respectively, for M = 1 and ε = 1/100.

(6) In Tables 11 and 12, we present the numerical blow-up times, the numbers of iterations, the CPU times

(seconds) and the orders of the approximations obtained with the explicit and implicit Euler method,

respectively, for M = 1 and ε = 1/1000.
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(7) In Tables 13 and 14, we present the numerical blow-up times, the numbers of iterations, the CPU times

(seconds) and the orders of the approximations obtained with the explicit and implicit Euler method,
respectively, for M = 10 and ε = 1.

(8) In Tables 15 and 16, we present the numerical blow-up times, the numbers of iterations, the CPU times

(seconds) and the orders of the approximations obtained with the explicit and implicit Euler method,
respectively, for M = 20 and ε = 1.

We take for the numerical blow-up time tn =
∑n−1

j=0 Δtj which is computed at the first time when

Δtn = |tn+1 − tn| ≤ 10−16.

The order (s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical experiments for M = 0, N = 2.
First case ε = 1/10

Table 1

I tn n CPU time s

16 1.137646 8843 17 -
32 1.143852 36770 132 -
64 1.146566 141198 1041 1.19
128 1.147750 528086 9273 1.19

Table 2

I tn n CPU time s

16 1.269595 11914 34 -
32 1.268552 47172 245
64 1.268531 179015 2842 1.19
128 1.268519 557321 26361 1.17

Second case: ε = 1/100

Table 3

I tn n CPU time s

16 1.023413 8477 16 -
32 1.023681 32583 115 -
64 1.023808 124963 867 1.07
128 1.023767 480019 7677 1.06

Table 4

I tn n CPU time s

16 1.023608 8478 31 -
32 1.023749 32584 168
64 1.023846 124965 2260 0.93
128 1.024011 480021 21205 0.76

Third case: ε = 1/1000

Table 5

I tn n CPU time s

16 1.003518 8408 17 -
32 1.002820 32222 116 -
64 1.002668 123260 925 2.19
128 1.002636 470541 6736 2.24

Table 6

I tn n CPU time s

16 1.003531 8408 29 -
32 1.002824 32222 155 -
64 1.002669 123260 1930 2.18
128 1.002637 470541 16130 2.27

Numerical experiments for M = 1, N = 2.
First case ε = 1/10
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Table 7

I tn n CPU time s

16 0.561495 11872 27 -
32 0.556983 35451 143 -
64 0.555652 136056 961 1.76
128 0.555096 520521 7412 1.26

Table 8

I tn n CPU time s
16 0.593093 12023 35 -
32 0.584167 45568 240 -
64 0.580952 150793 2807 1.47
128 0.580396 535258 23051 1.53

Second case: ε = 1/100

Table 9

I tn n CPU time s

16 0.398081 7917 16 -
32 0.392664 30312 121 -
64 0.391162 118042 987 1.85
128 0.389661 205772 7915 1.79

Table 10

I tn n CPU time s
16 0.398167 7918 28 -
32 0.392686 30312 151 -
64 0.391168 118042 1926 1.85
128 0.389650 205772 16126 1.83

Third case: ε = 1/1000

Table 11

I tn n CPU time s

16 0.377945 7843 15 -
32 0.372177 29936 120 -
64 0.370758 114093 931 2.02
128 0.370402 433853 6470 1.99

Table 12

I tn n CPU time s

16 0.377955 7843 27 -
32 0.372180 29936 167 -
64 0.370761 113742 1979 2.02
128 0.369342 433805 16475 2.00

Numerical experiments for ε = 1, M = 10,
N = 2.

Table 13

I tn n CPU time s

16 5.541897 e-5 5583 10 -
32 4.795143 e-5 20536 68 -
64 4.625920 e-5 76145 579 2.14
128 4.585121 e-5 281694 3900 2.05

Table 14

I tn n CPU time s
16 5.541991 e-5 5583 20 -
32 4.795175 e-5 20536 96 -
64 4.625929 e-5 76145 1280 2.14
128 4.585130 e-5 281694 8975 2.05

Numerical experiments for ε = 1, M = 20,
N = 2.

Table 15

I tn n CPU time s

16 3.031389 e-9 3179 6 -
32 2.270457 e-9 10408 35 -
64 2.111256 e-9 35166 495 2.25
128 2.072032 e-9 117190 1509 2.02

Table 16

I tn n CPU time s

16 3.031389 e-9 3179 9 -
32 2.270457 e-9 10408 52 -
64 2.111256 e-9 35166 547 2.25
128 2.072032 e-9 117190 1638 2.02

Remark 3.1 If we consider the problem (3.1)–(3.3) in the case where the initial datum is null and the potential

ψ(r) = 16r(1−r)−1
3 , then it is not hard to see that the blow-up time TM of the solution of the differential
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equation defined in Theorem 2.2 equals one. We observe from Tables 1–6 that when ε diminishes, then the
numerical blow-up time of the discrete solution tends to one. In the same way, if one replaces the initial datum
by ϕ(r) = cos(π

2
(1 − 2r)) , then we notice that the blow-up time of the differential equation takes the value

TM = 0.367879 . When we look at Tables 7–12, we see that the numerical blow-up time of the discrete solution
goes to TM provided the parameter ε tends to zero. These results confirm those found in Theorem 2.2. To finish
the remark, we also observe that when M = 10 or M = 20 , then the blow-up time of the differential equation
TM = 4.539992 e−5 or TM = 2.061153 e−9 and we see, from Tables 13–16, that the numerical blow-up time of
the discrete solution is approximately equal TM when M = 10 or M = 20 . These results confirm those found
in Theorem 2.1.

In the following, we also give some plots to illustrate our analysis.

(1) In Figure 1, we plot the evolution of the discrete solution for M = 0, I = 16 and ε = 1/10.

(2) In Figure 2, we plot the evolution of the discrete solution for M = 1, I = 16 and ε = 1/10.
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(3) In Figure 3, we plot the evolution of the discrete solution for M = 10, I = 16 and ε = 1.

(4) In Figure 4, we plot the evolution of the discrete solution for M = 20, I = 16 and ε = 1.
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